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Chronic ulcers are an important and costly medical issue, imposing considerable pain, 

reduced mobility and decreased quality of life. The common pathology in these 

chronic wounds is excessive proteolytic activity, resulting in degradation of key 

factors critical to the ulcer’s ability to heal. Matrix metalloproteinases (MMPs), a 

large family of zinc-dependent endopeptidases, have been shown to have increased 

activity in chronic wound fluid (CWF), with many authors suggesting that they need 

to be inhibited for the ulcer to heal. The studies we report here show that the 

excessive MMP activity in CWF can be inhibited with the bisphosphonate 

alendronate, in the form of a sodium salt, a functionalised analogue, and tethered to a 

poly(2-hydroxy methacrylate) (PHEMA) hydrogel. Furthermore, these functionalised-

alendronate hydrogels appear to be biocompatible as assessed in a three-dimensional 

ex vivo human skin equivalent model. Together, these results highlight the potential 

use of a tethered MMP inhibitor to inhibit protease activity in wound fluid. This 

approach may improve wound healing as it still allows MMPs to remain active in the 

upper cellular layers of the ulcer bed where they perform vital roles in wound healing; 

thus may offer an attractive new device-orientated wound therapy.
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1. INTRODUCTION

Many current topical treatments for chronic ulcers have been designed to rectify the 

imbalance of growth-factors in the wound bed. One example is Regranex® from 

Johnson & Johnson, which delivers platelet-derived growth factor from a hydrogel 

dressing. While products like these introduce a positive flux of growth factors into the 

wound, they have been found to be only minimally effective [1]. Many authors have 

postulated that this is due to the excessively high levels of proteolytic activity, namely 

MMP activity, found in CWF [1-4]. In view of this, it has been suggested that the 

addition of a protease inhibitor prior to topical treatment of the wound may promote 

healing [3, 5-7]. There are a number of specific synthetic inhibitors of MMPs, namely 

tetracyclines and their chemically modified derivatives, e.g. doxycycline [6, 8, 9]; 

hydroxamic acids, e.g. GM6001 [10]; and bisphosphonates, e.g. clodronate [11]. The 

bisphosphonates are particularly appealing for use in chronic ulcers as they have been 

used clinically for a number of years to treat MMP-related disorders. Furthermore, 

they exhibit low toxicity and are therefore generally well-tolerated [12].

Bisphosphonates are small molecules, specifically referred to as geminal 

bisphosphonates when two C—P bonds are found on the same carbon atom [13]. 

Quite similar to endogenous pyrophosphates, bisphosphonates replace the O—P with 

a C—P, thereby allowing two additional functional groups [14], as well as creating a 

hydrolysis-resistant P—C—P bond [15]. In terms of MMP-inhibition, they are 

capable of binding to divalent metal ions, e.g. Zn2+, Ca2+ [16], through a three-

dimensional structure that allows the coordination of one oxygen from the phosphate 

group with the cation [14]. This affinity for divalent cations can be increased even 

further if one of the functional groups is either a hydroxyl (OH) or a primary amine 

(NH2), as this then facilitates the formation of a tridentate conformation with the 

cation [14]. In addition, the nitrogen atom in the side chain must be in a particular 

spatial arrangement, as well as being a critical distance from the cation, for the 

bisphosphonate to be the most potent [17]. As a result, there has been a lot of work 

aimed at designing new and improved bisphosphonates in recent years, resulting in 

hundreds of new bisphosphonates being synthesised [17].
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Bisphosphonates have been shown to inhibit MMP-1, -2, -3, -8, -9, -12, -13 and -20 at 

both therapeutically obtainable and, most importantly, non-cytotoxic concentrations 

[16]. Current clinical applications generally include the management of calcium and 

bone metabolism disorders, e.g. osteoporosis, Paget’s disease, hypercalcaemia and 

metastatic cancer [15]. For a number of years now, these diseases have been 

effectively treated with bisphosphonates. Therefore, it appears that for future 

indications, including those primarily caused by significant soft tissue destruction, e.g. 

chronic ulcers, bisphosphonates may be a promising treatment [12]. In terms of 

chronic ulcer treatments, the delivery of specific bisphosphonates, or indeed simply 

the presentation of this particular chemical to the site of excessive protease activity, 

has to be carefully contemplated. This is due to more recent reports suggesting that 

the MMPs present in the ulcer environment may also be involved in other biological 

processes important to wound healing, such as growth factor activation and immune 

system regulation, rather than simply degrading the wound bed matrix and growth 

factors [18-21]. The goal of this study, which is significantly different from protease-

inhibitory strategies proposed by others, is therefore to inactivate the proteases in the 

wound fluid after the fluid is absorbed away from the actual wound bed. In this 

situation the proteases required for healing-associated functions within the upper 

cellular layers of the wound bed remain available.

Bisphosphonates have previously been modified for clinical delivery, especially in 

terms of bone-specific applications [22-24]. In addition, alendronate is a prime 

candidate bisphosphonate for functionalisation as it contains a primary amine – a 

convenient chemical group that can be easily manipulated for conjugation into a 

polymer using already-established methods [24]. Through a nucleophilic acyl 

substitution reaction, an amine, present in the alendronate sodium salt form, can be 

reacted with a vinyl-containing acid halide [25] to produce an alendronate tethered to 

an unsaturated carbon group. This group then allows for further polymerisation into 

an established hydrogel system. The experiments reported herein focus on the details 

surrounding this preliminary alendronate condensation reaction, and then describe 

how this alendronate-methacrylate can be copolymerised into a PHEMA/PEG 

hydrogel system. Furthermore, this bioactive wound dressing is tested for efficacy 

against protease activity in CWF, and is assessed in further cell-based assays to 

confirm biocompatibility with a human ex vivo skin model.
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2. MATERIALS AND METHODS

2.1 Chemicals

2-Hydroxyethyl methacrylate (HEMA, ≥ 99% GC, Sigma-Aldrich, St Louis, MO, 

USA) and methacryloyl chloride (Sigma-Aldrich) were distilled under reduced 

pressure immediately prior to use. Polyethylene glycol 20,000 (PEG, Sigma-Aldrich), 

peroxidase from horseradish (Sigma-Aldrich) and 2,2'-Azinobis [3-

ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS, Pierce 

Biotechnology, Rockford, IL, USA), alendronate sodium salt (Merck, San Diego, CA, 

USA) and 4-methoxy phenol (Sigma-Aldrich) were used as supplied under the 

manufacturers’ instructions. All H2O used was double deionised by ion exchange 

(MilliQ, Millipore, Billerica, MA, USA).

2.2 Functionalisation of alendronate 

In a round-bottom flask, alendronate sodium salt (300 mg, 0.92 mmol) was dissolved 

in aqueous NaOH (148 mg, 3.70 mmol in 7.4 mL H2O) with 4-methoxy phenol to 

inhibit polymerisation. The solution was cooled in an ice-salt bath then freshly 

distilled methacryloyl chloride (120 mg, 1.15 mmol) and NaOH (111 mg, 2.768 mmol 

in 5.5 mL H2O) was added step-wise, maintaining the pH above 11. The reaction was 

stirred vigorously for 20 hours, then acidified with HCl to pH 7. The resulting product 

was evaporated to dryness using a rotary evaporator and extracted with chloroform 

(CHCl3) to remove any impurities. The water layer was then precipitated with N,N-

dimethylformamide (DMF) to obtain alendronate-methacrylate.

2.3 Characterisation of alendronate-methacrylate through FT-NMR 

spectroscopy

31P spectra were recorded using a 400 MHz NMR Spectrometer (Bruker, Germany) at 

room temperature in deuterated water (D2O). Spectra were analysed using MestReC 

Version 4.9.9.6 software (Mestrelab Research, Santiago de Compostela, Spain).
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2.4 Wound fluid sample collection and preparation

Chronic wound fluid (CWF) samples were obtained from consenting patients of the 

St. Luke’s Nursing Services (Brisbane, QLD, Australia), suffering from chronic 

venous ulcers and undergoing compression therapy. Ethical approval to collect these 

samples was obtained from both the Queensland University of Technology (QUT) 

and St. Luke’s Nursing Services. A standard wound fluid collection technique has 

been established and was carried out at the clinical site. Briefly, ulcers were washed 

with sterile water prior to collecting wound fluid, followed by the application of an 

occlusive dressing over the wound. Exudate accumulated under the dressing after 30 

min to 1 h was recovered by washing with 1 mL of saline. The fluid was removed 

with 26G x 0.5” needle and syringes (Terumo Medical, Somerset, NJ, USA) and 

collected in 1.5 mL Protein LoBind tubes (Eppendorf, Hamburg, Germany). The 

wound fluid samples were centrifuged at 14,000 g for 10 min, then the supernatant 

was filtered using 0.45 µm cellulose acetate filters (Agilent Technologies, 

Wilmington, DE, USA). The protein content for all samples was quantitated and 

standardised using the BCA Protein assay kit (Pierce Biotechnology, Rockford, IL, 

USA). The samples were then sub-aliquoted and stored at -80 ºC until further 

analysis.

2.5 Analysis of MMP-inhibition through incubation with the alendronate-

methacrylate

A pooled sample of CWF was run on Collagen Type I zymograms as previously 

described [26] using Collagen Type I (Sigma-Aldrich) at a final concentration of 0.5 

mg/mL in 10% total acrylamide gels under non-reducing conditions. Briefly, 

electrophoresis was performed at 4 ºC under Laemmli conditions [27]. The gels were 

then washed in 2.5% Triton X-100 for 30 minutes, then a further 60 minutes, prior to 

incubation in 50 mM Tris-HCl, 10 mM CaCl2 and 50 mM NaCl at pH 7.6 for 24 

hours at 37 ºC, with the following exception. Alendronate-methacrylate (2 mM of the 

equivalent bisphosphonate segment of alendronate-methacrylate) and alendronate 

sodium salt (2 mM) were included in separate zymogram incubation buffers and the 

zymograms were incubated at 37 ºC for 24 hours. The gels were then stained using 

0.25% Coomassie brilliant blue R-250 (Bio-rad Laboratories, Hercules, CA, USA) 
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(40% methanol, 10% acetic acid) and destained appropriately (40% methanol, 10% 

acetic acid). Protease activity was visualised as clear (unstained) bands. 

2.6 Analysis and quantitation of collagen zymography

Gels were scanned using GeneSnap version 6.07 (SynGene, Cambridge, UK) and 

analysed using GeneTools version 3.07 to determine the molecular weight and 

quantitate the clear bands (SynGene). All quantitative analyses were performed using 

three separate gels per treatment and values were expressed as a relative % of the 

untreated sample, similar to previously published reports [28, 29]. 

2.7 Synthesis of hydrogels 

Aqueous solutions of distilled HEMA were prepared (50% water, 30% PEG and 20% 

HEMA) with a vehicle control without alendronate-methacrylate and two 

concentrations of alendronate-methacrylate (2 mM and 20 mM of the equivalent 

bisphosphonate segment of alendronate-methacrylate in the monomer solution) (Table 

1). Solutions were then placed between two glass plates separated by a silicone gasket 

and purged with argon. Each mould was approximately 75 mm x 50 mm x 3 mm and 

filled with 10 mL of monomer solution. The moulds were then exposed to gamma-

irradiation in a Gamma-cell 220 (Atomic Energy of Canada Ltd, Ottawa, Canada)

using a Co60 source at a rate of 3.25 kGy/h to give a total dose of 10 kGy (Table 4.1). 

The hydrogels were removed from their moulds and cut into 1 cm x 1 cm square 

pieces for further analysis.

2.8 Analysis of polymerisation through NIR FT-Raman Spectroscopy

Non-irradiated and irradiated samples were analysed by a Perkin Elmer System 2000 

NIR FT-Raman spectrophotometer (Perkin Elmer, Waltham, MA, USA). The 

hydrogel samples were placed into glass vials for spectroscopic analysis and the 

spectra were analysed using Grams/AI (Thermo Electron Corporation, Waltham, MA, 

USA).
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2.9 Analysis of MMP-inhibition through incubation with the alendronate-

functionalised hydrogels

Similar to that described above, a pooled sample of CWF was analysed through 

Collagen Type I zymography with the following alteration. Alendronate-

functionalised hydrogels were cut into small pieces and included in the incubation 

buffer, along with a blank and a non-functionalised hydrogel to act as a vehicle 

control, and then incubated at 37 ºC for 24 hours. Collagen Type I zymograms were 

then analysed as described previously.

2.10 Skin collection

Skin samples were collected from consenting patients undergoing breast or abdomen 

reductions at the St. Andrews and Wesley Hospitals, Brisbane, QLD, Australia. 

Human ethical approval was obtained from both the hospitals and the Queensland 

University of Technology. The skin samples were collected in sterile jars containing 

antibiotic/antimycotic solution containing 10,000 units of penicillin/mL, 10,000 µg of 

streptomycin/mL and 25 µg of amphotericin B/mL, with penicillin G, streptomycin 

sulfate and amphotericin B as antimycotic in 0.85% saline (Invitrogen, Carlsbad, CA, 

USA). These samples were processed within 12 hours following storage at 4 ºC in 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing antibiotics.

2.11 Primary keratinocyte cell cultures

Primary skin keratinocytes were isolated as previously described [30] and expanded 

on a feeder layer of lethally irradiated 3T3 mouse fibroblast feeder cells (i3T3s) in 

Green’s Media [31] that contained 10% foetal calf serum (FCS – Hyclone, Logan, 

UT, USA). Keratinocytes were grown for 7 days with the medium replaced every 3-4 

days.
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2.12 Preparation of a three-dimensional human skin epidermis equivalent

model 

A human skin equivalent (HSE) model was used as previously described [30] with the 

following modifications. Following keratinocyte addition to the sterile stainless steel 

rings on top of the HSEs, the composites were incubated for 24 hours at 37 ºC/5% 

CO2. After this period, the rings were removed and the composites were raised to the 

air-liquid interface by moving them onto stainless steel grids in 6-well plates (Nunc). 

The cultures were maintained for 5 days at 37 ºC/5% CO2 before the hydrogel 

treatments were applied.

2.13 Biocompatibility testing of hydrogels using the HSE model

At five days post air-liquid interface culture, the alendronate-functionalised hydrogels 

were placed on top of the composite, along with “no treatment” and “non-

functionalised” hydrogels as controls. These hydrogels were exposed to the composite 

for 7 days at 37 ºC/5% CO2, with the media being replaced at 3 days. At completion 

of the treatment, samples of the composite model were fixed and paraffin-embedded 

using standard protocols for haematoxylin and eosin (H&E) histological analysis. 

2.14 Immunohistochemistry

Paraffin sections of the HSEs were cut (3 μm sections) and then deparaffinised in 

ethanol and xylene. Briefly, this involved sequential incubations with solutions of 

100% xylene, 100% ethanol, 95% ethanol, 70% ethanol and distilled water. Sections 

were then probed separately for: keratin 1/10/11 (K1/10/11), a marker for 

cornification and squamous cell differentiation; p63 (RDI Research Diagnostics, 

Concord, MA, USA), a p53 analogue that identifies normal basal cells as opposed to 

malignant tumours; and cleaved caspase-3 (Cell Signaling Technology, Danvers, MA, 

USA), a critical mediator of apoptosis in mammalian cells. For slides that were 

probed for cleaved caspase-3, antigen unmasking was required before the blocking 

step. Briefly, the slides were incubated at 37 ºC in 10 mM citrate buffer (pH 3.0) for 

30 min, before proceeding as normal. After incubation with primary antibodies for 

K1/10/11 (1:400), p63 (1:100) and cleaved caspase-3 (1:100), the sections were 
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probed using a Dako Envision kit (Dako Denmark A/S, Glostrup, Denmark) as per the 

manufacturer’s instructions, with the exception that phosphate buffered saline (PBS) 

was used instead of TBS. After antibody development of the labelled secondary 

antibody with the 3,3’ diaminobenzidine (DAB) chromogen solution, all sections 

were counterstained with haematoxylin for 30 seconds and analysed using light 

microscopy.
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3. RESULTS

3.1 Synthesis and characterisation of alendronate-methacrylate

Following the identification of excessive MMP-9 levels in CWF as described in 

previous studies [32, 33], potential MMP inhibitors were considered for incorporation 

into a hydrogel wound dressing. The bisphosphonate alendronate was chosen as it has 

been used for a number of years in clinical practice [15] and possessed an easily 

modified primary amine. The primary amine in alendronate was reacted with 

methacryloyl chloride to form the amide along with a pendant vinyl group (Figure 

1A). This unsaturated carbon then allowed for further polymerisation (Figure 1B) into 

an aqueous PHEMA:PEG hydrogel system. The 31P spectra of the methacrylated 

product, along with the original alendronate, are shown in Figure 2. All peaks have 

been assigned and further details of the spectrum are outlined in Table 2. In Figure 2C

a second triplet is seen upfield of the first, which can be assigned to a dimer of the

original alendronate-methacrylate formed through P—O—P bonds of the 

bisphosphonate groups (Figure 3), and not the starting product as shown by the shift 

upfield. 

3.2 Analysis of MMP-inhibitory action of alendronate-methacrylate

To analyse the alendronate-methacrylate, an activity assay was used to compare its 

MMP-inhibitory activity to that of the original alendronate. Through incubation of 

CWF with increasing concentrations of either the original or the alendronate-

methacrylate, the proteolytic activity was revealed by the use of Collagen Type I

(Figure 4A-B). This demonstrated that both forms of the alendronate are able to 

inhibit CWF samples 1-6 to varying degrees. Densitometry was used to quantify the 

reduction in proteolytic activity revealed by zymography and are represented 

graphically in Figure 4C. Quantitatively, both inhibitors were able to decrease the 

amount of Collagen Type I degradation, as compared to the untreated CWF samples 

(p<0.01). From this functional assay, it appears that the addition of the methacrylate 

group to alendronate still allows for inhibition of MMPs at a physiological 

temperature over 24 hours, although at a reduced level of function compared to the 

native form. 
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3.3 Preparation and characterisation of alendronate-functionalised hydrogels

Following successful inhibition of MMPs in CWF with the alendronate-methacrylate, 

polymerisation was required to form the functionalised wound dressing. Three sets of 

hydrogels were successfully synthesised according to the conditions outlined earlier 

(Table 1, Figure 1B). NIR FT-Raman Spectroscopy demonstrated that a total dose of 

10 kGy of gamma irradiation induced complete polymerisation of the alendronate-

methacrylate and HEMA monomer to its copolymer form (Figure 5). This was 

evident by the absence of a characteristic C=C band at 1639 cm-1 in the irradiated 

samples when compared with the monomer mixture. The hydrogel sheets were then 

characterised using both a functional protease assay, along with exposure to a three-

dimensional ex vivo skin model to determine biocompatibility.

3.4 Analysis of MMP-inhibitory action of alendronate-functionalised 

hydrogels

The alendronate-functionalised hydrogels were analysed using Type I Collagen 

zymography to determine if the tethered alendronate still demonstrated MMP-

inhibitory action. The hydrogels were cut into small pieces and incubated with the 

zymograms containing the CWF, along with an untreated control. Collagen Type I 

zymography of the pooled CWF samples showed a large amount of protease activity 

in the untreated control (lane 1) (Figure 6A). However, when the hydrogel pieces 

were present, all three treatments showed a visible decrease in the amount of Collagen 

Type I degradation (lanes 2-4) (Figure 6A). When the treatments were analysed using 

densitometry to quantitate the relative decrease in protease activity, the GA10X 

hydrogel, i.e. the hydrogel containing 20 mM of alendronate-methacrylate, displayed 

the ability to significantly reduce Collagen Type I degradation as compared with the 

non-hydrogel treated control (p<0.01) (Figure 6B). These results suggest the tethered 

alendronate is still able to inhibit MMPs as shown through a functional assay.   
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3.5 Biocompatibility testing using a three-dimensional human skin equivalent

A three-dimensional human epidermal skin equivalent model was used to assess

potential toxicity effects from the alendronate-functionalised hydrogels as compared 

to the vehicle hydrogel. The various hydrogels were applied to the stratified skin 

models for a seven-day period, with histological and immunochemical staining 

carried out upon completion of the experiment. Treatments included the vehicle 

control of hydrogel G, along with the two alendronate-functionalised hydrogels, 

GA1X and GA10X. Histological analysis showed a haematoxylin-stained basal layer, 

with an eosin-stained cornified layer of relatively the same thickness throughout for 

all treatments (Figure 7). For the GA10X hydrogel minimal basal cells are apparent, 

along with increased numbers of nucleated cells in the cornified layer. Hydrogel G 

and GA1X also show some nucleated cells in the cornified layer, however, they do 

not appear to be as numerous. When the sections were probed for specific skin 

markers, keratin 1/10/11 and p63, and the apoptotic marker, cleaved caspase-3,

hydrogel GA10X revealed a minimal amount of p63 immunoreactive basal cells, 

confirming the histological analysis. In the control and hydrogel G treatments, there is 

no visible immunoreactivity of cleaved caspase-3 with apoptotic cells. Similarly,

minimal cleaved caspase-3 immunoreactivity is evident in samples exposed to its 

functionalised counterparts, GA1X and GA10X. This indicates that the synthesised 

hydrogels appear promising for potential wound dressing treatments.
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4. DISCUSSION

MMP-9 has been previously identified as an abundant protease present in CWF, and

is likely to have a key role in degrading both the extracellular matrix and growth 

factors in the chronic wound environment. Hence, it is not surprising that current 

topical treatments of chronic ulcers with bioactives, i.e. growth factors, have proven 

to be only slightly effective in treating this condition [1]. In view of this, a specific 

MMP inhibitor, namely the bisphosphonate alendronate, was chosen as a potential 

clinical treatment to aid in neutralising the aggressive proteolytic chronic wound 

environment; the ultimate goal of this strategy being to modulate the ulcer towards a 

healing state. The bisphosphonate family, which exhibits low toxicity and has been 

well tolerated for several years of human use, seems to be the ideal candidate for 

MMP-related diseases [12]. The wound treatment explored in this study examined the 

use of bisphosphonates to inhibit MMP activity in CWF. Importantly, the approach 

described differs significantly from previous methods in that we proposed inactivation 

of the proteases in the wound fluid, after the fluid is absorbed away from the actual 

wound bed, so that proteases required for wound healing-related functions within the 

upper cellular layers of the wound bed remain available. 

Alendronate was chosen as the MMP-inhibitor for inclusion into the hydrogel, 

primarily due to the fact that it contains both amine and hydroxyl functional groups, 

which together can enhance the bisphosphonate’s affinity for divalent cations [14].

However, it first has to be modified to allow further polymerisation into the synthetic 

wound dressing. Because alendronate is insoluble in common organic solvents, a two 

phase Shotten-Baumann reaction was chosen to react an acid chloride with the amine 

of alendronate. This reaction is well characterised and allows high yields of amides, 

mainly due to the fact that they are able to successfully compete with other reactive 

species present [34]. Briefly, this is a two phase reaction with the acid chloride 

suspended in the water phase containing the amine compound. At the boundary of the 

two phases, the amine reacts with the acid chloride, thereby generating the desired 

product. The 31P spectra showed an additional phosphorus-containing species in the 

resulting product, possibly due to the dimerisation of two functionalised alendronate 

molecules through the –OH group on the phosphate. Similar dimerisation has been 

shown with a similar phosphate-containing molecule, i.e. ethylene glycol 
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methacrylate phosphate (MOEP) [35]. Following the reaction to modify alendronate, 

the resulting product was then copolymerised into a PHEMA hydrogel system. FT-

Raman spectroscopy revealed a complete polymerisation, thereby ensuring that no 

functionalised alendronate could be released from the hydrogel.

Critically, we demonstrate that alendronate tethered to a hydrogel was able to 

significantly decrease the levels of Type I Collagen degradation in CWF as compared 

to the untreated control (p<0.01). Interestingly, the vehicle hydrogel, i.e. the hydrogel 

without the alendronate-methacrylate, was also able to inhibit MMP activity as 

revealed through the Collagen Type I zymography, but to a lesser degree than the 

most concentrated alendronate-functionalised hydrogel, GA10X. A possible 

explanation for this is the chemical composition of PHEMA itself, as it contains three

oxygen atoms in its unit structure that are all available for chelation [36]. Further 

evidence for this hypothesis is that Ca2+ itself has a strong tendency to chelate to 

oxygen atoms [37]. Therefore, through the use of a “self-chelating” hydrogel support, 

the vehicle treatment (hydrogel G) has the ability to chelate the cations required by 

MMPs for their stability and catalytic activity, e.g. Ca2+, Zn2+. This chelating ability is 

then disrupted by copolymerisation with the alendronate-methacrylate at the lowest 

concentration (hydrogel GA1X). Zainuddin et al. (2006) previously postulated that by 

reducing the number of available oxygen atoms, the chelating mechanism is thereby 

reduced, and may then prevent the chelation of metal ions with PHEMA. 

Furthermore, Chirila et al. (2007) report massive calcification of PHEMA, both in 

vitro in simulated body fluid and in vivo as subcutaneous implants [38]. However, 

when the highest concentration of alendronate-methacrylate is copolymerised into the 

system (GA10X), the chelating ability of alendronate alone is stronger than the 

PHEMA support and overcomes the decreased response seen with GA1X. Therefore, 

taken together, these results indicate that the alendronate is still available to inhibit the 

MMPs in the CWF, while not being released into the wound bed. This is a significant 

advance over topically applied inhibitors as it allows MMPs to remain active in the 

wound bed where they perform vital roles in growth factor activation and immune 

system regulation [18-21], yet at the same time the unwanted MMPs, those in the 

CWF, are absorbed into the hydrogel where they are inactivated.
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Three-dimensional ex vivo skin models are a useful tool for evaluating topical

products, as well as overcome a number of ethical and practical issues associated with 

animal studies [39]. Furthermore, 3D-stratified layers of human epidermal cells grown 

in culture systems in vitro have been shown to be useful in assessing skin irritation 

potential [40]. Following on from this, the experiments reported herein showed that 

there were minimal differences between the three treatments, i.e. the vehicle and two 

alendronate-functionalised hydrogels, in terms of impact on visible structure and 

effect on a range of skin cell surface expression markers on the HSE model. An 

interesting point to note is that with both wound dressing treatments, nucleated cells 

became visible in the previously anuclear cornified layer. We suspect that the 

application of a topical dressing to the skin equivalent model results in culture 

medium being absorbed into the dressing, and therefore converts the air-liquid 

interface of the 3D skin model to a liquid-liquid interface. This may then stimulate the 

keratinocytes to migrate faster through the cornified layers and produce a more 

immature phenotype. This particular behaviour has also been described in previous 

reports, where cells in a similar three-dimensional skin model did not completely 

differentiate when still covered with culture medium [41]. Indeed, this may well 

underlie the well accepted evidence that a moist wound environment is essential for 

optimal wound healing [42]. 

In terms of expression of skin cell surface markers, the HSEs exposed to the three 

hydrogel treatments appeared to be relatively similar when probed with the skin 

differentiation marker keratins 1, 10 and 11 and the basal cell marker, p63. The main 

difference observed between the HSEs exposed to the three treatments was that

minimal immunoreactivity was observed with p63 in the GA10X hydrogel. This is 

likely to be alleviated by first washing the alendronate-functionalised hydrogels –

thereby minimising the increased adhesive potential, or “stickiness”, of the 

phosphonate polymer component, such as that demonstrated in previous adhesion 

studies using human peripheral blood mononuclear cells [43]. Apoptosis in the 

keratinocytes in the HSE was also analysed by immunoprobing for cleaved caspase-3 

– a major effector caspase that is specific for keratinocytes undergoing apoptosis and 

not just those undergoing terminal differentiation [44]. None of the three treatments 

showed large levels of immunoreactivity to this cell surface marker, which appears 
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promising for future clinical treatments, especially in terms of developing MMP-

inhibiting, CWF-absorbing functionalised hydrogels.
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5. CONCLUSION

Taken together, the results reported herein suggest this novel alendronate-

functionalised hydrogel holds promise as a dressing treatment for chronic wounds. 

This is due to its ability to inhibit the excessive levels of MMPs in CWF, as well as its 

biocompatibility when exposed to a human ex vivo skin model. Of importance to the 

development of this wound dressing was the ability to attach a functional group to the 

alendronate sodium salt, which then allowed polymerisation into the hydrogel system. 

This was achieved through a Shotten-Baumann reaction of the primary amine of 

alendronate with methacryloyl chloride, which permitted high yields of the amide in a 

single-step reaction. Furthermore, we have demonstrated that the MMPs in CWF can 

be inhibited by the original bisphosphonate alendronate, the methacrylated-analogue, 

and in a tethered state, i.e. attached to a hydrogel support. This last point is critical to 

the development of a successful chronic ulcer wound dressing as it inhibits the MMPs 

in CWF, while still allowing those on the wound bed itself to perform their essential 

functions in wound healing, namely, activation of growth-promoting agents and 

immune system modulation.
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Figure 1. Reaction schemes. 

(A) Condensation reaction of methacryloyl chloride and alendronate sodium salt. 

(B) Gamma-induced polymerisation of HEMA and alendronate-methacrylate.

Figure 2. FT-NMR 31P spectrum of alendronate-methacrylate. 

(A) Labelled schematic of alendronate-methacrylate. 

(B) 31P spectrum of alendronate. 

(C) 31P spectrum of alendronate-methacrylate.

Figure 3. Potential structure of alendronate-methacrylate dimer.

Figure 4. Collagen Type I zymography demonstrating inhibition of protease 

activity present in wound fluid samples by alendronate sodium salt and its 

methacrylated-counterpart.

(A) Lanes 1-6 are CWF samples 1-6 (500 ng); Lanes 7-12 are CWF samples 1-6 

(500 ng) with 2 mM of alendronate (A) present in the incubation buffer at 37 ºC for 24 

hours.

(B) Lanes 1-6 are CWF samples 1-6 (500 ng); Lanes 7-12 are CWF samples 1-6 

(500 ng) with 2 mM of alendronate-methacrylate (functionalised A) present in the 

incubation buffer at 37 ºC for 24 hours.

(C) Relative levels of protease activity in pooled CWF samples treated with 

respective inhibitors. The MMP-specific inhibition of collagen degrading activity was 

represented quantitatively through densitometric analysis. Levels are shown as the % 

collagen degrading activity as compared to the untreated samples, ± SEM (n=3). 

Statistical significance is relative to the untreated samples and shown as # (p<0.01) as 

determined by Tukey’s test.

Figure 5. Analysis of alendronate-functionalised hydrogels using NIR FT-

Raman Spectroscopy. Spectra indicate intensity/ Raman shift in cm-1.

(A) Unirradiated H2O:HEMA:PEG

(B) GA1X

Irradiated H2O:HEMA:PEG:1X alendronate-methacrylate (10 kGy)

(C) GA10X

Irradiated H2O:HEMA:PEG:10X alendronate-methacrylate (10 kGy)

Captions



Figure 6. Collagen Type I zymography demonstrating inhibition of protease 

activity present in wound fluid samples by alendronate-functionalised hydrogels.

(A) Lane 1 is the pooled CWF sample with no treatment in the incubation buffer. 

Lanes 2-4 are the same pooled CWF sample with polymer G, GA1X and GA10X 

(Table 1) respectively cut into small pieces and present in the incubation buffer at    

37 ºC for 24 hours.

(B) Relative levels of protease activity in pooled CWF samples treated with the 

respective hydrogels. The MMP-specific inhibition of collagen degrading activity was 

represented quantitatively through densitometric analysis. Levels are shown as the % 

collagen degrading activity as compared to the control sample, ± SEM (n=3). 

Statistical significance is relative to the control sample and shown as # (p<0.01) as 

determined by Tukey’s test.

Figure 7. Histological and immunohistochemical analysis of an ex vivo

human skin model following exposure to the alendronate-functionalised

hydrogel. From left to right the staining is: haematoxylin and eosin (H&E), keratin 

1/10/11 (K1/10/11), p63 and cleaved caspase-3 (CC-3). The scale bar measures 20 

µm. Hydrogel treatments are defined in Table 1.



1.

Sample ID H2O (g) HEMA (g) PEG 20,000 (g)
Alendronate-

methacrylate (mg)

G 5.0 2.0 3.0 -

GA1X 5.0 2.0 3.0 7.68

GA10X 5.0 2.0 3.0 76.80

Table 1. Functionalised hydrogel formulations prepared for analysis as 

potential wound dressings

Peak ppm
Multiplicity, 

coupling constant 
(Hz)

Norm. 
Int

Identity

21.51
21.43a,b

21.35

t, 12.7 1.00
P on alendronate-
methacrylate, split by CH2

21.16
21.091
21.01

t, 11.8 0.35
P on alendronate-
methacrylate dimer (Figure 
3), split by CH2

Table 2. Features of alendronate-methacrylate FT-NMR 31P spectrum. 

Columns are from left to right: peak number; shift (ppm); multiplicity (s, d, t, m) and 

coupling constant (Hz); normalised integral; and identity.

Table
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