
Local Cluster Neural Network On-chip Training

Liang Zhang, Joaquin Sitte
School of Software Engineering and Data Communications,

Queensland University of Technology, Australia
E-mail: l1.zhang@student.qut.edu.au, j.sitte@qut.edu.au

Abstract— The local cluster neural network is a feedforward
RBF network that has been implemented in analogue neural
net chip. The LCNN chip can be trained by chip-in-the-
loop training and this training method has been demonstrated
to work efficiently. In order to increase the functionality of
LCNN chip, we proposed on-chip training for the LCNN
chip. In this paper, we describe two training algorithms –
Gradient Descent and Probabilistic Random Weight Change,
which are used in LCNN on-chip training simulations. We also
present the experiment results from the simulations in multi-
dimensional function approximation. The training convergence
is investigated and analyzed. The circuite signal flow chart for
these two algorithms are designed.

I. INTRODUCTION

The Local Cluster Neural Network (LCNN) is a special
kind of Feedforward neural network proposed by Geva and
Sitte [1]. It is a multilayer perceptron (MLP) where sigmoidal
neurons combine in clusters that have a localised response
in input space like radial basis functions (RBF). The LCNN
has been demonstrated to have good performance on function
approximations in digital computer simulations and it is
implemented in analog VLSI hardware in the LCX chip [2]
[3] [4]. Chip-in-the-loop training is successful on the LCX
chip for function approximations using Probabilistic Random
Weight Change (PRWC) algorithm [9]. Although chip-in-the-
loop training is effective for training the analogue chip, it
needs a computer and software external to the analogue chip.
Based on previous research we proposed on-chip training for
the LCNN. Two training algorithms are utilised for the on-
chip training and they are realised by computer simulations.
In this paper we describe the architecture of Local Cluster
Neural Network (LCNN) briefly in section II. Followed in
section III and section IV by the training methods and the
training algorithms: Gradient Descent (GD) and Probabilistic
Random Weight Change (PRWC) and the on-chip training
strategies. Section V and section VI show the experimental
results in simulations and the block circuit diagrams. The
two training methods are compared in section VII. The
conclusion is in section VIII.

II. LOCAL CLUSTER NEURAL NETWORK AND ITS

ANALOG HARDWARE IMPLEMENTATION

The Local Cluster Neural Network (LCNN) is defined by
equation (1). Figure 1 shows the signal flow diagram for
a segment of two clusters of a LCNN. The LCNN uses
sigmoidal neurones in two hidden layers to form functions
localised in input space, similar to Radial Basis Functions
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Fig. 1. Structure of the LC neural net

(RBF) but which are capable of representing a wider range
of localised function shapes [3]. Each neuron in the second
hidden layer outputs such a local response function. The
LCNN output is a linear combination of localised scalar
functions in n-dimensional input space:

y(�x) =
m∑

μ=1

vμLμ(Wμ, �rμ, k, �x) (1)

where vμ is the output weight, Wμ is weight matrix for
determining the output shape, �rμ weight determines the
position of the localised output function, k is the sigmoid
slope and �x is n-dimensional input.

The operation of LCNN as follows:
The first layer:
(i) Subtraction of the position vector �r of the local function

centre from the input vector �x and computation of two dot
products as follows:

h+ = �wT (�x − �r + 1) (2)

h− = �wT (�x − �r − 1) (3)

(ii) Calculation of sigmoid functions:

σ(k, h) =
1

1 + e−kh
(4)

(iii) Subtraction of the two sigmoid functions to get the
ridge function (5):

l(�w,�r, k, �x) = σ(k, h+) − σ(k, h−) (5)

The second layer:
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(i) Summation of the ridge functions:

f(W, �r, k, �x) =
n∑

i=1

l( �wi, �ri, k, �xi) (6)

(ii) Application of the sigmoidal windowing function to
obtain the cluster output. Calculation of the output sigmoids
as equation (7). The constant b allows shifting the window
with respect to the function. Figure 2 shows a local function
L in two dimensions.

L(W, �r, k, �x) = σ0(f(W, �r, k, �x) − b) (7)
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The output of the LCNN is the weighted summation of all
cluster outputs.

The LCNN has been implemented in an analogue chip
with 6 inputs, one output and 8 clusters [4] that can be trained
by the chip-in-the-loop training scheme [9].

III. TRAINING OF LOCAL CLUSTER NEURAL NETWORK

Neural network training is a parameter optimisation pro-
cess. Training neural networks in digital computing simula-
tions is easy, but it is hard to realise the training in analogue
neural network hardware with the same method that has
utilised in digital simulations.

There are three schemes for training neural net hardware
[7]. Off-chip training computes the network weights in sepa-
rate computer simulation and then downloads the weight onto
the chip. But this method is inaccurate, because the fluctua-
tions and deviations in the analogue circuits are unknown and
cannot be accounted for in the simulation [4] and therefore
the weights obtained by training the mathematical model
(LCNN) on software simulation will produce a different
function on the chip. The chip-in-the-loop training scheme
overcomes this problem by calculating the weights on a
separate computer using the output of the analogue chip.
Hence the effect caused by fluctuations and deviations is
directly taken into account [9]. The ideal way of training
an analogue chip is on-chip training. The on-chip training
method has the training function inside the analogue chip
and does not need an attached computer.

As the LCNN analogue chip does not have on-chip training
circuits, in-the-loop training is applied for the LCNN chip.
We formulated the Probabilistic Random Weight Change
(PRWC) algorithm [9] and it is successfully used for in-the-
loop training for LCNN analogue chip. Followed the research
achievement of LCNN analogue hardware implementation
and its in-the-loop training, we propose on-chip training for
the next version of LCNN analogue chip.

IV. TRAINING ALGORITHMS FOR ON-CHIP TRAINING

We have considered two different training algorithms for
on-chip training – Gradient Descent (GD) and Probabilistic
Random Weight Change (PRWC).

A. Gradient Descent (GD)

The Gradient Descent (GD) has been used in the LCNN
digital computing simulation with batch training as equations
(8) and (9) and it has proven to perform very efficiently.

E =
1
p

p∑
i=1

(yi − y∗
i )2 =

1
p

p∑
i=1

e2
i (8)

Δq = η

p∑
i=1

ei
∂y(�xi)

∂q
(9)

where p represents the training sample number, q as the
parameter in the neural network architecture (LCNN has
three kinds of parameters: w, r and v), y as the neural
network output and y∗ as the desired output.

In each training epoch, mean square error is calculated
for a set of training sample points and the weight change
is calculated with a sum of derivative in the set of sample
points (figure 3). The learning rates are adjusted according
to the sum of mean square error changes (figure 4).

This batch training can be easily realised in software but
it is hard to be realised in an analogue hardware as there
are many rules in the training process and many memories
are needed for rules and for batch calculations. Hence it
can be seen that batch training is not suitable for analogue
design. Instead of batch training, we use an on-line strategy
or pattern-mode for on-chip training design (figure 5).

On-line training algorithm takes the squared error in each
training sample

e = (yi − y∗
i )2 (10)

to update the weights instead of calculating mean square
error from a batch of calculations. The learning rate is a
fixed small value in training instead of adapted by rules. The
weights are adjusted by the derivatives (equations 19 - 21)
in each training sample pointer. Then the weight changes are
determined by learning rate η and the error e (equations 16
- 18). Thus no rules are needed on training. This strategy
simplifies the analogue training circuit compared to batch
training.

The Gradient Descent (GD) algorithm in on-line training
strategy is defined as equations (11) and (12):
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Fig. 3. The flow chart of LCNN GD batch training
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Fig. 4. Rules of adapting learning rates on LCNN training.

Δq = η
∂e

∂q
(11)

q = q + Δq (12)

where η is the learning rate, q is the parameter in neural
network.

The LCNN includes three kinds of parameters (weights).
They are updated as equations (13) - (15) in training. The
weight changes are calculated in equations (16) - (21).
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Fig. 5. The flow chart of LCNN GD on-line training

wμij(n + 1) = wμij(n) − Δwμij (13)

rμj(n + 1) = rμj(n) − Δrμj (14)

vμ(n + 1) = vμ(n) − Δvμ (15)

Δwμij = ηe
∂y( �xp)
∂wμij

(16)

Δrμj = ηe
∂y( �xp)
∂rμj

(17)

Δvμ = ηe
∂y( �xp)
∂vμ

(18)

∂y( �xp)
∂wμij

= vμσ
′
o(fμ(�w,�r, k1, �xp) − b)

∂fμ( �xp)
∂wμij

(19)

∂y( �xp)
∂rμj

= vμσ
′
o(fμ(�w,�r, k1, �xp) − b)

n∑
i=1

∂lμi( �xp)
∂wμij

(20)

∂y( �xp)
∂vμ

= Lμ(�w,�r, k1, k2, �xp) (21)

B. Probabilistic Random Weight Change (PRWC)

The Probabilistic Random Weight Change (PRWC) is an
alternative method that we proposed for on-chip analogue
design. The PRWC training algorithm is ”model-free” such
as Random Weight Change (RWC) [5], Weight Perturbation
(WP) [6] and Simulated Annealing (SA) [8]. In the compar-
ison with the GD on-line algorithm, the PRWC algorithm
results in further simplifcation in circuit design as it does
not require intermediate network outputs. PRWC has been
successfully applied in the LCNN analogue chip in-the-loop
training with batch strategy. We propose on-line strategy to
design our on-chip training.

The PRWC is defined as follows:
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wi(n)′ = wi(n) + Δwi(n) (22)

where n is the number of training sample and i is the weight
index. In each training sample pointer, we have the original
weight set wi and the new weight set w′

i, such that we have
training errors e and e′ in each training sample from equation
(10). The weight change Δwi is:

Δwi =

⎧⎪⎨
⎪⎩

Lr k = 0
(−1) × Lr k = 1
0 k �= 0 & k �= 1

(23)

k = rand mod m (m = 3, 4, 5, ...) (24)

where Lr is the learning rate, rand is a positive random
value and k is the remainder of the random number divided
by m.

The weight wi and weight change Δwi in the next training
sample are decided by equations (25) and (26).

{
wi(n + 1) = wi(n)′ e(n)′ < e(n)
wi(n + 1) = wi(n) e(n)′ ≥ e(n)

(25)

{
Δwi(n + 1) = Δwi(n) e(n)′ < e(n)
Δwi(n + 1) = new Δwi e(n)′ ≥ e(n)

(26)

In each training sample, wi is updated by equation (22).
The weight change Δwi is determined by k in equation (23).
Thus the weight wi is randomly changed only while k = 0 or
k = 1. i.e. wi is changed by probability 2/m. The probability
2/m is determined by m. If the error decreases, then the
weight change Δwi for the next training sample will keep in
the same value as in the last training sample. Otherwise, if
the error increases, Δwi will be set by equation (23). Figure
6 shows the block diagram of PRWC on-chip training.
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Fig. 6. Block diagram for LCNN Random Weight Change training

V. EXPERIMENT RESULTS IN SIMULATIONS

We have tested both GD on-line training and PRWC on-
line training in simulations. In this section results from these
two simulations are shown.

The Mexican Hat function (27), subtraction of two Gaus-
sian functions (28) and sine function (29) are used as our
testing functions in multi-dimensional function approxima-
tions.

y = a · cos(c · |�x|2) · e− |�x|2
b (27)

y = a · e−
(x1−c)2+(x2−c)2

2×b2 − a · e−
(x1+c)2+(x2+c)2

2×b2 (28)

y = sin(x) (29)

where a, b and c are the parameters that determine the output
shape.

We did statistical testing for the two training methods.
Table I and II present the average training errors in multi-
dimensional mexhat functions and their standard deviations
for GD and PRWC training. Table III and IV present the
average training errors in sine time series multi-dimensional
data and their standard deviations for GD and PRWC train-
ing.

TABLE I

THE GD TRAINING ON STATISTIC TESTING FOR MEXHAT FUNCTION

1-d 2-d 3-d 4-d 5-d 6-d
average

error 0.0347 0.0397 0.0871 0.0482 0.0881 0.0343
standard

deviation 0.0014 0.0083 0.0009 0.0010 0.0003 0.0018

TABLE II

THE PRWC TRAINING ON STATISTIC TESTING FOR MEXHAT FUNCTION

1-d 2-d 3-d 4-d 5-d 6-d
average

error 0.0376 0.0522 0.0952 0.0497 0.0968 0.0926
standard

deviation 0.0083 0.0130 0.0012 0.0005 0.0016 0.0051

TABLE III

THE GD TRAINING ON STATISTIC TESTING FOR SINE TIME SERIES DATA

2-d 3-d 4-d 5-d 6-d
average

error 0.0168 0.0155 0.0149 0.0148 0.0142
standard

deviation 0.0032 0.0038 0.0033 0.0025 0.0029

TABLE IV

THE PRWC TRAINING ON STATISTIC TESTING FOR SINE TIME SERIES

DATA

2-d 3-d 4-d 5-d 6-d
average

error 0.0294 0.0195 0.0164 0.0159 0.0129
standard

deviation 0.0108 0.0083 0.0026 0.0045 0.0035

The one dimensional mexhat function approximation train-
ing with 4 clusters of LCNN in GD is displayed by figures
7 and 8. After 10000 GD training epochs, the final training
error is 0.035 as showing in figure 7. The plot in figure 8
shows desired output (solid line) and the GD training output
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(dashed line). In comparison with GD training, the figures
9 and 10 display the PRWC training in the same training
samples and with the same clusters. After 10000 PRWC
training epochs, the training error is 0.029 in minimum. The
plot in figure 10 shows desired output (solid line) and the
PRWC training output (dashed line).
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Fig. 7. The training error of one
dimensional mexhat function in GD
training.
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Fig. 9. The training error of
one dimensional mexhat function in
PRWC training
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put).

Figure 11 shows the training error for two dimensional
mexhat function approximation with 8 clusters of LCNN in
GD training. After 10000 training epochs, the training error is
0.036. Figure 12 shows the desired 2D mexhat output (left
plot) and the GD training output for 2D mexhat function
approximation (right plot).
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Fig. 11. The GD training error for 2 dimensional mexhat testing

The same two dimensional mexhat training sample is
tested by PRWC training in 8 clusters of LCNN. Figure
13 shows the PRWC training error and figure 14 shows the
desired output and the PRWC training output in 2D mexhat
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Fig. 12. The training target and output for 2 dimensional mexhat testing
in GD.

function. After 10000 training epochs, the training error is
0.040.
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Fig. 13. The PRWC training error for 2 dimensional mexhat testing
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Fig. 14. The training target and output for 2 dimensional mexhat testing.

The results show that the GD training error decreases
smoothly through training epoch. In PRWC training the
error decreases not as smoothly as GD training because it
adjusts the weights randomly but the error shows the same
decreasing trend as GD. In addition, the PRWC training is
faster than GD training because the PRWC involves less
computation than GD. In the final hardware realisation the
speed difference will be less and instead there will be a
saving in circuit area.

VI. ON-CHIP TRAINING BLOCK CIRCUIT DESIGN

Figure 15 shows the Gradient Descent (GD) on-chip
training block circuit diagram. We have used derivative
calculations and many multipliers to complete the training
procedure in flow chart 5. Figure 16 shows the Probabilistic
Random Weight Change (PRWC) on-chip training block
circuit diagram. Two weight storages are needed to keep the
original weights and the updated weights and fewer multi-
pliers are needed to complete the PRWC training procedure
as described in figure 6.
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VII. COMPARISON OF PRWC AND GD

Analysing the experimental results in section V and the
block circuit diagram design in section VI, we find the
following characteristics for PRWC and GD training:

• Approximation error: The multi-dimensional time series
experiment, two methods performan equally well. In
normal multi-dimensional function approximation, the
final error is affected by the type of target function
and dimensionality. For complicated target functions,
the GD training is more stable than the PRWC training.

• Convergence speed: The PRWC and GD have the
similar convergence speed measured by the number of
training epochs required to converge to the smallest
error.

• Complexity: Comparing PRWC and GD block circuit
diagrams, the GD needs much more computation than
PRWC in training. So that GD is slower than PRWC in
training processing and GD is more complicated than
PRWC in fabrication.

VIII. CONCLUSIONS

The training methods, GD and PRWC, were successfully
used in analogue on-chip training simulations. The PRWC is
a ”model-free” training method. Both algorithms are applied
in on-line training strategy. Both methods performed well,
statistically, in final error and convergence speed. Although
the two methods have the different advantages in different
cases, in overall, the PRWC training method has more poten-
tial for analogue hardware on-chip training implementation
as its simplicity is suitable for achieving a high degree
of parallelism on the chip. The analogue LCNN with on
chip training is intended for control applications such as for
example brushless DC motor control.
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