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Abstract 

Previous studies demonstrated that IGF-II binds directly to vitronectin (VN) while IGF-I 

binds poorly.  However, binding of VN to integrins has been demonstrated to be essential for 

a range of IGF-I stimulated biological effects including IGF binding protein-5 (IGFBP-5) 

production, IGF type-1 receptor autophosphorylation and cell migration. Thus we 

hypothesised that a link between IGF-I and VN must occur and may be mediated through 

IGFBPs.  This was tested using competitive binding assays with VN and [125I]-labelled IGFs 

in the absence and presence of IGFBPs.  IGFBP-4, IGFBP-5 and non-glycosylated IGFBP-3 

were shown to significantly enhance binding of IGF-I to VN, while IGFBP-2 and 

glycosylated IGFBP-3 had a smaller effect. Furthermore binding studies with analogues 

indicate that glycosylation status and the heparin-binding domain of IGFBP-3 are important 

in this interaction. To examine the functional significance of IGFs binding to VN, cell 

migration in MCF7 cells was measured and found to be enhanced when VN was pre-bound to 

IGF-I in the presence of IGFBP-5.  The effect required IGF:IGFBP:VN complex formation; 

this was demonstrated by use of a non-IGFBP-binding IGF-I analogue.  Together, these data 

indicate the importance of IGFBPs in modulating IGF-I binding to VN and that this binding 

has functional consequences in cells. 
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Introduction 

The mitogenic effects of insulin-like growth factors (IGFs) are modulated by 

members of the IGF-binding protein (IGFBP) family.  These proteins have been 

demonstrated to both inhibit and potentiate IGF action (1).  In addition to the six IGFBPs, 

another group of proteins termed IGFBP-related proteins (IGFBP-rPs), have also been shown 

to bind the IGFs, however with a much lower affinity.  Upton et al. (2) have reported 

identification of another endogenous protein complex consisting of vitronectin (VN) and 

IGF-II.  This is particularly interesting as VN is structurally unrelated to both the IGFBPs and 

IGFBP-rPs. 

VN, a multifunctional protein found in plasma and extracellular matrix, is a 

component of the urokinase system.  A number of proteins bind to VN, including 

glycosaminoglycans (3, 4), which bind via a heparin-binding domain in VN, and integrins, 

which bind via an R-G-D sequence (5, 6).  It is through the binding of various proteins to 

these motifs, as well as other domains within VN, that diverse physiological processes such 

as extracellular anchoring, cell spreading and migration are mediated (7-9). 

IGF-II has been shown to bind directly to VN, whereas only minimal binding of IGF-I 

to VN occurs (2).  Nevertheless, it is intriguing that VN appears to be critical for a number of 

IGF-I-related effects including cellular DNA synthesis, type-1 IGF receptor 

autophosphorylation and cell migration (10-12).  More specifically, Clemmons and co-

workers have shown that VN binding to the integrin αvβ3 is critical for IGF-I stimulated 

smooth muscle cell migration (13).  In addition, inhibition of IGFBP-5 binding to porcine 

SMC extracellular matrix also reduces cellular responses to IGF-I (14).  Furthermore, the 

potentiating effects of IGFBPs on IGF action appear to require interaction with, as yet 

unidentified, cell-surface associated proteins which may include VN (15).  For example, 

IGFBP-5 has been demonstrated to facilitate binding of IGF-I to bone independently of the 
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IGF receptors (16) and IGFBP-3 has also been shown to potentiate IGF action markedly 

following binding to the cell surface (17). 

Given the importance of IGFBPs and VN for regulation of IGF action, we 

hypothesized that IGFBPs may mediate direct binding of IGFs to VN, and in particular, that 

IGFBPs may be necessary for functional interaction of IGF-I with VN.  We now provide 

substantial evidence to support this hypothesis based upon studies examining binding of 

labelled-IGF-I and -IGF-II to VN in the absence and presence of IGFBPs and enhanced cell 

migration in the presence of these complexes. 
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Experimental Procedures 

Materials 

IGF-I, IGF-II, Des(1-3)IGF-I, Des(1-6)IGF-II, [Leu27]IGF-II, IGFBP-1, -2, and -4 

were purchased from GroPep Pty Ltd (Adelaide, SA, Australia). IGFBP-5, glycosylated 

IGFBP-3, heparin binding domain (HBD) mutant IGFBP-3 and mutant non-glycosylated 

IGFBP-3 were produced as described previously by Firth et al. (18), while glycosylated 

IGFBP-6 was kindly donated by Dr Leon Bach (Department of Medicine, University of 

Melbourne, Vic, Australia).  Human breast carcinoma (MCF-7) cells were obtained from the 

American Type Culture Collection (ATCC # HTB-22).  Human vitronectin was purchased 

from Promega Corporation (Madison, WI, USA).  RIA grade BSA, heparin, chloramine-T, 

sodium metabisulphite and Sigmacote were purchased from Sigma Chemical Co. (St Louis, 

MO, USA).  Sodium [125-iodide], Sephadex G-50 and HiTrap heparin affinity columns were 

obtained from Amersham Pharmacia Biotech UK Ltd (Buckinghamshire, England).  Other 

chromatography equipment for radiolabelling IGFs was purchased from BioRad Laboratories 

Inc. (Hercules, CA, USA).  Hanks’ Balanced Salt Solution (HBSS), Dulbecco’s Modified 

Eagles Medium (DMEM), DMEM-Ham’s F12 (DMEM-F12), Trypsin, Penicillin-

Streptomycin and Gentamycin were purchased from Invitrogen Australia Pty Ltd (Mt. 

Waverley, Vic, Australia) while Foetal Calf Serum was from Trace Scientific (Noble Park, 

Vic, Australia).  Removawell Immulon-4 HB wells were from Dynex Technologies Inc. 

(Chantilly, VA, USA) while 80 cm2 culture flasks and 24-well plates were from Nagle Nunc 

International (Roskilde, Denmark).  Transwells were purchased from Costar (New York, NY, 

USA).  Autoradiographic film was purchased from Eastman Kodak (Rochester, NY, USA) 

while low molecular weight protein markers were obtained from BioRad Laboratories Inc.  

All other reagents were of analytical grade.  General plastic-ware used in experiments 

containing IGFBPs and VN was siliconised with Sigmacote and left to air-dry overnight. 
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Radiolabelling of Proteins 

IGF-I and IGF-II were iodinated according to the chloramine-T method as described 

by GroPep Pty Ltd for IGFs while IGFBP-3 (glycosylated and non-glycosylated) was 

iodinated as per Dr Janet Martin (personal communication).  The chloramine-T reactions 

were performed for 1 minute for the IGFs (10 µg) and 15 seconds for IGFBP-3 (5 µg).  

Labelled IGFs were purified using size exclusion on Sephadex G-50, with 50 mM sodium 

phosphate, 150 mM NaCl, 0.25% w/v BSA, pH 6.5 as the elution buffer, while labelled 

IGFBP-3 was purified using heparin affinity chromatography and 50 mM sodium phosphate, 

0.1% w/v BSA, pH 6.5 as the equilibration buffer.  The protein was eluted using elution 

buffers 1-3, consisting of the equilibration buffer containing 1) 0.4 M NaCl, 2) 0.75 M NaCl 

and 3) 1.0 M NaCl, all at pH 6.5 respectively.  Confirmation that the [125I]-IGFBP-3 was the 

correct molecular size and was not fragmented during the labelling procedure was obtained 

by non-reducing SDS-polyacrylamide gel electrophoresis.  Ten thousand cpm of [125I]-

IGFBP-3 fractions from peaks in the iodination elution profile were run on a 4% stacking 

/10% separation Tris-glycine gel, dried and then exposed to autoradiographic film for 1-7 

days. 

 

Solid-Plate Binding Assay 

IGF:VN:IGFBP binding assays were performed in removable Immulon wells coated 

with or without 300 ng of vitronectin in 100 µL DMEM at 37°C, 5% CO2 for 2 - 4 hours.  

Wells were rinsed twice with HEPES Binding Buffer  (HBB: 0.1 M HEPES, 0.12 M NaCl, 5 

mM KCl, 1.2 mM MgSO4, 8 mM glucose containing 0.5% w/v BSA, pH 7.6) to prevent non-

specific binding.  [125I]-labelled protein (IGF-I, IGF-II, glycosylated IGFBP-3 or non-

glycosylated IGFBP-3) (10000 cpm) in HBB + 0.5% BSA in the absence or presence of 
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increasing concentrations of unlabelled IGFs (0.1 – 100 ng), IGF analogues (0.1 – 100 ng) 

and/or IGFBPs (0.05 – 100 ng) were incubated overnight at 4°C in a final volume of 100 µL 

(19).  Unbound radiolabelled protein was then removed by aspiration and the wells were 

washed three times with HBSS.  Radioactivity remaining bound in each well was then 

determined using a gamma counter. Each sample was measured in triplicate and the 

experiment repeated at least three times.  Student’s paired t-test was used to compare 

amounts of labelled protein of test wells to the control (absence of VN and presence of 

tracer).  Differences were significant if the p value was less than 0.05. 

 

Transwell Cell Migration Assay 

Human breast carcinoma (MCF-7) cells were grown in DMEM-F12 media 

supplemented with 10% foetal calf serum, penicillin (50 units/mL), streptomycin (0.1 µg/mL) 

and gentamycin (1 µg/mL).  Cells were grown to 70 – 80% confluence at 37°C in a 

humidified environment with 5% CO2.  Cell migrations assays using Transwells were 

performed using cells from passages 24 to 34. 

The lower chambers of 12 µm pore polycarbonate tissue culture treated Transwells 

were pre-coated with 1 µg VN in serum-free DMEM-F12 and incubated at 37° C for 2 hours. 

Media containing unbound VN was then removed and the lower chambers washed twice with 

HBB containing 0.5% BSA.  IGF-I or Des(1-3)IGF-I (1 – 100 ng) in DMEM-F12 + 0.05% 

BSA was added to the lower chamber in the absence or presence of IGFBP-5 (1000 ng) and 

allowed to bind to the pre-coated VN overnight at 4°C.  The media containing unbound 

growth factors was removed and the lower chambers washed twice with DMEM-F12 + 

0.05% BSA.  MCF-7 cells that had been serum-starved for 4 hours were trypsinised and 

seeded on to the microporous membrane in the upper chamber of the Transwell inserts 

(200,000 cells/well) and incubated at 37° C in 5% CO2 for 5 hours.  Cells that had migrated 
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to the lower surface of the porous membrane were then fixed in 37% formaldehyde and 

stained with 0.01% crystal violet in 0.1 mM borate buffer (pH 9). The number of cells that 

had migrated to the lower side of the membrane was quantitated by extracting the crystal 

violet stain in 10% acetic acid and determining the optical density of these extracts at 595 

nm.  Treatments were expressed as a percentage of the response observed on VN alone.  Data 

were pooled from duplicate samples from three experiments and significant differences in 

responses compared to VN, or between treatments, were determined by Tukey’s analysis of 

multiple means.  Differences were significant if the p value was less than 0.05. 
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Results 

Effects of IGFs and IGF-II analogues on binding of  [125I]-IGF-II to VN 

To demonstrate that the interaction of IGF-II with VN is specific, [125I]-IGF-II 

binding assays were conducted in the presence of IGF-II analogues with varying affinities for 

IGFBPs and/or IGF receptors.  Des(1-6)IGF-II (which has a low affinity for IGFBPs) (20) 

and [Leu27]IGF-II (which has low affinity for the type-1 IGF receptor and IGFBP-3) (21) 

were equipotent with native IGF-II in their ability to displace [125I]-IGF-II bound to VN (data 

not shown). Half-maximal competitive effects were observed at approximately 1 ng.  IGF-I, 

on the other hand, was much less effective at displacing [125I]-IGF-II, achieving 

approximately a 20% reduction at 0.2 ng with no further reduction at higher doses up to 100 

ng. 

 

Effect of IGFBPs on modulating binding of  [125I]-IGF-II to VN 

The ability of IGFBPs to modulate IGF-II binding to VN was then investigated 

(Figure 1).  All six IGFBPs were examined (Panels A to F) and each IGFBP was found to 

compete with radiolabelled IGF-II for binding to VN.  However, IGFBP-5 was only effective 

at the highest dose tested (100 ng).  On the other hand, IGFBP-1, -2, -3, -4 and –6 competed 

effectively, even at the lowest doses tested (0.05 ng and 0.2 ng), although IGFBP-2 and –4 

had much less dramatic effects on binding of [125I]-IGF-II to VN compared with IGFBP-1, -3 

and -6.   

 

Effect of IGFBPs on modulating binding of [125I]-IGF-I to VN 

The effect of IGFBPs on modulating binding of [125I]-IGF-I to VN was also 

determined using the solid plate-binding assay (Figure 2).  IGF-I binding was very low (380 

cpm) compared to that observed with IGF-II (4500 cpm) in the absence of IGFBPs.  Addition 
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of IGFBP-1 (panel A) had a significant inhibitory effect on the very small amount of [125I]-

IGF-I binding directly to VN.  IGFBP-6 was also inhibitory, but less so.  In stark contrast, 

IGFBP-2, -3, -4 and –5 (panels B, C, D and E) share similar binding patterns, whereby they 

enhance binding of radiolabelled IGF-I to VN by 3-fold, 2-fold, 3.5-fold and 8-fold 

respectively, at their particular optimal concentrations.  Maximum binding of labelled IGF-I 

to VN was observed with 0.5 ng IGFBP-3 while maximum binding of labelled IGF-I was 

found at 5 ng for IGFBP-2, -4 and –5. 

 

Ability of IGF peptides to compete for binding of [125I]-IGF-I to VN in the presence of 

IGFBP-3 or IGFBP-5 

In order to demonstrate that the enhanced binding of [125I]-IGF-I to VN in the 

presence of IGFBPs was specific and involved formation of and IGF-I:IGFBP:VN complex, 

competitive binding studies were undertaken in the presence of IGFBP-3 or IGFBP-5 with 

unlabelled IGF-I or the IGF-I analogue, Des(1-3)IGF-I, which has very low affinity for these 

IGFBPs (20).  Des(1-3)IGF-I was much less effective than IGF-I at competing for binding of 

labelled IGF-I to VN in the presence of IGFBP-3, particularly at lower doses (Figure 3A).  

Half-maximal competition for [125I]-IGF-I binding to VN occurred at much lower levels for 

IGF-I (less than 0.1 ng) than for Des(1-3)IGF-I (0.2 ng).  Nevertheless, at the highest dose 

tested, both peptides were able to negate any enhancing effects of IGFBP-3, in terms of 

facilitating binding of IGF-I to VN.  In the presence of IGFBP-5 (Figure 3B), Des(1-3)IGF-I 

was ineffective in reducing binding of [125I]-IGF-I to VN.  Half-maximal displacement for 

IGF-I occurred at 1 ng while Des(1-3)IGF-I reduced binding by only 40% at the highest dose.  

These data strongly suggest that the binding of [125I]-IGF-I to VN requires the formation of 

IGF-I:IGFBP:VN complexes. 
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Importance of IGFBP-3 heparin-binding domain in IGFBP-3 in mediating [125I]-IGF-I 

binding to VN 

Heparin-binding domains (HBD) are commonly important for many extracellular 

protein interactions (22, 23). IGFBP-3 contains such a domain.  In order to determine the role 

of this domain in IGFBP-3 enhancement of IGF-I binding to VN, binding studies using 

glycosylated IGFBP-3 and HBD mutant IGFBP-3 were undertaken (Figure 4).  The HBD 

mutant has previously been demonstrated to bind IGF-I with similar affinity to that of the 

wild-type IGFBP-3 (24).  As demonstrated earlier (Figure 2C), the presence of IGFBP-3 

increases the binding of labelled IGF-I to VN by 2-fold.  However, when the HBD domain of 

IGFBP-3 is mutated, IGFBP-3-mediated binding of [125I]-IGF-I to VN is completely negated.  

Indeed, [125I]-IGF-I binding is inhibited, presumably due to the sequestration of the labeled 

IGF-I by the mutant IGFBP-3 since it does not bind to VN.  These data again indicate the 

need for a complex involving IGFBPs to facilitate IGF-I binding to VN. 

 

Comparison of the effects of glycosylated and non-glycosylated IGFBP-3 on [125I]-IGF-I 

binding to VN 

To examine whether glycosylation of IGFBP-3 was important for the enhancement of 

IGF-I binding observed in earlier assays, binding of labelled IGF-I to VN in the presence of 

glycosylated IGFBP-3 or non-glycosylated IGFBP-3 was also compared (Figure 5).  Non-

glycosylated IGFBP-3 was approximately 15-times more effective in enhancing binding of 

labelled IGF-I to VN than glycosylated IGFBP-3 at 0.5 ng.  However, this was not solely 

related to the ability of glycosylated or non-glycosylated IGFBP-3 to bind to VN.  

Experiments with radiolabelled glycosylated and non-glycosylated IGFBP-3 indicated that 

there was only a 2-fold greater binding of non-glycosylated IGFBP-3 (1066 ± 217 cpm) to 

VN compared to that observed with glycosylated IGFBP-3 (560 ± 98 cpm). 
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Effects of IGF-I and IGFBP-5 on cell migration in MCF-7 breast carcinoma cells 

In order to determine if the enhanced binding of IGF-I to VN in the presence of 

IGFBP-5 has functional consequences, the effects of the complexes on stimulating cells to 

migrate were examined using the MCF-7 cell line.  Minimal cell migration was observed in 

the absence of VN, regardless of the presence or absence of IGF-I, IGFBP-5 or the 

combination of both (data not shown).  In the presence of VN, but in the absence of IGFBP-5, 

1 and 3 ng of IGF-I exposed to VN resulted in non-significant decreases in cell migration on 

VN by 11 ± 4 and 4 ± 6 % respectively, whilst 10, 30 and 100 ng of IGF-I exposed to VN 

resulted in increased migration of 21 ± 10, 35 ± 14 and 47 ± 11 % (Figure 6).  Striking 

differences in responses were observed with the addition of 1 µg IGFBP-5, with 1, 3, 10, 30 

and 100 ng IGF-I increasing cell migration on VN between 64 – 78 ± 17 %.  These increased 

responses in the presence of IGFBP-5 were significant at 1, 3 and 10 ng of IGF-I (p< 0.05).  

Moreover, the responses were not due to IGF-independent effects of IGFBP-5, as the 

presence of this binding protein alone resulted in a significant reduction in migration 

compared to VN of 14 ± 4 % (p < 0.05). 

 

Comparison of the IGF-I peptides on MCF-7 cell migration in the absence and presence of 

IGFBP-5 

To examine whether the increase in cell migration following addition of IGF-I and 

IGFBP-5 involved the formation of a ternary IGF-I:IGFBP-5:VN complex, responses were 

compared between native IGF-I and the Des(1-3)IGF-I analogue that has reduced affinity for 

IGFBPs while retaining its ability to activate the IGF-I receptor (20).  In the absence of 

IGFBP-5, assays with either 10 ng of native IGF-I or Des(1-3)IGF-I in the presence of VN 

resulted in  increased migration on VN of 19 ± 5 and 27 ± 7 % respectively (Figure 7).  
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However, only the migration of cells in the Transwells with native IGF-I treatment was 

significantly increased by the addition of IGFBP-5 (an increase of 71 ± 10 % compared to 

VN).  Responses observed with the Des(1-3)IGF-I in the presence of IGFBP-5 remained 

unchanged (an increase of 13 ± 9 % compared to VN). 
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Discussion 

The studies reported here extend previous observations in which VN was identified as 

a novel high-affinity IGF-II binding protein (2) that may be responsible for mediation of 

many effects of IGF-II in the extracellular environment.  The same earlier studies (2) 

revealed that IGF-I did not bind directly to VN.  This was somewhat surprising given the 

increasing evidence suggesting a key role for VN in mediating a number of core cellular 

effects of IGF-I such as cellular DNA synthesis, type-1 IGF receptor autophosphorylation 

and cell migration (10-12, 25).  To explain this, we proposed that IGFBPs may be specifically 

required to mediate binding of IGF-I to VN. 

The present study provides evidence to support our hypothesis by demonstrating that 

IGF-I can only interact with VN via the intermediate involvement of IGFBPs.  This 

investigation has shown for the first time that: - i) direct binding of IGF-II to VN does not 

require IGFBPs but is competitively inhibited by IGFBPs; ii) IGF-I binding to VN is 

significantly enhanced by all IGFBPs except for IGFBP-1 and –6; iii) the role of IGFBPs is 

specific since a) Des(1-3)IGF-I is a poor competitor for binding of labelled IGF-I to VN in 

the presence of IGFBPs; and b) IGFBP-3 enhancement of IGF-I binding to VN requires an 

intact IGFBP-3 HBD and is affected by the glycosylation state of IGFBP-3.  In addition, we 

have shown that the IGF:VN interaction is functionally significant (cell migration) through 

the interaction of IGF-I indirectly (via IGFBP-5) with vitronectin, while the direct interaction 

of IGF-II has been shown by others in our laboratory (Noble et al, unpublished data).   

IGF-II binding to VN is independent of IGFBPs, this being demonstrated by two 

means.  First, by the equivalent competitive inhibition of [125I]-IGF-II binding by wild-type 

IGF-II and by two analogues, Des(1-6)IGF-II and [Leu27]IGF-II, which have reduced affinity 

for IGFBPs and the type-1 IGF receptor, respectively (20, 21).  Second, all six IGFBPs were 

shown to inhibit IGF-II binding to VN, at least at the higher levels tested.  The most effective 
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IGFBPs were IGFBP-1, -3 and –6.  Competition for binding of IGF-II to VN may occur 

either by IGFBPs directly competing with IGF-II for the IGF-II binding site on VN or by the 

IGFBPs binding and sequestering IGF-II in solution.  Our studies to date cannot distinguish 

between these possibilities for IGFBP-3.  For IGFBP-1 and –6, however, since these IGFBPs 

also inhibited IGF-I binding to VN, it is likely that these IGFBPs bind IGF-I and/or IGF-II in 

solution and hence primarily sequester the IGFs away from VN.  It is likely that the very 

efficient inhibition of IGF-II:VN binding by IGFBP-6 reflects its high affinity for IGF-II 

(26).  Previous biochemical data (2) have demonstrated by 2-D gel electrophoresis that the 

purified VN used for IGF-II binding studies was devoid of any traces of contaminating 

IGFBPs.  This is further substantiated by the inability of IGF-I to bind to VN. 

The finding that IGF-I binding to VN is markedly enhanced in the presence of 

IGFBPs is of particular interest.  All IGFBPs, except for IGFBP-1 and –6, enhanced binding 

of IGF-I to VN to varying degrees.  The lack of effect observed with IGFBP-6 suggests it 

does not bind to VN and/or may also be an indication of its low affinity for IGF-I (26).  The 

inhibitory effect of IGFBP-1 on the other hand suggests that the minor amount of binding of 

IGF-I directly to VN was blocked by IGFBP-1, presumably via IGFBP-1 sequestration of 

IGF-I in solution.  These data, taken together with the presence of an RGD integrin-binding 

motif in IGFBP-1 (27) and the finding that IGFBP-1 can bind directly to integrins to effect 

cell migration and proliferation (28-30), indicate that these IGFBP-1-stimulated cellular 

responses are unlikely to also involve VN.   

The specificity and functional significance of the requirement for IGFBPs to facilitate 

IGF-I binding to VN was demonstrated in several ways.  First, through competitive inhibition 

studies, it was shown that while unlabelled IGF-I was effective in reducing the enhancing 

effects of both IGFBP-3 and –5 on binding of [125I]-IGF-I to VN, Des(1-3)IGF-I, which has a 
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much reduced affinity for IGFBPs, especially IGFBP-5 (20), was a great deal less effective.  

These data reflect the necessity for IGFBP (-3 or –5) to mediate the binding of IGF-I to VN. 

Second, we have demonstrated that the HBD motif in IGBFP-3 is a critical 

determinant of the ability of IGFBP-3 to enhance IGF-I binding to VN.  IGFBP-3-mediated 

binding of IGF-I to VN was abolished when the IGFBP-3 HBD region was mutated even 

though the affinity of IGF-I for this IGFBP-3 variant is similar to that of the wild-type 

IGFBP-3 (24).  The heparin-binding site in proteins such as IGFBP-3 and VN has been 

previously implicated in cell association processes (7, 15, 31-34).  This observation mirrors 

other recent findings that the HBD of IGFBP-3 was required for binding to fibronectin, a 

protein with similar functions to VN (35). 

 Likewise, IGFBP-5 has been shown to bind via its HBD to VN with high affinity (36) 

and that functional effects of IGFBP-5 required trimeric complex formation with IGF-I.  This 

complex was found to effect IGF-I-mediated functional responses through the αvβ3 integrin 

(36).  Interestingly, these IGF-I-stimulated responses were decreased in the presence of 

heparin, again highlighting the involvement of IGFBP basic amino acid residues in binding to 

VN.  Indeed, the study by Nam et al. (36), where labelled IGFBP-5 was used to examine 

VN:IGFBP-5 complex formation independently validates our own findings, which 

demonstrate IGF:IGFBP:VN complex formation using labelled IGF-I.  

Third, we have shown that the ability of IGF-I to bind to VN is markedly influenced 

by the glycosylation state of IGFBP-3.  In various IGF/IGFBP studies, the effect of the 

glycosylation state of the IGFBPs has received little attention.  Indeed, glycosylation is 

reported to play little role in IGFBP-3-mediated IGF effects (37-39).  In contrast, we 

demonstrate here that non-glycosylated IGFBP-3 markedly enhances binding of labelled IGF-

I to VN compared to glycosylated IGFBP-3.  This was due, in part only, to a greater (two-
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fold) ability of non-glycosylated to bind to VN, demonstrating that factors other than 

glycosylation are important.  Firth and Baxter have previously demonstrated that de-

glycosylated IGFBP-3 has a higher affinity for the cell surface (38).  In view of the present 

data this difference may reflect preferential binding of de-glycosylated IGFBP-3 to VN 

associated with the cell surface.  While non-glycosylated IGFBP-3 would not appear to be 

especially relevant in the physiological context, the observations in this study suggest that use 

of non-glycosylated IGFBP-3 in a trimeric protein complex with IGF-I and VN may well 

prove to be a potent way to facilitate delivery of IGF-I to the cell surface - a phenomenon 

which potentially could be used in therapeutic and industrial applications to manipulate cell 

processes. 

 The findings presented here, along with those by others (25, 36, 40), provide 

important new insights into the mechanism by which IGF-I mediates its effects via VN and 

VN-binding integrins.   Although it has not been specifically addressed in this study, these 

findings also offer an explanation as to how IGF-II and IGF-I can exert different functions as 

IGF-II appears to bind directly to VN, whereas IGF-I binds indirectly via select IGFBPs.  

Thus, despite their structural similarity, the IGFs have clearly evolved different regulatory 

mechanisms to provide the capacity for different cellular functional roles. 

We propose that four of the IGFBPs, namely IGFBP-2, -3, -4 and -5, enhance IGF-I 

binding to VN by forming a heterotrimeric complex comprised of IGF:IGFBP:VN, and that 

this complex is required for cellular responses.  We have shown here that the proposed 

heterotrimeric complex involving IGFBP-5 enhances MCF-7 breast carcinoma cell migration 

to a significantly greater extent than either VN:IGFBP or VN:IGF binary complexes.  The 

functional requirement for IGFBPs in the complex also has been demonstrated by showing 

that Des(1-3)IGF-I, which binds poorly to IGFBP-3 or –5 (20), fails to stimulate MCF-7 cell 

migration in this system.  Together, these data confirm our hypothesis that IGFBPs are 
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directly involved in, and indeed required for, enhancing the cellular responsiveness of IGF-I 

in the presence of VN.  

Previous studies by Clemmons et al. also indicated there is a functional and specific 

connection between IGF-I and VN, as blocking of the VN receptor, αvβ3, inhibited IGF-I 

mediated cellular responses (13, 14).  Grulich-Henn et al. (25) have also recently 

demonstrated that transport of IGF-I across endothelial cell monolayers required IGF-I 

interacting with VN.  These investigations also suggested that VN was not likely to be a 

primary binding site for IGF-I and that IGFBPs could be implicated.  The results from the 

study reported here, in which IGF-I is linked to VN via IGFBPs, can potentially explain the 

observation that VN is critical in a number of IGF-I-stimulated cellular responses such as 

those reported by Clemmons et al. (13) and Grulich-Henn et al. (25), despite there being only 

minimal direct binding of IGF-I to VN (2).  Together, these findings give insights as to how 

IGF-I can mediate diverse effects such as cell migration and cellular DNA synthesis and, 

moreover, suggest that VN may have a critical role in linking effects requiring both activation 

of integrins and the type-1 IGF receptor as demonstrated by Maile et al. (40).  Thus, the 

IGF:IGFBP:VN complex appears to be important in normal growth and development and 

further functional and structural investigation of this complex may provide mechanisms for 

maintaining these physiologies in altered diseased states. 
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Figure Legends 

Figure 1.  Effect of IGFBPs on modulating binding of [125I]-IGF-II to VN.  Panels A to F 

show radiolabelled IGF-II binding to vitronectin in the absence and presence of IGFBPs.  Ten 

thousand cpm of IGF-II tracer were added to pre-bound vitronectin with increasing amounts 

of IGFBPs.  Data is expressed as percentage of control ([125I]-IGF-II and vitronectin alone) 

where 100% is approximately 4500 cpm.  Each data point is the mean ± SEM of triplicate 

wells from 3 experiments which have been corrected for non-specific binding (400 cpm).  

Significant differences from VN only value are indicated by * (p < 0.05) and ** (p < 0.01). 

 

Figure 2.  Effect of IGFBPs on modulating binding of [125I]-IGF-I to VN.  Panels A to F 

show radiolabelled IGF-I binding to vitronectin in the absence and presence of IGFBPs.  Ten 

thousand cpm of IGF-I tracer were added to pre-bound vitronectin with increasing amounts 

of IGFBPs.  Data is expressed as percentage of control ([125I]-IGF-I and vitronectin alone) 

where 100% is approximately 380 cpm.    Each data point is the mean ± SEM of triplicate 

wells from 3 experiments which have been corrected for non-specific binding (220 cpm).  In 

the absence of VN, [125I]-IGF-I binding to IGFBP-5 was less than that of the non-specific 

binding.  Significant differences from VN only value are indicated by * (p < 0.05) and ** (p 

< 0.01). 

 

Figure 3.  Ability of IGF peptides to compete for binding of [125I]-IGF-I to VN in the 

presence of IGFBP-3 or IGFBP-5.  Panel A shows binding of IGF-I tracer to vitronectin in 

the presence of 0.5 ng IGFBP-3 with increasing amounts of either  (   ) IGF-I or (   ) Des(1-

3)IGF-I while Panel B is in the presence of 5.0 ng IGFBP-5.  Data is represented as 

percentage of control (IGFBP in the presence of IGF-I tracer and vitronectin) whereby 

additions of IGF-I or its analogue reduce the additive effects of the complex.  In the absence 
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of VN, binding of [125I]-IGF-I to IGFBP-3 or –5 was less than the value for non-specific 

binding (220cpm).  Values shown are the mean ± SEM of triplicate wells from 3 

experiments. 

 

Figure 4:  Importance of IGFBP-3 HBD in IGFBP-3 mediation of [125I]-IGF-I binding 

to VN.  IGF-I tracer was added with either (    ) glycosylated IGFBP-3 or (    ) HBD mutant 

IGFBP-3 to wells pre-bound with vitronectin.  Data is expressed as percentage of control, 

which is IGF-I tracer and vitronectin alone. Values shown are the mean ± SEM of triplicate 

wells from 3 experiments. 

 

Figure 5:  Comparison of the effects of glycosylated and non-glycosylated IGFBP-3 on 

[125I]-IGF-I binding to VN.  IGF-I tracer was added with either (    ) glycosylated IGFBP-3 

or (   ) non-glycosylated mutant IGFBP-3 to wells pre-bound with vitronectin.  Data is 

expressed as percentage of control, which is IGF-I tracer and vitronectin alone. Values shown 

are the mean ± SEM of triplicate wells from 3 experiments. 

 
Figure 6:  Migration of MCF-7 cells through Transwells in response to IGF-I pre-bound 

to VN in the absence or presence of IGFBP-5.  MCF-7 cells were seeded onto Transwells 

that had been coated with VN ± IGF-I ± IGFBP-5 and allowed to migrate through the porous 

membrane for 5 hours. The number of cells transversing the membrane in the presence of 

IGF-I were then expressed as a percentage of those that migrated on VN alone.  The 

responses are shown as IGF-I exposed to VN in the absence of IGFBP-5 (    ), the presence of 

IGFBP-5 (    ) and the response of IGFBP-5 alone (    ).  Values shown are the mean ± SEM 

of duplicate wells from 3 experiments. 
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Figure 7:  Migration of MCF-7 cells through Transwells in response to Des(1-3)IGF-I 

pre-bound to VN in the absence or presence of IGFBP-5.  MCF-7 cells were seeded onto 

Transwells that had been coated with VN ± IGFBP-5 ± native or mutant IGF-I and allowed to 

migrate through the porous membrane for 5 hours. The number of cells transversing the 

membrane in the presence of IGF-I were then expressed as a percentage of those that 

migrated on VN.  The responses are shown as IGF-I exposed to VN in the absence of IGFBP-

5 (    ), the presence of IGFBP-5 (    ) and the response of IGFBP-5 alone (    ).  Values shown 

are the mean ± SEM of duplicate wells from 3 experiments. 
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