
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006 305

The Parameterless Self-Organizing Map Algorithm
Erik Berglund and Joaquin Sitte

Abstract—The parameterless self-organizing map (PLSOM) is a
new neural network algorithm based on the self-organizing map
(SOM). It eliminates the need for a learning rate and annealing
schemes for learning rate and neighborhood size. We discuss the
relative performance of the PLSOM and the SOM and demon-
strate some tasks in which the SOM fails but the PLSOM performs
satisfactory. Finally we discuss some example applications of the
PLSOM and present a proof of ordering under certain limited con-
ditions.

Index Terms—Self-organizing feature maps.

I. INTRODUCTION

THE self-organizing map (SOM) [1], [2] is an algorithm
for mapping from one (usually high-dimensional) space

to another (usually low-dimensional) space. The SOM learns
the correct mapping independent of operator supervision or re-
ward functions that are seen in many other neural network al-
gorithms, e.g., backpropagation perceptron networks. Unfortu-
nately this unsupervised learning is dependent on two annealing
schemes, one for the learning rate and one for the neighbor-
hood size. There is no firm theoretical basis for determining
the correct type and parameters for these annealing schemes, so
they must often be determined empirically. The generative to-
pographic mapping (GTM) [3]–[5] is one attempt at addressing
this. Furthermore, since these annealing schemes are time-de-
pendent, they prevent the SOM from assimilating new informa-
tion once the training is complete. While this is sometimes a
desirable trait, it is not in tune with what we know of the adap-
tive capabilities of the organic sensomotor maps which inspired
the SOM [6]. There have been several attempts at providing a
better scaling method for learning rate and/or neighborhood size
as well as taking some of the guesswork out of the parameter es-
timation.

A. Previous Works

One such attempt was done by Göppert and Rosenstiel [7],
where the SOM is used to approximate a function, and the ap-
proximation is used as a neighborhood size decay parameter on
a per-node basis. Unfortunately this is not applicable to cases
other than function approximation and it requires knowledge of
the desired approximation values of the function, thus losing the
major advantage of the SOM; unsupervised learning. A more
closely related approach would be the plastic SOM (PSOM)
[8], where the Euclidean distance from the input to the weight

Manuscript received October 25, 2004; revised May 15, 2005.
E. Berglund is with the Division of Complex and Intelligent Systems, Infor-

mation Technology and Electrical Engineering, University of Queensland, St.
Lucia QLD 4072, Australia (e-mail: berglund@itee.uq.edu.au).

J. Sitte is with the Smart Devices Laboratory, Queensland University of Tech-
nology, Brisbane QLD 4001, Australia (e-mail: j.sitte@qut.edu.au).

Digital Object Identifier 10.1109/TNN.2006.871720

vector of the winning node is used to determine whether to add
new nodes to the map. This is similar to the growing neural gas
(GNG) algorithms [9], [10] but maintains plasticity. Another ap-
proach is the self-organizing with adaptive neighborhood neural
network (SOAN) [11] which calculates the neighborhood size in
the input space instead of the output space like the SOM vari-
ants. The SOAN tracks the accumulated error of each node, and
scales the neighborhood function accordingly between a min-
imum and a maximum value, and like the GNG algorithms it
can increase or decrease the number of nodes. This still leaves
several parameters to be determined empirically by the user. The
time-adaptive SOM (TASOM) [12], [13] addresses the inability
of the SOM to maintain plasticity by keeping track of dynamic
learning rates and neighborhood sizes for each individual node.
The neighborhood size is dependent on the average distance be-
tween the weight vector of the winning node and its neigh-
bors, while the learning rate is dependent only on the distance
between the weight of a given node and the input, similar to the
standard SOM. The user is still required to select several training
parameters without firm theoretical basis. The auto-SOM [14],
[15] uses Kalman filters to guide the weight vectors toward the
center of their respective Voronoi cells in input space. This au-
tomates computation of learning rates and neighborhood sizes,
but the user is still required to set the initial parameters of the
Kalman filters. Unfortunately it is more computationally expen-
sive than the SOM, and this problem increases with input size
and number of inputs in the training set. The auto-SOM also
needs to keep track of all previous inputs, which makes con-
tinuous learning difficult and increases computational load, or
compute the Voronoi set for each iteration, which would in-
crease computational load and is only feasible if the input proba-
bility density distribution is known. Other recent developments
in self-organization include the self-organizing learning array
[16] and noisy self-organizing neural Networks [17].

B. Overview

For these reasons, we introduce the parameterless SOM
(PLSOM). The fundamental difference between the PLSOM
[18] and the SOM is that while the SOM depends on the
learning rate and neighborhood size to decrease over time,
e.g., as a function of the number of iterations of the learning
algorithm, the PLSOM calculates these values based on the
local quadratic fitting error of the map to the input space.
This allows the map to make large adjustments in response to
unfamiliar inputs, i.e., inputs that are not well mapped, while
not making large changes in response to inputs it is already
well adjusted to. The fitting error is based on the normalized
distance from the input to the weight vector of the winning node
in input space. This value (referred to as , the lowercase Greek
letter epsilon, throughout this paper) is computed in any case,,

1045-9227/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10879216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

hence, this mechanism can be implemented without inducing
noteworthy increases in the computational load of the map
or hindering parallelised implementations [19]. In Section II,
we give details of the PLSOM algorithm, in Section III we
evaluate its performance relative to the SOM. In Section IV,
we explain the observed behavior of the PLSOM. In Section V,
we give examples of applications, and in Section VI, there is
a brief discussion of some aspects of the PLSOM relative to
nonlinear mapping problems. Section VII is the conclusion.
For mathematical proofs, see Appendix I.

II. ALGORITHM

As an introduction and to give a background for the PLSOM
we will here give a brief description of the SOM algorithm be-
fore we move on to the PLSOM itself.

A. Ordinary SOM Algorithm

The SOM variant we will examine is the Gaussian-neighbor-
hood, Euclidean distance, rectangular topology SOM, given by
(2)–(6). The algorithm is, in brief, as follows: An input is
presented to the network at time (or timestep, iteration) . The
‘winning node’ , i.e., the node with the weight vector that
most closely matches the input at time , is selected using (1)

(1)

where is the weight vector of node at time . denotes
the -norm or -dimensional Euclidian distance. (The SOM
can use other distance measures, e.g., Manhattan distance.) The
weights of all nodes are then updated using (2)–(4)

(2)

(3)

(4)

where is referred to as the neighborhood function, and is
a scaling function centred on the winning node decreasing in
all directions from it. is the Euclidean distance from node

to the winning node in the node grid. As is the case with the
input/weight distance, the node distance can be calculated using
some other distance measure than the Euclidean distance, e.g.,
the Manhattan distance or the link distance, and the grid need
not be rectangular. is the learning rate at time , is the
neighborhood size at time .

Lastly, the learning rate and neighborhood size are
decreased in accordance with the annealing scheme. One pos-
sible annealing scheme is given by (5) and (6) for the decrease
of the learning rate and the neighborhood size, respectively. The
important point is that the annealing scheme relies on the time
step number and not the actual fitness of the network

(5)

(6)

Here, and are scaling constants determined beforehand.
These steps are repeated until some preset condition is met,

usually after a given number of iterations or when some mea-

surement of error reaches a certain level. The density of the
nodes in input space are proportional to the density of input
samples, however this may lead to undesired results, see Fig. 9.
Several variations of the algorithm outlined here exists, e.g., the
Matlab implementation of the SOM uses a two-phased learning
algorithm (an ordering phase and a tuning phase) and a step-
based neighborhood function.

B. PLSOM Algorithm

The fundamental idea of the PLSOM is that amplitude and
extent of weight updates are not dependent on the iteration
number, but on how well the PLSOM fits the input data. To
determine how good the fit is, we calculate a scaling variable
which is then used to scale the weight update. The scaling
variable, , is defined in (7) and (8)

(7)

(8)

is best understood as the normalized Euclidean distance
from the input vector at time to the closest weight vector. If
this variable is large, the network fits the input data poorly, and
needs a large readjustment. Conversely, if is small, the fit is
likely to already be satisfactory for that input and no large update
is necessary.

The algorithm for the PLSOM uses a neighborhood size de-
termined by , thus replacing the equation governing the an-
nealing of the neighborhood with . is
scaled by in the manner of (9), giving , the scaling
variable for the neighborhood function (12)

(9)

Equation (9) is not the only option for calculating ; another
example is

(10)

A third alternative is (11), which is used in generating
Figs. 23(a)–23(d)

(11)

where is the natural logarithm, is the Euler number, and
is some constant, usually 0 for (11) or 1 for (9), (10). Equa-

tion (12) is the neighborhood function

(12)

As before, is a distance measure along the grid, i.e., in
output space, from the winning node to which is the node
we are currently updating. This gives a value that decreases the
further we get from , and the rate of decrease is determined by
, as can be seen in Fig. 1. The weight update functions are

(13)

(14)

As we can see from (14) the learning rate is now com-
pletely eliminated, replaced by . Thus, the size of the update
is not dependent on the iteration number. The only variable af-
fecting the weight update which is carried over between itera-
tions is the scaling variable . Practical experiments indicate

BERGLUND AND SITTE: THE PARAMETER-LESS SELF-ORGANIZING MAP ALGORITHM 307

Fig. 1. Plot showing the effect of different � values on the neighborhood
function.

that reaches it maximum value after the first few iterations,
and does not change thereafter.

III. PERFORMANCE

The PLSOM completely eliminates the selection of the
learning rate, the annealing rate and annealing scheme of the
learning rate and the neighborhood size, which have been an
inconvenience in applying SOMs. It also markedly decreases
the number of iterations required to get a stable and ordered
map. The PLSOM also covers a greater area of the input space,
leaving a smaller gap along the edges.

1) Comparison to the SOM Variants: We trained the Matlab
SOM variant, the SOM and the PLSOM with identical input
data, for the same number of iterations. The input data was
pseudo-random, two-dimensional (2-D), and in the [0,1] range.
This was chosen because a good pseudo-random number gen-
erator was readily available, eliminating the need to store the
training data. Since the training data is uniformly distributed in
the input space the perfect distribution of weight vectors would
be an evenly spaced grid, with a narrow margin along the edges
of the input space. That way, each weight vector would map an
evenly sized area of the input space.

In comparing the two SOM implementations we used three
separate quality measures, which are all based on the shape and
size of the cells. A cell is the area in the input space spanned by
the weight vectors of four neighboring nodes.

Unused space:

We summarized the area covered by all the cells, and
subtracted this from the total area of the input space. The
resulting graph clearly shows how the PLSOM spans a
large part of the input space after only a small number of
iterations and maintains the lead throughout the simulation
(Fig. 2). Please note that this quality measure will be mis-
leading in situations where cells are overlapping, but this
will typically only occur in the first few thousand iterations.

Average skew:

For each cell we calculate the length of the two diagonals
in a cell and divide the bigger by the smaller and subtract
one, thus getting a number from 0 to infinity, where 0 repre-
sents a perfectly square cell. Again, we see that the PLSOM
outperforms the SOM in the early stages of simulation but

Fig. 2. Graph of the decrease of uncovered space as training progresses for
the PLSOM, the SOM, and the Matlab SOM implementation. Note the quick
expansion of the PLSOM and that it consistently covers a larger area than the
SOM variants.

Fig. 3. Graph of the average skew for the PLSOM, the SOM, and the Matlab
SOM implementation. For the first 24 000 iterations, the PLSOM is more
ordered, before the SOM variants narrowly overtake it.

Fig. 4. Graph of the absolute mean deviation of cell size for the PLSOM, the
SOM, and the Matlab SOM. The PLSOM is more regular up until ca. iteration
10 000.

after ca. 24 000 iterations the SOM surpass the PLSOM.
After 100 000 iterations the difference is still small, how-
ever (see Fig. 3).

Deviation of cell size:

We calculate the absolute mean deviation of the cell size
and divide it by the average cell size to get an idea of how
much the cells differ in relative size. Here the SOM is su-
perior to the PLSOM after ca. 10 000 iterations, mainly be-
cause of the flattened edge cells of the PLSOM (see Fig. 4).
If we ignore the cells along the edge, the picture is quite
different: the PLSOM outperforms the SOM with a narrow
margin (see Fig. 5).

308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 5. Graph of the absolute mean deviation of cell size for the PLSOM, the
SOM and the Matlab SOM, excluding the edge cells. Compare to Fig. 4. The
PLSOM outperforms the Matlab SOM in both adaptation time and accuracy, and
the SOM needs until ca. iteration 30 000 to reach the same level of ordering.

Fig. 6. SOM first trained with inputs ranging from 0 to 0.5 for 50 000 iterations
shown after 20 000 further training iterations with inputs ranging from 0 to 1.0.

2) Plasticity Preservation: The illustrations in this section
show the positions of the weight vectors, connected with lines,
in the input space. When a SOM has been trained, it will not
adapt well to new data outside the range of the training data,
even if a small residual learning rate is left. This is illustrated by
Fig. 6, where a SOM has been presented with pseudo-random,
uniformly distributed 2-D data vectors in the [0, 0.5] range
for 50 000 iterations. Thereafter the SOM was presented with
20 000 pseudo-random, uniformly distributed, 2-D data vectors
in the [0, 1] range, after which the SOM has adapted very little
to the new data. In addition the adaptation is uneven, creating
huge differences in cell size and distorting the space spanned
by the weight vectors. If we subject a PLSOM to the same
changes in input range, the difference is quite dramatic; it
adapts correctly to the new input range almost immediately, as
seen in Fig. 7.

3) Memory: In the opposite case, viz. the SOM is presented
with a sequence of inputs that are all restricted to a small
area of the training input space, it would be preferable if the
SOM maintains its original weight vector space, in order to not
“forget” already learned data. Fig. 8 demonstrates what happens
to a PLSOM if it is trained with pseudo-random, uniformly
distributed 2-D data in the [0, 1] range for 50 000 iterations
and then presented with inputs confined to the [0, 0.5] range
for 20 000 iterations. This leads to an increase of the density of
weight vectors in the new input space, yet maintains coverage
of the entire initial input space, resulting in distortions along
the edge of the new input space. Both these effects are most
pronounced in the PLSOM.

Fig. 7. PLSOM first trained with inputs ranging from 0 to 0.5 for 50 000
iterations shown after 20 000 further training iterations with inputs ranging
from 0 to 1.0. Note the difference between this and Fig. 6.

Fig. 8. PLSOM first trained with inputs ranging from 0 to 1 for 50 000
iterations shown after 20 000 further training iterations with inputs ranging
from 0 to 0.5. Note that while the weights have a higher density in the new
input space, the same area as before is still covered, i.e., none of the old input
space has been left uncovered.

A. Drawbacks

The PLSOM is measurably less ordered than a properly
tuned SOM and the edge shrinking is also more marked in the
PLSOM. The PLSOM does not converge in the same manner
as the SOM (there is always a small amount of movement),
although this can be circumvented by not performing new
weight updates after a satisfactory fit has been established.

IV. ANALYSIS

This section highlights a special case where the SOM fails
but the PLSOM succeeds, and explores the causes of this.

A. Experiments

We have applied the PLSOM and two variants of the SOM
to the same problem; mapping a nonuniformly distributed
input space. As input space we used a normal distributed
pseudo-random function with a mean of 0.5 and standard de-
viation of 0.2. Values below 0 or above 1 were discarded. The
same random seed was used for all experiments and for initial-
izing weights. A SOM variant that uses the same neighborhood
function as the PLSOM and an exponential annealing scheme
for learning rate and neighborhood size, here nominated “plain
SOM,” was used for comparison. As can be seen from Fig. 9

BERGLUND AND SITTE: THE PARAMETER-LESS SELF-ORGANIZING MAP ALGORITHM 309

Fig. 9. Ordinary SOM after 100 000 iterations of normally distributed input
with mean 0.5, standard deviation 0.2, clipped to the [0,1] interval. Note that
two nodes which are close in input space may not be close on the map.

Fig. 10. PLSOM after 100 000 iterations of normally distributed input with
mean 0.5, standard deviation 0.2, clipped to the [0,1] interval. While the
correspondence between weight vector density and input density is weaker than
for the SOM, the topology is preserved. Compare to Fig. 9. See also Fig. 15.

the SOM is severely twisted when we try a 20 20 node rect-
angular grid. The size of the ordinary SOM algorithm must be
reduced to 7 7 before all traces of this twisting are removed.
Altering the annealing time does not solve the problem. The
PLSOM on the other hand performs well with the initial size of
20 20 nodes, filling the input space to over 77% (see Fig. 10).

B. Explanation

This phenomenon can be explained by looking at the likeli-
hood of a given input in relation to the size of the weight update
this input will result in, i.e., the expected update given the input
distribution. The likelihood of an input occurring is governed
by the Gaussian probability density function. The likelihood
of an input occurring in the interval , where , is
approximated using the error function

(15)

where is a scaling constant to account for the standard devia-
tion. An analysis of the expected update of a given node is given
by

(16)

where is the expected displacement of weight vector
given as input, is the displacement of given ,

and is the probability density of this input.

Fig. 11. Update size x likelihood for a corner node v of a 20 � 20 node
ordinary SOM algorithm. The position of v in the input space is marked by
a vertical white line. The position of v in the map is (1,1).

Fig. 12. Update size x likelihood for a corner node v of a 20 � 20 node
PLSOM. The position of v in the input space is marked by a vertical white line.
The position of v in the map is (1,1).

By discretising this over a 2-D grid, we can plot an
approximation of the expected displacement for each square of

, as seen in Figs. 11 and 12.
When comparing the expected update of a Matlab SOM algo-

rithm and a PLSOM we see that the PLSOM edge nodes receives
a far larger amount of its update from outside the area covered
by the map than its Matlab counterpart, thus making sure that
the expansion outwards is even and less jerky.

To get a clearer picture, we need to integrate the expected
displacement over the entire input space which contains all
possible inputs , giving (17)

(17)

Discretising the integrated expected displacement gives a
vector for each node in the map, indicating how much and
in which direction it is likely to be updated given the input
distribution, as shown in Figs. 13 and 14.

310 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 13. Expected displacement vectors for the edge nodes along one edge of
an ordinary SOM. Note that the vectors are changing direction abruptly from
node to node, causing the warping.

Fig. 14. Expected displacement vectors for the edge nodes along one edge of
a PLSOM.

As we can see from Fig. 13, this vector is greater for the
corner node than for the side node in the SOM algorithm, while
the opposite is true for the PLSOM, as seen in Fig. 14. This
leads the corner nodes in the SOM algorithm to expand out-
wards faster than the side nodes, thus creating the warping. In
the PLSOM, the side nodes expand outward faster, creating an
initial ‘rounded’ distribution of the weights, but subsequent in-
puts pull the corners out. Also note that the edge nodes of the
PLSOM is only marginally pulled inwards by inputs inside the
weight grid, since the amount of update depends on the distance
from the input to the closest node, not only on the distance from
the node in question—this contributes to the quicker, more even
expansion.

Finally, the weight update functions of the different algo-
rithms give us the last piece of the explanation. Consider a map
that receives an input far outside the area it is currently mapping,
after already being partly through its annealing and, therefore,
partially ordered.

When this happens to an ordinary SOM the update will be
large for the winning node, but because the size of the neigh-
borhood function is so small the neighbors of the winning node
will receive only a very small update. If the same situation oc-
curs to a PLSOM, the neighborhood size will scale (since it is
dependent on the distance from the input to the winning node)
to include a larger update for the neighbors of the winning node,
thus distributing the update along a larger number of the edge
nodes.

It should be pointed out that mapping a large portion of the
input space while preserving such a skewed distribution is not
possible—the difference between the length along the edges and
the length through the center is too great to preserve neighbor-
hood relations. When faced with this type of high-variance input
distribution, one is faced with the choice of which property to
sacrifice; neighborhood consistency or density equivalence. The
SOM tries to do both, and fails. GNG, PSOM, and similar al-
gorithms do both at the cost of ending up with arbitrary net-
work connections. The PLSOM is unique in preserving neigh-
borhood relations for a pre-defined network. This comes at a
cost of poorer correspondence between input density and weight
density, as can be seen from Fig. 15.

Fig. 15. Weight density versus distance from center for the SOM and the
PLSOM. The 2-D input was normal distributed with a 0 mean and 0.2 standard
deviation. Observe that while the PLSOM has less correlation between input
density and weight density, it has far less variance and covers a larger area. See
also Figs. 9 and 10.

V. APPLICATIONS

The PLSOM has been applied to three familiar problems by
the authors. These applications will only be explored briefly
here, in the interest of not distracting from the main subject of
this article.

A. Sound Source Localization Through Active Audition

This application deals with processing a stereo sound signal,
presenting it to a PLSOM or SOM to determine the direction
of the sound source and orienting the microphones toward the
sound source. This application illustrates that the PLSOM can
deal with cases where the number of input dimensions (512) is
far higher than the number of output dimensions (2).

1) Earlier Works: The physics of binaural audition is dis-
cussed in [20]–[22] and reinforcement learning in [23]. Early
works include [24] and [25], but it is important do distinguish
between passively determining the direction of sound sources
and active audition. Active audition aims to using the move-
ment of the listening platform to pinpoint the location, in the
same way biological systems do. Active audition is, therefore,
an intrinsically robotic problem. Other active audition works can
be grouped into subcategories: First we have applications that
rely on more than two microphones to calculate the source of a
sound, e.g., [26]. While these are certainly effective, we observe
that in nature two sound receivers are sufficient. Since micro-
phones consume power and are a possible point of failure, we
see definite advantages to being as frugal as nature in this re-
spect. Secondly we have methods relying on synergy of visual
and auditory cues for direction detection, most notably by mem-
bers of the SIG Humanoid group [27]–[32]. Some of these also
include neural networks and even SOMs, such as [33] and [34].
However, it is known that even humans that are born blind can
accurately determine the direction of sounds [35], so interac-
tion between vision and hearing cannot be a crucial component
of learning direction detection. Our implementation is unique
in that it does not rely on visual cues, specialised hardware nor
any predefined acoustic model. It learns both the direction detec-
tion and the correct motor action through unsupervised learning
and interaction with its environment. It also incorporates a larger

BERGLUND AND SITTE: THE PARAMETER-LESS SELF-ORGANIZING MAP ALGORITHM 311

Fig. 16. Active audition system layout.

number of measures than other methods, which is made possible
through the SOM/PLSOM ability to find patterns in high-di-
mensional data.

2) System Description: The aim is to let the process be com-
pletely self-calibrating—all that is needed is to provide a set
of sound sources, and the algorithm will figure out on its own
where the sound is coming from and how to orient toward it.
This is done using a pipelined approach.

1) Digital stereo samples are streamed from a pair of micro-
phones.

2) For each sampling window, which is 512 samples long,
we compute the fast Fourier transform (FFT) of the signal.
This is averaged to 64 subbands.

3) For each sampling window we compute interaural time
difference (ITD), interaural level difference (ILD), inter-
aural phase difference (IPD) and relative interaural level
difference (RILD). ILD, IPD, and RILD are based on the
FFT, so that we have one value for each of the 64 sub-
bands.

4) The resulting 256-element vector is presented to a
PLSOM.

5) The position of the winning node is used as index into a
weight matrix which selects the appropriate motor action.

6) If the sound volume is over a given threshold, the selected
motor action is carried out.

7) After a short delay, the algorithm checks whether the win-
ning node has moved closer to the center of the map, and
uses this to calculate a reward value for the reinforcement
learning module.

Fig. 16 illustrates this procedure. The pipelined approach has the
advantage of making experimenting with different processing
paths much simpler. It also lends the approach to parallelising
hardware and software implementations. In order to train the
PLSOM a number of samples are recorded. We used white noise
samples from 38 locations in front of the robot. The samples
were recorded at 50 and 300 cm distance from the source, with
10 horizontal spacing. The training algorithm then presents a
few seconds of random samples to the system for 10 000 training
steps. Each sample is 256-dimensional, and a new sample is pre-
sented every 32 ms. This sensitises each node to sound from one
direction and distance. The latter part of the training is done
online, with the robot responding to actual sound from a sta-
tionary speaker in front of it. Initially the robot head is pointed
in a random direction, and the training progresses until the robot
keeps its head steadily pointed toward the speaker, at which time
a new random direction is picked and the training continues.

Fig. 17. High dimensional data. Average winning node versus actual angle
using the PLSOM method. The grey area is one standard deviation.

3) Results: Our approach described previously consistently
manages an accuracy of around 5 , which is comparable
to human acuity. The precision was determined by keeping
the robot stationary and registering the winning node of the
PLSOM. We then moved the sound source horizontally until
the winning node stabilised on one of the immediate neighbors
of the initial winning cell, noting how much the source had to
be moved. The relative accuracy of the method is demonstrated
in Fig. 17. The graphs were generated using a set of recordings
of white noise at a distance of 1 m. The PLSOM is, as we can
see, almost free of deviation. This enables one to estimate the
direction using a small number of samples, i.e., quickly.

B. Inverse Kinematics (IK)

Inverse kinematics (IK) is the problem of determining the
joint parameters of a robotic limb for some given position.
This problem is interesting in evaluating the PLSOM because
it involves mapping between two spaces with wildly different
topologies, a half-torus shaped space in Euclidean space and a
roughly wedge-shaped space in joint parameter space.

1) Existing Methods: Robot control depends on IK but there
are several problems associated with the existing methods. The
Jacobian pseudo-inverse lets one solve the problem completely,
but is computationally expensive, relatively complicated and un-
stable around singularities. The Jacobian transpose is faster and
simpler, but not particularly accurate and does not move in a
shortest path like the pseudo-inverse. Other methods, like cyclic
coordinate descent [36], which solve the unstable singularity
problem has been proposed. There have also been solutions of
the IK problem using SOMs [2], which lets a SOM learn the
joint angles for a number of points in space, and an approxima-
tion of the inverse Jacobian in the vicinity of each point. This
gives good results with relatively few nodes but it relies on in-
formation being stored in the nodes of the SOM, rather than
holistically in the network, leading each node to be more com-
plicated than necessary. It is not clear whether using an approx-
imated inverse Jacobian can lead to the same sort of instability
around singularities as with the pseudo-inverse Jacobian. Even
so, our method borrows heavily from the SOM approach and
should be seen in relation to it.

2) Proposed Solution: We opted for a slightly different and,
we believe, novel approach using the PLSOM. Each node maps

312 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 18. Error after 500 iterations of some different sized PLSOMs.

a point in three-dimensional (3-D) space to a point in joint pa-
rameter space. The map is trained through generating a random
joint configuration and updating the PLSOM weights with it.
After the training is complete each node is labeled with the
manipulator position that will result from applying the weight
vector to the joint parameters. This allows the manipulator to be
positioned in accordance with the following simple algorithm.

1) Select the node closest to the desired point in space by
comparing node labels. This step can be greatly acceler-
ated by starting the search at the last node used.

2) Select the neighbors of the node so that we can create three
almost orthogonal vectors in 3-D space. This is trivial
given the lattice structure of the PLSOM.

3) The three vectors in 3-D space are then orthogonalised
using the Gram–Schmidt algorithm.

4) The analogous steps are carried out on the 3 corre-
sponding vectors in joint parameter space.

5) The resulting vectors can now be used to interpolate the
joint parameters.

3) Experiments and Results: The PLSOM solves the IK
problem very quickly, as no iteration is necessary. One can
input the desired target position and immediately get an ap-
proximation of the joint parameters that achieve this target.
However, the level of precision depends on the number of nodes
in the network. As a demonstration of the capabilities of the
PLSOM method a 6-degree-of-freedom (DOF) robotic arm was
programmed to play chess against itself. A PLSOM with 3600
nodes was trained in a half-torus shaped area in front of the
robot covering a small chessboard and the surrounding table,
30000 training iterations are completed in less than 5 min on
a low-end desktop PC. Even with the relatively few nodes the
error is well below the mechanical error in the robotic arm. The
robot is able to quickly and accurately pick and place the chess
pieces, as shown in the short video clip in [37].

In order to assess the different IK methods, we performed
a simulation wherein a 3-DOF robot arm is moved from one
position to another. Each method is allowed 500 iterations to
complete this and for each iteration the error is calculated. We
performed this test with a PLSOM with 3600 nodes, a PLSOM
with 36 400 nodes and a PLSOM with 230 400 nodes. We then
repeated the experiment for 4 different target positions and aver-
aged the error. The result is displayed in Fig. 18. As we can see
from the graph, the PLSOMs accuracy is related to the number
of nodes. It should be noted that training time is roughly in
number of nodes , so increasing accuracy is not computation-
ally expensive. Accuracy is slightly better than what is reported
in [2], i.e., 0.02% error compared to 0.06% error, although this

is not surprising given the large difference in number of nodes.
The execution speed was measured and averaged over all the ex-
periments—the difference in execution speed for the 3600 node
network and the 230 400 node network is typically less than 2%,
e.g., 29.52 and 29.98 s on a low-end desktop PC.

C. Classification of the ISOLET Data Set

In order to test whether the PLSOM can handle very high-di-
mensional and clustered data, we selected the ISOLET [38] data
set for analysis. The data set contains suitably processed record-
ings of 150 speakers saying the name for each of the letters in
the alphabet, twice. The set is subdivided into the training set,
containing 120 speakers, and the test set with the remaining 30
speakers. Algorithms seeking to solve this problem are trained
on the training set and evaluated on the test set. The data is
present as 617-dimensional real-valued vectors with elements
in the [1, 1] range representing various preprocessed proper-
ties of the sound (see [38] for details). The best result reported
without any further signal processing is 95.83% [39] and 95.9%
[40], achieved with backpropagation. The -nearest neighbor
(-NN) [41] methods achieve from 88.58% to 92.05%
(, ambiguities resolved by decreasing k) but are slow
due to the size of the training set which forces the computation
of 6238 617-dimensional Euclidean distances for each classifi-
cation. Classification of clustered data is troublesome with the
PLSOM because it tries to approximate a low-dimensional man-
ifold in the input space, in this case there may not be a mani-
fold. Since the PLSOM is unsupervised there is no way to di-
rect learning effort to one particular property of the input, the
PLSOM tries to map them all. In the ISOLET set the letter is
not the only property encoded in the data, there are all sorts of
possible data that may or may not be present such as speaker,
the speakers’ age, gender, dialect, smoker/nonsmoker, and so
on. Ideally the PLSOM would have one output dimension for
each dimension of the embedded manifold, but this is imprac-
tical in this case. We, therefore, settled on a 3-D PLSOM with
20 20 20 nodes. The PLSOM was trained with random sam-
ples from the training set for 100 000 iterations with neighbor-
hood , then each node is labeled with the input it re-
sponds to. If a node responds to more than 1 input, a vote is per-
formed and the node is labeled with the input it responds to most
frequently. If no input gets thrice as many votes as other inputs,
or if the node does not respond to any input, it is removed. The
map is then used to classify the test set. This typically results
in ca. 2800 remaining nodes, which we utilize as the reference
vectors for -NN classification. Thus, the PLSOM can be seen
as a way of speeding up the -NN algorithm by reducing the
number of reference vectors. This does however come at a price
of accuracy—it achieves 90.31% accuracy at .

VI. DISCUSSION

As indicated above, the PLSOM emphasises maintaining
topology over modeling the input density distribution. In many
cases this may be a disadvantage, for example with highly
clustered data. In other cases, however, this is exactly what is
needed for a useful mapping of the input space. This happens
when the input space is nonlinearly mapped to the space from

BERGLUND AND SITTE: THE PARAMETER-LESS SELF-ORGANIZING MAP ALGORITHM 313

Fig. 19. Three-beacon navigation mapping by the SOM and the PLSOM in the
unit square. Both maps have a neighborhood size of 17. Beacons were positioned
at (0.3,�0.3), (1.3,0.5) and (�0.5,0.8). The origin is in the upper left-hand
corner. (a) SOM. (b) PLSOM.

which the inputs are selected. This is best illustrated by an
example (based on [42]). A robot navigates a square area
by measuring the angles between three uniquely identified
beacons, giving a 3-D vector with a one-to-one relationship to
the location of the robot in space. Unfortunately the density
and topology of the embedded manifold is quite different from
the input space, causing a large number of samples to fall in a
few small areas of the 3-D input space where the curvature of
the embedded Riemannian manifold is high. This causes the
SOM to try and fit a corner of the map where there should be
no corner, see Fig. 19(a). The density of the input space is cor-
rectly represented, but the topology of the embedded manifold
(which is the interesting property in this case) is not. This can
of course be corrected by selecting the samples carefully in the
case of our example since we know the bidirectional mapping,
but in a real application this would not be known. It would,
therefore, be beneficial to find an approach that largely ignores
the distribution of the input space and instead emphasises the
topology of the embedded manifold. The PLSOM does this to
a higher degree, see Fig. 19(b).

VII. CONCLUSION

We have addressed several problems with the popular SOM
algorithm and proposed an algorithm that solves these; the
PLSOM which provides a simplification of the overall appli-
cation process, since it eliminates the problems of finding a
suitable learning rate and annealing schemes. The PLSOM
also reduces the training time. Flexibility and ordering of the
map is facilitated and we have shown that the PLSOM can be
successfully applied to a wide range of problems. Furthermore,
the PLSOM is able to handle input probability distributions that
lead to failure of the SOM, albeit this comes at the cost of lower
correspondence between the input distribution and the weight
density. While the PLSOM does not converge in the sense that
a SOM will if the learning rate is allowed to reach 0, the same
effect can be achieved by simply not performing weight updates
after a number of inputs. All this is achieved without inducing
a significant computation time increase or memory overhead.
Finally we have shown (see Appendix I) that the PLSOM is
guaranteed to achieve ordering under certain conditions.

APPENDIX I
PROOF OF Gfdx ORDERING OF A PLSOM WITH T NODES AND

1-D INPUT AND OUTPUT

This section will present a proof of guaranteed ordering in a
special case of the PLSOM. We start out by establishing some
lemmas necessary for the proof, then we examine the proof
and finally we speculate implications of the proof. For all these
proofs we assume that

(18)

where is the normalized distance from the input to the weight
of the winning (closest) node

(19)

where is a neighborhood function which depends on and
the distance in output space between the winning node and
the current node . Please see Section II for a discussion of the
neighborhood function. and is monoto-
nously decreasing with increasing distance from

(20)

which implies that is closer to the input than , and will,
hence, receive a larger scaling from the neighborhood function.
In the following an ordered map will denote a map where all the
nodes are monotonously increasing or decreasing, which means
either 21 or 22 is true

(21)

(22)

Any other map will be called unordered.
Lemma 1: The weights of a node cannot overshoot the input,

i.e., the weights of a node cannot move from one side of an input
to the other as a result of that input.

Proof: Assume1 that there is an input , and a node
with weight . The amount of update to , is equal to

as before. Since and , it is clear that
. Also, is only true where

, which can only hold for the winning node .
This proof also applies to the standard SOM where .

Lemma 2: There exists no input that can turn an ordered
1-input dimension and 1-output dimension map into an un-
ordered one.

Proof: Proof by contradiction. Assume that and
are weights of an ordered one-dimensional (1-D) map, and

. We will prove that no input can move
past (It is easy to see that the converse has to be true

for). For to move past and making the map
unordered, the update of node must be greater than or equal
to the distance between node and node , plus the update
to node , so (23) has to be true

(23)

1Note that for this section we disregard the (t) part of the notation, as it is
implied.

314 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Remember that and that
, which gives us (24)

(24)

It is clear that, because of the premises, (24) cannot be true. This
is a restatement of the proof that the ordered states are absorbing
sets, see [43]

That leaves the cases where . Since, ac-
cording to lemma 1, only one node (the winning node) can reach

and no node can overshoot , it follows that the nodes must be
on the same side of after the weight update as before. There-
fore, they cannot become unordered.

Note that the lemma 1 and 2 holds for PLSOMs with any
number of nodes, as long as there is one input and one output
dimension. This proof is very similar to the one given for the
SOM by Kohonen [44].

Lemma 3: In the special case where , and some
value , any input other than will result in an ordered map.

Proof: Since all nodes have the same distance to the input,
the winning node will automatically be the first one, . Again,
since all nodes are the same distance from the input, the amount
each node is updated is determined solely on the lattice distance
from the winning node. Therefore, will move the most,
a little less and even less and so on—resulting in an ordered
map.

Lemma 4: A 1-D PLSOM with three nodes will always reach
an ordered state given a sufficiently large number of uniformly
distributed inputs.

Proof: The proof is computer-assisted, here we give an
outline of the procedure for calculating it.

In short, the proof is as follows.

1) Calculate a scalar field in expressing how much closer the
weights are to an attractor point in ordered space after
an update, where positive values indicate that the weights
have moved away from the attractor.

2) Calculate the gradient of the scalar field.
3) Calculate the upper bound of the gradient.
4) Given the upper bound of the gradient we calculate the

size of a sample grid.
5) Given the upper bound of the gradient and the expected

update at each sample point, the expected update must
point toward the attractor in the vicinity of the sample
point. If this holds for all sample points, it holds for the
whole subspace of unordered weights.

The weights of the three PLSOM nodes are denoted , ,
. The conditions under which the proof is calculated are as

follows.

• Uniformly distributed input in the range [0,1].
• .
• .
• .
• .
• .
• Linear neighborhood function, for simplicity.

The weights , and can be seen as coordinates in a 3-D
space, where all possible configurations fill the unit cube. The

Fig. 20. Unordered subspace U . All other unordered states are mirrors or
inversions of states in this subspace.

Fig. 21. All unordered states in the volume of all possible states.

subspace spanned by the constraints above are denoted , see
Fig. 20. This subspace represents the only way in which a 1-D
three-node map can be unordered—all other unordered states
are inversions or mirrors of this state, see Fig. 21. An ordered
map fulfils one of the following configurations:
and .The ordered subspace fills the volume
drawn in Fig. 22. Now on to the proof proper.

We introduce the concept of the expected update vector:
Given a weight configuration and an input probability density
function we can compute the distance and direction that a node
is most likely to move in and is given

(25)

where is the expected update vector, its elements given by

(26)

BERGLUND AND SITTE: THE PARAMETER-LESS SELF-ORGANIZING MAP ALGORITHM 315

Fig. 22. All ordered states in the volume of all possible states.

where is the expected update of node given as the
winning node. As mentioned above, we use a simplified version
of to facilitate integration

(27)

where is the normalizing variable and is the neighborhood
size. For simplicity we set and . is the input,
uniformly distributed in the [0,1] interval.

As mentioned above, the three input weights of the nodes, ,
and can be seen as coordinates in a 3-D Euclidean space,

of which is a subspace.
Every point in this subspace is associated with an expected

update : The position before an input is represented by , and
the most likely position after a uniformly distributed random
input is .

Now we introduce a point denoted in the ordered subspace
of the unit cube, which is the attractor in the dynamic system
in . In other words, all the expected weight updates in will
bring the weight vectors closer to the attractor, and, hence, closer
to the ordered subspace

(28)

where is the -norm or Manhattan distance. The -norm
was chosen because it produces a simpler expression than the

-norm. has been found empirically to be close to [377/1000,
121/200, 7/10], the exact location is not important to this proof.
Equation (28) defines a 3-D scalar field and in order to prove
negativity we compute the upper bound of the length of the gra-
dient, 16.5. With this estimated upper bound we must check that
no point is further away from a sample point than ,
and that no sample point has a value greater than

. This gives

(29)

where is the spacing of the 3-D grid of sample points,
. This equals roughly sample points

Fig. 23. Evolution of the weight positions of a 64-node 2-D PLSOM initialized
to a difficult position. Neighborhood size is 11, minimum neighborhood size is
0. To simulate what will happen if this configuration appears late in training,
we force an r value of 0.65. (a) Initial state. (b) After 400 inputs. (c) After 480
inputs. (d) After 650 inputs.

to check, another reason for choosing the simpler -norm.
The necessary calculations are easily performed by a low-end
desktop computer in less than 12 hours. Since the distance from
the weight position to the attractor is steadily diminishing, it
follows that the weight position will, given enough consecutive
inputs, come close enough to the attractor to reach ordered
space.

Whether this proof is extensible to networks with more than
three nodes and more than 1-D input is at this point uncertain,
but the image sequence in [Figs. 23(a)–23(d)] certainly suggests
the possibility.

Kohonen [44] mentions a proof (see [43] and [45]) of ordering
of a simplified SOM based on the probability of an ordering
input happening and an infinite number of inputs. This proof in
essence relies on the fact that if there is a sequence of inputs
such that the map will become ordered and one generates a suf-
ficiently large number of inputs the probability of encountering
the ordering sequence of inputs approach 1. The proof just pre-
sented here establishes that for any configuration, the expected
update is in the direction of ordering for any single input. It also
shows the existence of an ordered attractor for the dynamical
system without having to satisfy the Robbins–Monro [46] con-
dition.

Conjecture: Any 1-D PLSOM where only the immediate
neighbors of the winning node are updated can be seen as
a chain of three-node networks, where each subnetwork is
guaranteed to become ordered, therefore, the whole network
will become ordered. This is similar to the proof given in [44]
for the SOM, albeit the authors are not confident enough that it
also applies to the PLSOM to posit it as more than a conjecture.

316 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

ACKNOWLEDGMENT

The authors would like to thank Dr. F. Maire of the Smart De-
vices Laboratory, Queensland University of Technology, Aus-
tralia, and Dr. G. Wyeth of the Division of Complex and Intel-
ligent Systems, University of Queensland, Australia, for their
valuable input.

REFERENCES

[1] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp.
1464–1480, Sep. 1990.

[2] H. Ritter, T. Martinetz, and K. Schulten, Neural Comput. and Self-Orga-
nizing Maps—An Introduction. Reading, MA: Addison-Wesley, 1992.

[3] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: A principled
alternative to the self-organizing map,” Adv. Neural Inf. Process. Syst.,
vol. 1, no. 9, pp. 354–360, 1997.

[4] , “GTM: The generative topographic mapping,” Neural Comput.,
vol. 10, no. 1, pp. 215–235, 1998.

[5] A. Vellido, W. El-Deredy, and P. J. G. Lisboa, “Selective smoothing of
the generative topographic mapping,” IEEE Trans. Neural Netw., vol.
14, no. 4, pp. 847–852, Jul. 2003.

[6] J. H. Kaas, “Plasticity of sensory and motor maps in adult mammals,”
Annu. Rev. Neurosci., vol. 14, pp. 137–167, Mar. 1991.

[7] J. Göppert and W. Rosenstiel, “Varying cooperation in SOM for im-
proved function approximation,” in IEEE Int. Conf. Neural Netw., vol.
1, 1996, pp. 1–6.

[8] R. Lang and K. Warwick, “The plastic self organizing map,” in Proc.
2002 Int. Joint Conf. Neural Netw., vol. 1, 2002, pp. 727–732.

[9] B. Fritzke, “Growing cell structures—a self-organizing network for un-
supervised and supervised learning,” Neural Netw., vol. 7, no. 9, pp.
1441–1460, 1994.

[10] , A Growing Neural Gas Network Learns Topologies. Cambridge,
MA: MIT Press, 1995, pp. 625–632.

[11] R. Iglesias and S. Barro, “SOAN: self organizing with adaptive neigh-
borhood neural network,” in Proc. IWANN, 1999, pp. 591–600.

[12] H. Shah-Hosseini and R. Safabakhsh, “TASOM: the time adaptive self-
organizing map,” Proc. ITCC, pp. 422–427, 2000.

[13] , “TASOM: a new time adaptive self-organizing map,” IEEE Trans.
Syst., Man, Cybern. B, vol. 33, no. 2, pp. 271–282, Feb. 2003.

[14] K. Haese, “Kalman filter implementation of self-organizing feature
maps,” Neural Comput., vol. 11, no. 5, pp. 1211–1233, 1999.

[15] K. Haese and G. J. Goodhill, “Auto-SOM: recursive parameter estima-
tion for guidance of self-organizing feature maps,” Neural Comput., vol.
13, no. 3, pp. 595–619, 2001.

[16] J. A. Starzyk, Z. Zhu, and T.-H. Liu, “Self-organizing learning array,”
IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 355–363, Feb. 2005.

[17] T. Kwok and K. A. Smith, “A noisy self-organizing neural network
with bifurcation dynamics for combinatorial optimization,” IEEE Trans.
Neural Netw., vol. 15, no. 1, pp. 84–98, Jan. 2004.

[18] E. Berglund and J. Sitte, “The parameter-less SOM algorithm,” in Proc.
ANZIIS, 2003, pp. 159–164.

[19] A. Campbell, E. Berglund, and A. Streit, “Graphics hardware imple-
mentation of the parameter-Less self-organizing map,” in Proc. IDEAL,
2005, pp. 343–350.

[20] A. King and S. Carlile, Neural Coding for Auditory Space. Cambridge,
MA: Mit Press, 1995.

[21] D. Nandy and J. Ben-Arie, Auditory Localization Using Spectral Infor-
mation. New York: Academic, 1995.

[22] W. M. Hartmann, “How we localize sound,” Phys. Today, vol. 1, no.
Nov., pp. 23–29, 1999.

[23] R. S. Sutton, Ed., Reinforcement learning. Norwell, MA: Kluwer,
1992.

[24] J. Huang, N. Ohnishi, and N. Sugie, “A biometric system for localization
and separation of multiple sound sources,” IEEE Trans. Instrum. Meas.,
vol. 44, no. 3, pp. 733–738, Mar. 1995.

[25] , “Building ears for robots: sound localization and separation,”
Artif. Life Robot., vol. 1, no. 4, pp. 157–163, 1997.

[26] D. Rabinkin, R. Renomeron, A. Dahl, J. French, J. Flanagan, and M.
Bianchi, “A DSP implementation of source location using microphone
arrays,” Proc. SPIE, vol. 2846, pp. 88–99, 1996.

[27] T. Nakatani, H. G. Okuno, and T. Kawabata, “Auditory stream segre-
gation in auditory scene analysis with a multi-agent system,” in Proc.
AAAI4, 1994, pp. 100–107.

[28] H. Kitano, H. G. Okuno, K. Nakadai, T. Matsui, K. Hidai, and
T. Lourens. (2002) SIG, The Humanoid. [Online]. Available:
http://www.symbio.jst.go.jp/symbio/SIG/

[29] K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active audition
for humanoid,” in Proc. AAAI, 2000, pp. 832–839.

[30] T. Lourens, K. Nakadai, H. G. Okuno, and H. Kitano, “Humanoid ac-
tive audition system,” presented at the IEEE-RAS Int. Conf. Humanoid
Robots, 2000, CD-ROM.

[31] K. Nakadai, H. Okuno, and H. Kitano, “Realtime sound source localiza-
tion and separation for robot audition,” in Proc. IEEE Int. Conf. Spoken
Language Process., 2002, pp. 193–196.

[32] K. Nakadai, H. G. Okuno, and H. Kitano, “Robot recognizes three simul-
taneous speech by active audition,” in Proc. ICRA, vol. 1, Sep. 2003, pp.
398–405.

[33] M. Rucci, G. Edelman, and J. Wray, “Adaptation of orienting behavior:
from the barn owl to a robotic system,” IEEE Trans. Robot. Autom., vol.
15, no. 1, pp. 96–110, Feb. 1999.

[34] H. Nakashima, T. Mukai, and N. Ohnishi, “Self-Organization of a sound
source localization robot by perceptual cycle,” in Proc. ICONIP, Nov.
2002, pp. 834–838.

[35] M. P. Zwiers, A. J. V. Ostal, and J. R. M. Cruysberg, “Two-dimensional
sound-localization behavior of early-blind humans,” Exp. Brain Res.,
vol. 140, pp. 206–222, 2001.

[36] L.-C. Wang and C. Chen, “A combined optimization method for solving
the inverse kinematics problems of mechanical manipulators,” IEEE
Trans. Robot. Autom., vol. 7, no. 4, pp. 489–499, Aug. 1991.

[37] E. Berglund. (2004) PLSOM-Controlled 6 degree of
freedom robotic arm playing chess. [Online]. Available:
http://www.itee.uq.edu.au/~berglund/robochess.mov

[38] R. A. Cole, Y. K. Muthusamy, and M. Fanty, “The ISOLET spoken letter
database,” Oregon Grad. Inst., Beaverton, Tech. Rep. 90-004, 1990.

[39] T. G. Dietterich and G. Bakiri, “Error-correcting output codes: a general
method for improving multiclass inductive learning programs,” in Proc.
AAAI, 1991, pp. 572–577.

[40] M. Fanty and R. Cole, “Spoken letter recognition,” in Proc. 1990 Conf.
Adv. Neural Inf. Process. Syst. 3, 1990, pp. 220–226.

[41] E. Fix and J. Hodges, “Discriminatory analysis, non-parametric discrim-
ination,” USAF Sch. Aviation Medicine, Randolf Field, TX, Tech. Rep.
4, 1951.

[42] N. Keeratipranon and F. Maire, “Bearing similarity measures for self-
organizing feature maps,” in Proc. IDEAL, 2005, pp. 286–293.

[43] M. Cottrell, J. C. Fort, and G. Pagès, “Theoretical aspects of the SOM
algorithm,” Neurocomput., vol. 21, pp. 119–138, Nov. 1998.

[44] T. Kohonen, Self-Organization and Associative Memory, 3rd ed. New
York: Springer-Verlag, 1989.

[45] M. Cottrell and J. Fort, “Etude d’un algorithme d’auto-organization,”
Annal. Inst. Henri Poincare (B) Prob. stat., vol. 23, no. 1, pp. 1–20, 1987.

[46] H. Robbins and S. Muonro, “A stochastic approximation method,”
Annal. Math. Statist., vol. 22, pp. 400–407, 1951.

Erik Berglund received the B.S. degree in computer engineering from Østfold
University College, Sarpsborg, Norway, in 2000. He is currently working toward
the Ph.D. degree at the University of Queensland, St. Lucia, Australia.

His research interests include computational intelligence, robotics, and im-
plicit data processing.

Joaquin Sitte received the Licenciado degree in physics from the Universidad
Central de Venezuela, Caracas, Venezuela, in 1968, and the Ph.D. degree in
quantum chemistry from Uppsala University, Uppsala, Sweden, in 1974.

Since 1986, he has been with the Queensland University of Technology, Bris-
bane, Australia, where he is currently an Associate Professor at the School of
Software Engineering and Data Communications, where he leads the Smart De-
vices Laboratory. Until 1985, he was an Associate Professor at the Universidad
de Los Andes, Merida, Venezuela, and Head of the Surface Physics Research
Group. Since 1986, he is on the faculty of Queensland University of Technology.
Research interests include the use of neural networks robotics.

	toc
	The Parameterless Self-Organizing Map Algorithm
	Erik Berglund and Joaquin Sitte
	I. I NTRODUCTION
	A. Previous Works
	B. Overview

	II. A LGORITHM
	A. Ordinary SOM Algorithm
	B. PLSOM Algorithm

	Fig.€1. Plot showing the effect of different ϵ values o
	III. P ERFORMANCE
	1) Comparison to the SOM Variants: We trained the Matlab SOM var

	Fig.€2. Graph of the decrease of uncovered space as training pro
	Fig.€3. Graph of the average skew for the PLSOM, the SOM, and th
	Fig.€4. Graph of the absolute mean deviation of cell size for th
	Fig.€5. Graph of the absolute mean deviation of cell size for th
	Fig.€6. SOM first trained with inputs ranging from 0 to 0.5 for
	2) Plasticity Preservation: The illustrations in this section sh
	3) Memory: In the opposite case, viz . the SOM is presented with

	Fig.€7. PLSOM first trained with inputs ranging from 0 to 0.5 fo
	Fig.€8. PLSOM first trained with inputs ranging from 0 to 1 for
	A. Drawbacks
	IV. A NALYSIS
	A. Experiments

	Fig.€9. Ordinary SOM after 100 000 iterations of normally distri
	Fig.€10. PLSOM after 100 000 iterations of normally distributed
	B. Explanation

	Fig.€11. Update size x likelihood for a corner node v of a 2
	Fig.€12. Update size x likelihood for a corner node v of a 2
	Fig.€13. Expected displacement vectors for the edge nodes along
	Fig.€14. Expected displacement vectors for the edge nodes along
	Fig.€15. Weight density versus distance from center for the SOM
	V. A PPLICATIONS
	A. Sound Source Localization Through Active Audition
	1) Earlier Works: The physics of binaural audition is discussed

	Fig.€16. Active audition system layout.
	2) System Description: The aim is to let the process be complete

	Fig.€17. High dimensional data. Average winning node versus actu
	3) Results: Our approach described previously consistently manag
	B. Inverse Kinematics (IK)
	1) Existing Methods: Robot control depends on IK but there are s
	2) Proposed Solution: We opted for a slightly different and, we

	Fig.€18. Error after 500 iterations of some different sized PLSO
	3) Experiments and Results: The PLSOM solves the IK problem very
	C. Classification of the ISOLET Data Set
	VI. D ISCUSSION

	Fig.€19. Three-beacon navigation mapping by the SOM and the PLSO
	VII. C ONCLUSION
	P ROOF OF Gfdx O RDERING OF A PLSOM W ITH T N ODES AND 1-D I NPU
	Lemma 1: The weights of a node cannot overshoot the input, i.e.,
	Proof: Assume 1 that there is an input x, and a node i with

	Lemma 2: There exists no input that can turn an ordered 1-input
	Proof: Proof by contradiction. Assume that w_{n} and w_{n+1}

	Lemma 3: In the special case where $w_{i}=a$, $\forall i$ and so
	Proof: Since all nodes have the same distance to the input, the

	Lemma 4: A 1-D PLSOM with three nodes will always reach an order
	Proof: The proof is computer-assisted, here we give an outline o

	Fig.€20. Unordered subspace U . All other unordered states are
	Fig.€21. All unordered states in the volume of all possible stat
	Fig.€22. All ordered states in the volume of all possible states
	Fig.€23. Evolution of the weight positions of a 64-node 2-D PLSO
	Conjecture: Any 1-D PLSOM where only the immediate neighbors of
	T. Kohonen, The self-organizing map, Proc. IEEE, vol. 78, no. 9
	H. Ritter, T. Martinetz, and K. Schulten, Neural Comput. and Sel
	C. M. Bishop, M. Svensén, and C. K. I. Williams, GTM: A principl
	A. Vellido, W. El-Deredy, and P. J. G. Lisboa, Selective smoothi
	J. H. Kaas, Plasticity of sensory and motor maps in adult mammal
	J. Göppert and W. Rosenstiel, Varying cooperation in SOM for imp
	R. Lang and K. Warwick, The plastic self organizing map, in Proc
	B. Fritzke, Growing cell structures a self-organizing network fo
	R. Iglesias and S. Barro, SOAN: self organizing with adaptive ne
	H. Shah-Hosseini and R. Safabakhsh, TASOM: the time adaptive sel
	K. Haese, Kalman filter implementation of self-organizing featur
	K. Haese and G. J. Goodhill, Auto-SOM: recursive parameter estim
	J. A. Starzyk, Z. Zhu, and T.-H. Liu, Self-organizing learning a
	T. Kwok and K. A. Smith, A noisy self-organizing neural network
	E. Berglund and J. Sitte, The parameter-less SOM algorithm, in P
	A. Campbell, E. Berglund, and A. Streit, Graphics hardware imple
	A. King and S. Carlile, Neural Coding for Auditory Space . Cambr
	D. Nandy and J. Ben-Arie, Auditory Localization Using Spectral I
	W. M. Hartmann, How we localize sound, Phys. Today, vol. 1, no.

	R. S. Sutton, Ed., Reinforcement learning . Norwell, MA: Kluwer,
	J. Huang, N. Ohnishi, and N. Sugie, A biometric system for local
	D. Rabinkin, R. Renomeron, A. Dahl, J. French, J. Flanagan, and
	T. Nakatani, H. G. Okuno, and T. Kawabata, Auditory stream segre
	H. Kitano, H. G. Okuno, K. Nakadai, T. Matsui, K. Hidai, and T.
	K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, Active audit
	T. Lourens, K. Nakadai, H. G. Okuno, and H. Kitano, Humanoid act
	K. Nakadai, H. Okuno, and H. Kitano, Realtime sound source local
	K. Nakadai, H. G. Okuno, and H. Kitano, Robot recognizes three s
	M. Rucci, G. Edelman, and J. Wray, Adaptation of orienting behav
	H. Nakashima, T. Mukai, and N. Ohnishi, Self-Organization of a s
	M. P. Zwiers, A. J. V. Ostal, and J. R. M. Cruysberg, Two-dimens
	L.-C. Wang and C. Chen, A combined optimization method for solvi
	E. Berglund . (2004) PLSOM-Controlled 6 degree of freedom roboti
	R. A. Cole, Y. K. Muthusamy, and M. Fanty, The ISOLET spoken let
	T. G. Dietterich and G. Bakiri, Error-correcting output codes: a
	M. Fanty and R. Cole, Spoken letter recognition, in Proc. 1990 C
	E. Fix and J. Hodges, Discriminatory analysis, non-parametric di
	N. Keeratipranon and F. Maire, Bearing similarity measures for s
	M. Cottrell, J. C. Fort, and G. Pagès, Theoretical aspects of th
	T. Kohonen, Self-Organization and Associative Memory, 3rd ed. Ne
	M. Cottrell and J. Fort, Etude d'un algorithme d'auto-organizati
	H. Robbins and S. Muonro, A stochastic approximation method, Ann

