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 Abstract 

Background: A number of studies have shown that both temperature and air pollution are 

associated with health outcomes. In assessing air pollution effects, temperature is usually 

considered as a confounder. However, only a few recent studies considered air pollution as 

confounders while assessing temperature effects. Few studies are available on whether or not 

air pollution modifies the temperature-disease relationship.  

 

Methods: In this study, we used three parallel Poisson generalized additive models to 

examine whether particulate matter less than 10 µm in aerodynamic diameter (PM10) 

modified the effects of minimum temperature on cardiorespiratory morbidity and mortality in 

Brisbane, Australia.  

 

Results: Results show that PM10 statistically significantly modified the effects of temperature 

on respiratory and cardiovascular hospital admissions, all non-external cause mortality and 

cardiovascular mortality at different lags. The enhanced adverse temperature effects were 

found at higher levels of PM10, but no clear evidence emerged for interactive effects on 

respiratory and cardiovascular emergency visits. Three parallel models produced similar 

results, which strengthened the validity of findings.  

 

Conclusion: We conclude that it is important to evaluate the modification role of air pollution 

in the assessment of temperature-related health impacts.  



 5

Introduction 

The nature and magnitude of the association between temperature and human health 

has been increasingly recognized (Basu and Samet 2002; Martens 1997; Patz et al. 2000; 

Samet et al. 1998). Both hyperthermia and hypothermia are generally linked to 

cardiorespiratory morbidity or mortality (Braga et al. 2001; 2002; Kunst et al. 1993). The 

patterns of temperature-morbidity/mortality vary across regions with J, U or V-shapes most 

commonly observed (Basu and Samet 2002; Braga et al. 2002; Patz et al. 2000). In many 

regions of the world, death rates in winter are usually higher than those in summer, even 

though heat waves can cause excess deaths (Braga et al. 2002; McMichael et al. 2001). 

Seasonal variation in morbidity and mortality may also reflect factors beyond weather, 

including seasonal patterns of respiratory infections. Consequently, assessments of the effect 

of weather on human health have usually controlled for seasonality and sometimes for 

influenza epidemics (Schwartz 2004). 

 

Meanwhile, numerous studies have shown that air pollution is consistently associated 

with adverse health effect (Bell et al. 2004; Dominici et al. 2006; Samet et al. 2000). However, 

the role of air pollution is often ignored in assessing the health effects of temperature 

variability, with the exception of a few recent studies adjusting for air pollution (O’Neill et al. 

2003; Rainham and Smoyer-Tomic 2003). None of the previous studies have explored 

whether or not exposure to air pollution modifies the association between temperature and 

health outcomes. If substantial effect modification exists, an inappropriately specified model 

may result in bias. Firstly, it may be inappropriate to consider air pollution only as a 

confounder in the assessment of the association between temperature and health outcomes, 

because air pollution may make people more vulnerable to the effects of temperature 

variability. Secondly, some studies have shown that temperature may modify the associations 
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between air pollution and cardiorespiratory diseases (Choi et al. 1997; Katsouyanni et al. 

1993; Ren and Tong in press; Roberts 2004). There is often symmetry in modification -- air 

pollution modifies temperature and then temperature modifies air pollution, but the 

magnitudes are likely to differ. Finally, the true magnitude of the association between 

temperature and health outcomes may be obscured if air pollution is an effect modifier of the 

relationship. This study used three parallel time-series models to explore whether or not 

particulate matter less than 10 μm in aerodynamic diameter (PM10) modified the effects of 

temperature on cardiorespiratory hospital admissions, emergency visits and mortality in 

Brisbane during the period 1996-2001.  

 

Materials and Methods 

Data collection 

 

The data sets consisted of concurrent daily time series of health outcomes, weather, 

and air pollution collected in Brisbane City from January 1st, 1996, to December 31st, 2001. 

Brisbane City is the capital of Queensland, Australia, with a sub-tropical climate. In 2001, 

there were 0.89 million residents in Brisbane City (Brisbane City Council 2006). 

 

Health outcome data in this study were provided by the Queensland Department of 

Health and comprised cardiovascular hospital admissions (CHA), cardiovascular emergency 

visits (CEV), cardiovascular mortality (CM), respiratory hospital admissions (RHA), 

respiratory emergency visits (REV), and all non-external cause mortality (NECM). This 

analysis excluded respiratory mortality due to limited daily counts (mean: 1.5; range: 0-8). 

Discharge diagnosis was classified according to International Classification of Disease, ninth 

version (ICD-9) (used until July, 1999) or tenth version (ICD-10) (i.e. respiratory diseases 
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(ICD-9: 460-519 or ICD-10: J00-J99), cardiovascular diseases (ICD-9: 390-448 or ICD-10: 

I00-I79), and external causes (ICD-9: E800-E999 or ICD-10: S00-U99). Influenza (ICD-9: 

487.0-487.8 or ICD-10: J10-J11) was excluded from respiratory diseases, but occurrence of 

influenza outbreak was considered as a potential confounder in the data analysis. All cases 

were local residents of Brisbane City. The notification of incidence and mortality is a statuary 

requirement under the Health Act 1937 for all public and private hospitals, nursing homes and 

pathology services in Queensland. The Queensland Department of Health is responsible for 

data collection, management and analysis (Queensland Government 2006).  

 

Daily meteorological data were supplied by the Australian Bureau of Meteorology, 

including daily minimum temperature, relative humidity and rainfall for the period of this 

study. Air pollution data included ambient 24-hour average concentrations of PM10 and ozone 

(O3). All air pollution data were regularly recorded at a central monitoring site and provided 

by the Queensland Environmental Protection Agency. 

 

Data Analysis  

 

Poisson generalized additive models (GAM) were employed to explore the 

associations of temperature and PM10 with health outcomes. This assumed that the daily 

number of counts had an overdispersed Poisson distribution ( ttYE μ=( ), ttY φμ=]var[ ) 

(Dominici et al. 2004). GAM allows nonparametric smoothing functions to account for 

potentially nonlinear effects of confounding factors on the dependent variable, such as 

seasonal variation and weather conditions (Hastie and Tibshirani 1990). We used days of 

calendar time with a cubic smoothing function to control for the confounding effect of 

seasonality. We controlled for short-term fluctuation using day of the week as a factor. Other 
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potential confounders such as relative humidity and influenza outbreaks, were also adjusted 

for. 

 

Before exploring effect modification of PM10 on the temperature-health relationship, 

an independent model was used to explore the patterns of the relationship between 

temperature and health outcomes. The independent model is described below (Daniels et al. 

2000; Hastie and Tibshirani 1990; Insightful Corporation 2001): 

 

)25.0,()25.0,())|(( =+=+= −− spanpmlospantemploXYELog ititt α )7,( tseasons+ tDowγ+  

                           )3,( tyears+ )4,( itrains −+ )4,( ithumids −+ ttfit fluozones εβ +++ − )4,(          

  =  titit COVsspanpmlospandtemplo εα ++=+=+ −− )25.0,()25.0,(       [1] 

 

where the subscript t refers to the day of the observation; i refers to lags; )|( XYE t  denotes 

estimated daily case counts on day t; )(⋅s and )(⋅lo  separately denote the cubic smoothing 

spline and LOESS smooth functions, respectively.α is the intercept term; ittemp − is 24-hour 

minimum temperature on day t-i; itpm −  is PM10 on day t-i; tseason denotes seasonality using 

days of calendar time. In accordance with the literature (Daniels et al. 2000), we used 7 

degrees of freedom per year for season so that little information from time scales longer than 

two months was included. tDow  is the day of week on day t, and γ  is a vector of coefficients. 

The variables itrain − , ithumid −  and itozone −  refer to rainfall, relative humidity at 9 am and 

ozone on day t-i, respectively; tflu  represents the occurrence of influenza epidemics. Because 

over 99% of days only have 0 or 1 influenza cases, influenza was categorized as a dummy 

variable (0 cases, 1 or more cases on day t). fβ is the coefficient for influenza; tε  is the 

residual. COVs  represents all other covariates in the model.  
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Then, we used three GAM models to assess whether particulate matter modified the 

association of temperature with health outcomes, i.e., a nonparametric bivariate response 

model, a non-stratification model and a stratification model (Ren and Tong in press; Roberts 

2004). A bivariate model was used to visually explore the combining effects of both 

temperature and PM10 with health outcomes. This was undertaken using a nonparametric 

smoothing function without linear assumptions that the two predictors linearly depend on 

outcomes. A non-stratification model was used quantitatively to examine the association of 

both above predictors with health outcomes with a linear assumption by including an 

interaction term of temperature and PM10 as continuous functions.  A stratification model was 

used to quantitatively assess the associations of temperature with health outcomes across 

PM10 levels by including an interaction term of temperature and PM10 in which PM10 was 

categorized into two levels. The three models were described in detail below. 

 

Firstly, the nonparametric bivariate response model was used to identify the joint 

effects of minimum temperature and particulate matter on health outcomes. This can capture 

the relationship between independent and dependent variables without the need for strong 

assumptions (Hastie and Tibshirani 1990). This model provided a picture of the joint pattern 

of two predictors (ie, temperature and particulate matter) on the dependent variable (ie, each 

of cardiorespiratory morbidities and mortalities). Therefore, it can be used to observe whether 

or not there is an interactive effect of two continuous predictors on the dependent variable 

(Greenland 1993; Hastie and Tibshirani 1990). We modified Equation 1 to include a bivariate 

term for temperature and PM10 as follows (Insightful Corporation 2001; Ren and Tong in 

press; Roberts 2004): 

 

)25.0,,())|(( =+= −− spanpmtemploXYELog ititt α tCOVs ε++           [2] 
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where ),( itit pmtemplo −−  means joint effect of temperature and particulate matter and 

COVs was the same as Model 1. 

 

Secondly, a non-stratification model, assuming a linear relationship, was employed to 

estimate the interactive effects of particulate matter and minimum temperature on health 

outcomes.  We added an interaction term to estimate increment in cardiorespiratory 

mortality/morbidity per unit change in ambient particulate matter and minimum temperature, 

as follows: 

 

):())|(( 321 ititititt temppmtemppmXYELog −−−− +++= βββα  

       tCOVs ε++                                                     [3] 

 

where 1β denotes the increment in mortality/morbidity per unit increase in ambient PM10 

level, 2β denotes the increment in mortality/morbidity per unit increase in temperature level, 

and 3β estimates the interactive effect of PM10 and temperature on health outcomes after 

adjustment for all other covariates.COVs was the same as Model 1.  

 

Finally, a stratification model was applied to examine whether the effects of 

temperature on health outcomes were heterogeneous across different levels of particulate 

matter. We categorized PM10 into two levels (low and high) and then examined whether 

temperature effects varied across levels of particulate matter. To assess effect modification in 

the high end of the temperature range, we used separate datasets to fit this model, ie, one 

dataset with the whole range of temperatures and another database with temperatures ≥  19.3 

°C (75th percentile). We slightly modified Equation 3 as follows: 
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            ):())|(( 321 iktitiktitt pmtemppmtempXYELog −−−− +++= βββα  

tCOVs ε++                                                                                [4] 

where ktpm represents levels of PM10, iktit pmtemp −− :  represents the interaction term of 

temperature and levels of PM10, and other covariates were the same as Equation 3. Because 

PM10 was just categorized into two levels, each of ktpm and iktit pmtemp −− :  has one 

coefficient denoted by 2β and 3β , respectively. COVs  was the same as Model 1. 

 

S-plus software (version 6.2) was used in the data analyses (Chambers and Hastie 

1993; Insightful Corporation 2001). To reduce potential bias caused by convergence, we used 

stricter criteria, i.e., 1.0E-10 for both the local score algorithm and the backfitting algorithm 

(Dominici et al. 2002). We used the S-plus function gam.exact (Dominici et al. 2004; iHAPSS 

2006) to correct the potential underestimation of the coefficient’s standard error due to 

concurvity (Ramsay et al. 2003). Furthermore, analyses were restricted to days that contained 

values for all covariates in each model (≥ 87% of observations). 
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Results 

We examined the distributions of each of the dependent variables, temperature and 

PM10 by time. The results show that there were strong seasonal patterns for RHA, CHA, REV, 

CEV, NECM, CM and temperature but the PM10 pattern was less obvious (Figure 1). There 

were also apparent short-term fluctuations in health outcomes, minimum temperature and the 

concentration of PM10.  

 

[Figure 1 about here] 

 

Table 1 provides summary statistics for individual health outcomes and explanatory 

variables. The results show considerable variation in each variable, ranging from 6 to 77 for 

RHA, 7 to 90 for CHA, 1 to 48 for REV, 2 to 38 for CEV, 5 to 42 for NECM, 1 to 31 for CM, 

1.2 to 26 °C for temperature and 2.5 to 60.0 µg/m³ for PM10.  

 

[Table 1 about here] 

 

 In the first model, there were inverse relationships between temperature and various 

measures of cardiorespiratory morbidity with the exception of CHA, which showed a slight 

positive relationship (Figure 2). The patterns were similar at lags of 0, 1 or 2 days (ie, RHA, 

CHA, REV and CEV). Patterns of temperature effect on current day for morbidity and current 

day and lag 2 for mortality are presented (Figure 2). However, the relationships between 

temperature and cardiorespiratory mortality (NECM and CM) differed from the morbidity 

outcomes and varied by lengths of lag. For the current day, the associations of temperature 

with NECM and CM were relatively slight when the temperature was between 0 and 20ºC and 

then increased quickly, but at lags of 1 and 2 days, the associations firstly decreased and then 
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levelled off or slightly increased. Hence, the relationship between temperature and mortality 

forms a J- or U-shaped pattern, depending on the lag time (Basu and Samet 2002; Braga et al. 

2002; Patz et al. 2000). 

 

[Figure 2 about here] 

 

To explore potential effect modification of PM10 and temperature on cardiorespiratory 

morbidity/mortality, we separately fitted bivariate response surface models (Model 2) with 

individual health outcomes at each of three lags (0, 1 and 2 days). The results show interactive 

effects of PM10 and temperature on RHA, REV, NECM and CM at all time points, less so for 

CHA and CEV. Figure 3 illustrates the joint effects of PM10 and temperature on each health 

outcome (ie, RHA, CHA, REV, CEV, NECM and CM) for the current day. Temperature 

effects were modified by levels PM10 for RHA, REV, NEMC and CM, less so for CHA and 

CEV. Favourable temperature effects disappeared when PM10 was above the mean or median 

(15.84 or 14.8 µg/m³) for RHA and REV, but adverse temperature effects appeared for 

NECM and CM when PM10 was above the mean or median. CHA was similar to RHA. The 

bivariate response surfaces differed from the independent model results, showing that the 

association between temperature and mortality changed with PM10. In fact, what at first 

appeared to be J-shaped relationship in the independent model (Model 1) became an 

approximately linear relationship when the joint effect of PM10 and temperature was taken 

into account (Model 2). There were inverse linear associations between minimum temperature 

and morbidity or mortality at low levels of PM10 (less than 20µg/m³). However, at higher 

levels of PM10, the association between temperature and mortality was positively linear, 

whereas the associations with the various morbidity measures were weak. 
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[Figure 3 about here] 

 

Because no obvious J- or U-shaped patterns of  the temperature-health relationship 

were observed in bivariate response models, we separately fitted non-stratification models 

(Model 3) using each of the cardiorespiratory morbidity/mortality measures as a response 

variable with the same set of predictors at each of the lags (Table 2). The results indicate 

statistically significant interactive effects between temperature and PM10 on RHA, CHA, 

NECM and CM at different lags. For example, PM10 modified the effects of temperature on 

RHA and CM at all lags, but modified the effects of temperature on NECM at lags of 0 and 2 

days and CHA at lag 2, marginally at lag 0. No significant interactions were found for REV 

and CEV. The results were similar to those from Model 2. As the estimated effects of 

temperature variability differed with PM10 levels, we present the estimated coefficients of 

Model 3 instead of relative risks (Table 2). 

 

[Table 2 about here] 

 

In order to test sensitivity of changes in degrees of freedom (df) related to the number 

of categories used for covariates, we refitted Model 3 using 12 df for tseason (each month), 6 

df for year (each year), 8 df for rain, relative humidity and ozone instead of the original df. 

Results show that increases in df changed the modelling outcomes only minimally.  

 

Both the bivariate response surface and non-stratification models suggest that the 

effects of temperature on cardiorespiratory morbidity/mortality varied with levels of PM10. 

We then fitted the stratification model (Model 4) to examine heterogeneity of temperature 

associations with health outcomes across different strata of PM10, defined as greater than or 
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less than the mean level (15.8 µg/m³) of PM10. There were statistically significant interactions 

for RHA, CHA, NECM and CM at different lags, but not for CEV, REV. Table 3 shows the 

percentage changes in cardiorespiratory morbidity/mortality per 10°C increase in minimum 

temperature across the different levels of PM10. Temperature effects on cardiorespiratory 

morbidity/mortality varied across the different levels of PM10. For most lags and most health 

outcomes, the percentage changes were higher when PM10 levels were higher. For morbidity 

measures, this meant that the inverse association with temperature was less extreme for high 

PM10; for mortality measures, the association with minimum temperature became positive at 

high PM10 levels. For example, when minimum temperature increased by 10°C (using data 

with the full range of temperature), there was a decrease in RHA of 7.2 % and 1.0 % on the 

current day, with low and high PM10 levels, respectively. To examine the association at the 

high end of the temperature range with health outcomes, we also fitted Model 4 using datasets 

constrained to the highest quartile (≥ 19.3°C) of temperature with the same cut-offs for 

temperature as the whole database. The pattern was even stronger when analysed in the high-

temperature dataset (Table 3). 

 

[Table 3 about here] 
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Discussion 

 

In this study, we used three parallel time-series approaches to examine whether PM10 

modified the association between temperature and cardiorespiratory morbidity/mortality. 

Results show that PM10 modified the effects of temperature on respiratory hospital 

admissions, cardiovascular hospital admissions, all non-external cause mortality and 

cardiovascular mortality in different lags. In particular, more adverse outcomes were evident 

with increasing temperature when PM10 levels also increased. However, there were no 

significant interactive effects between temperature and PM10 on respiratory and 

cardiovascular emergency visits. Three parallel models produced similar results. 

 

This study used different health outcomes to examine consistency of findings. 

However, the findings from different health outcomes for the same observed groups varied 

somewhat. Reasons for this might include different age distributions, different events and 

clinical features. For example, for respiratory hospital admissions and emergency visits, acute 

upper respiratory infection, pneumonia and asthma were the dominant causes and a high 

proportion of cases were identified in children. For cardiovascular hospital admission and 

emergency visits, angina pectoris, artrial fibrillation and flutter, and chronic ischemic heart 

diseases were the main causes and elderly persons comprised most of theses cases. For 

MECN and CM, acute myocardial infarction, chronic ischemic heart diseases and stroke were 

the main causes and again elder persons comprised most cases. Several studies have shown 

that age and pre-existing diseases modify the air pollution-health association (Dubowsky et al. 

2006; O’Neill et al. 2003). In considering the variation in findings for different health effects, 

we note that this study is designed to detect short-term effects of air pollution (within few 



 17

days). Mechanisms related to high temperature or PM10 which precipitate acute illness may 

be different or have different magnitudes, depending on the underlying diseases. 

  

Temperature and air pollution are generally highly correlated in many places (Holgate 

et al. 1999) and they may symmetrically interact to affect health outcomes. Although whether 

air pollution modifies temperature estimates has not been investigated so far, several studies 

have found evidence that temperature may modify the relationship between air pollution and 

morbidity or mortality (Choi et al. 1997; Katsouyanni et al 1993; Ren and Tong in press; 

Roberts 2004). For example, Katsouyanni et al (1993) examined whether or not air pollution 

and ambient temperature had synergistic effects on excess mortality during the 1987 “heat 

wave” in Athens. They found a statistically significant modification of temperature on the 

association between exposure to sulphur dioxide and total excess mortality, although the main 

effect of this pollutant was not statistically significant. Roberts (2004) investigated the 

interaction between daily particulate air pollution and daily mean temperature on mortality in 

Cook County, Illinois, Allegheny County and Pennsylvania, using data for the period 1987-

1994. The study found that temperature modified the association between PM10 and mortality, 

but the results were sensitive to the number of degrees of freedom. Our recent study also 

found that temperature significantly modified the association between PM10 and health 

outcomes (Ren and Tong in press). These findings support the hypothesis that particulate 

matter might modify the relationship between temperature and health outcomes. 

  

It is biologically plausible that particulate matter modifies the effects of temperature 

on cardiorespiratory diseases. A range of studies have shown that particulate matter is 

consistently associated with health outcomes (Dominici et al. 2006; Samet et al. 2000). 

Exposure to particulate matter may directly affect airways through inhalation, including upper 
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airways, bronchiole and alveolus. The exposure could modulate the automatic nervous system 

and might further influence the cardiovascular system (Gordon 2003; Jeffery 1999). Some 

studies have shown that particulate matter is associated with decreased heart rate variation 

(Creason et al. 2001;Gold et al. 2000).  Marked temperature changes also affect physiological 

and psychological stresses (Gordon 2003), which could aggravate pre-existing diseases. 

Therefore, both high ambient temperature and high ambient particulate matter may interact to 

synergistically effect human morbidity/mortality.  

 

Each of the three models used in this study has its inherent advantages and 

disadvantages. The bivariate response surface model is a flexible approach to show the 

patterns of two continuous predictors on the dependent variable and explore whether potential 

interaction exists without a rigid assumption of linearing between predictors and the 

dependent variable (Greenland 1993; Hastie and Tibshirani 1990). However, this model can 

not provide parametric estimates for exposure effects and therefore, it may be difficult to 

judge whether or not interactive effects exist and also to compare the results from different 

studies. The nonstratification parametric model includes a pointwise product of two 

continuous variables. Parametric estimates for both predictors and their pointwise product can 

be obtained (Chambers and Hastie 1993). However, the linear assumption between the 

dependent variable and both continuous predictors is not necessarily met in all situations, 

especially for temperature and air pollution in a multisite study with variation in study 

populations. Moreover, the estimated coefficients of both predictors can not be simply 

interpreted as the main effects (Table 2) (Chambers and Hastie 1993). The stratification 

parametric model provides parametric estimates, which can be easily interpreted as main 

effects and interaction. The parametric estimates can be used in a meta-analysis. However, 

because the effect of one continuous predictor generally changed with another predictor level 
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(Figure 3), the selection of cut-offs is still a challenge, especially comparing the results from 

different studies. 

 

Our study explored a marker of air pollution as a modifier of the relationship between 

temperature and cardiovascular morbidity/mortality. We used an independent model (Model 1) 

and a bivariate response model (Model 2) to examine the patterns of temperature with several 

health outcomes (RHA, CHA, REV, CEV, NECM and CM). A J-shaped pattern was only 

observed for NECM and CM on the current day but not for other measures of 

cardiorespiratory morbidity. No obvious J-shaped pattern was observed in the bivariate 

response surface models, suggesting that the interaction between PM10 and temperature may 

play an important role in model fit. Therefore, when modelling the health effects of air 

pollution and/or temperature, an interaction between these two factors should be carefully 

considered. Many studies have shown J-, U- or V-shaped patterns of the temperature-health 

relationship (Basu and Samet 2002; Braga 2002; Patz et al. 2000).The different patterns 

observed may be due to different climate conditions across studies. For example, Braga et al 

reported that greater variability of summer and winter temperature was associated with larger 

effects for hot and cold days, respectively, on respiratory deaths. However, Brisbane has a 

sub-tropical climate, and there are few extremely cold days (for example, the mean minimum 

temperature was 15.4°C and the lowest temperature was 1.2°C during the study period). 

 

This study is an ecological design and misclassifications are possible for both health 

outcomes and exposure. Because a broad classification of diseases (ie, cardiovascular, 

respiratory and non-external classification of diseases) was used, we do not believe that 

misclassification for health outcomes is likely to be substantial. We used air pollution from 

one central monitoring site to represent individual exposure to PM10 and this might result in 
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misclassification. However, previous studies have shown that central fixed-site measurements 

may be treated as surrogates for personal exposure (Kim et al. 2005) and bias from the 

monitoring data might not be severe. While some families in Brisbane have access to air 

conditioning, thus reducing exposure to high temperature when indoors, this effect is believed 

minimal due to the small proportion of houses with air-conditioning as well as the outdoor 

lifestyle of Queensland residents. 

 

              There are two major strengths of this study. Firstly, this is, to our knowledge, the first 

study to examine whether PM10 modifies the association of temperature and a range of 

cardiorespiratory morbidity/mortality measures. Secondly, three parallel statistical models 

were performed with multiple health outcomes and they produced similar findings, which 

strengthens the validity of findings. However, this study also has two key limitations. Firstly, 

caution is needed in interpreting any time-series study within a single location. This study was 

carried out in a single city with a subtropical climate, and six years of data are not extensive. 

Therefore, the results of this study may be difficult to generalize to other places. Secondly, 

this study is an ecological design, in which bias from exposure measurement errors might 

occur to some degree due to lack of individual information.  

 

Overall, we found statistically significant interactive effects of PM10 and temperature 

on respiratory and cardiovascular hospital admission, all non-external cause mortality and 

cardiovascular mortality at different lags in Brisbane during the study period. The temperature 

effects were more adverse at high levels of PM10. These findings may have important 

implications in the assessment of health effects of temperature and the development of 

strategies and policies for controlling and preventing temperature-related deaths and diseases. 
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However, it is necessary to determine whether a consistent finding could be found in other 

settings. 
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Table 1       Summary statistics for health outcomes, air pollutants and  
        meteorological conditions 

Variable Mean Minimum 25th Pctla Median 75th Pctl Maximum 

RHA 33.16 6 23 33 42 77 

CHA 39.32 7 30 39 48 90 

REV 18.39 1 13 17 23 48 

CEV 17.17 2 14 17 20 38 

NECM 15.86 5 13 15 18 42 

RM 1.45 0 0 1 2 8 

CM 7.26 1 5 6 9 31 

PM10 (µg/m³) 15.84 2.5 11.9 14.8 18.7 60 

Temperature(°C) 15.42 1.2 12.0 16.0 19.3 26 

Humidity (%) 65.21 12.0 57 65 74 100 

Ozone (ppm) 11.26 0 7 10 15 45 

Rainfall (mm) 3.038 0 0 0.0 0.8 163 
a Pctl represents percentile
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Table 2   Coefficients for main and interactive effects of minimum temperature 

     and PM10 on different health outcomes using Model 3 

Laga Variable RHA CHA REV CEV NECM CM 

Lag 0 Temp b -.012019 c -.003942 -.009377 c -.003304 -.008374 d -.008193 

 PM10 -.004296 d .000150 -.000887 .000737 -.004022 -.004565 

 Interaction .000471 c .000232e .000135 -.000015 .000534 c .000603 d 

Lag1 Temp -.009196 c -.0003767 -.010039 d -.003636 -.005321 -.010081 

 PM10 -.002474 d .000028 -.004209 -.001248 -.002182 -.003927 
 Interaction .000339 d .000124 .000271 .000116 .000322 e .000556 d 

Lag2 Temp -.008950 c -.009764 c -.009406 c -.008885 d -.008556 e -.015128 d 

 PM10 -.004229 d -.002946 -.003440 -.003383 -.005177 -.007141 
 Interaction .000413 c .000259 d .000280e .000210 .000441d .000809 d 

a Lag refers to 0, 1 or 2 days; b Temp refers to temperature; c p-value <0.01; d p-value <0.05; e p-value 

< 0.10; 
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Table 3   Percentage change (%) in cardiorespiratory morbidity/mortality per 10°C increase in temperature across the levels of PM10 
 Lag a Variable RHA ( 95% CI b ) CHA (95% CI) REV (95% CI) CEV (95% CI) NECM (95%CI) CM (95% CI) 

Lag0  PM Low d -7.2 (-11.3, -2.9) -2.3 (-6.3, 1.7) -6.8 (-12.1, -1.1) -2.2 (-7.8, 3.5) -1.4 (-7.3, 4.8) -0.9 (-9.8, 7.9) 

 PM High -1.0 (-5.0, 3.2) 1.1 (-2.5, 4.7) -6.6 (-11.5, -1.4) -4.5 (-9.7, 0.6) 2.8 (-2.7, 8.7) 4.6  (-3.4, 12.6) 

Lag1 PM Low -2.9 (-7.3, 1.6) -2.6 (-6.7, 1.4) -3.6 (-9.2, 2.3) -2.1 (-7.8, 3.7) -0.2 (-6.2, 6.0) -1.4 (-10.2, 7.5) 

 PM High -2.4 (-6.5, 1.8) -1.0 (-4.6, 2.5) -5.3 (-10.3, -0.1) -1.2 (-6.3, 3.9) 0.6 (-4.8, 6.4) 0.0 (-7.9, 8.0) 

Lag2 PM Low -3.2 (-7.6, 1.3) -8.2 (-12.2, -4.2) -3.9 (-9.5, 2.0) -6.7 (-12.4, -1.0) -3.9 (-9.6, 2.2) -3.6 (-12.5, 5.2) 

Whole 

range of 

Tempc 

 PM High -0.4 (-4.5, 3.8) -3.5 (-7.1, 0.1) -4.4 (-9.4, 1.9) -4.2 (-9.3, 1.0) 1.1 (-4.3, 6.9) 0.9 (-7.0, 8.8) 

Lag0  PM Low -29.2 (-40.6, -15.5) -4.7 (-19.2, 10.0) -7.4 (-27.2, 17.8) -13.2 (-33.8, 7.8) 9.9 (-12.9, 38.5) 0.8 (-31.3, 34.1) 

 PM High 5.2 (-17.0, 33.4) -3.8 (-22.8, 15.6) 4.5 (-23.1, 42.0) -94.2 (-118.6, 69.1) 14.0 (-15.4, 53.7) 44.1 (0.8, 89.2) 

Lag1 PM Low -7.6 (-23.4, 11.5) 0.7 (-13.7, 15.3) 1.2 (-20.2, 28.3) -14.9 (-35.3, 6.0) 35.1 (7.0, 70.5) 18.9 (-13.6, 52.4) 

 PM High -8.1 (-27.6, 16.6) 12.2 (-7.4, 32.1) 51.5 (11.1, 106.6) 1.5 (-25.7, 29.6) 14.8 (-15.4, 55.8) 26.2 (-17.3, 71.6) 

Lag2 PM Low -12.8 (-27.4, 4.8) 15.9 (1.1, 30.8) -24.8 (-40.8, -4.6) 8.0 (-13.0, 29.4) 13.2 (-10.2, 42.6) 6.7 (-25.4, 39.8) 

Temp 

≥  

19.3°C 

 PM High -19.2 (-36.4, 2.6) 12.8 (-6.7, 32.7) -8.8 (-33.3, 24.7) 29.4 (-51.8, 117.5) 37.6 (1.9, 85.8) 23.2 (-19.1, 67.4) 

a Lag refers to 0, 1 or 2 lags; b CI refers to 95% confidence interval; c Temp refers to minimum temperature; d PM means PM10, categorized into low and high 

levels using mean of PM10 as a cut-off.
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Figure Legends 
 
Figure 1. Time series distributions of PM10, minimum temperature and health outcomes from 
1996 to 2001 in Brisbane. The panels represented as the distributions of respiratory hospital 
admission (RHA), cardiovascular hospital admissions (CHA), respiratory emergency visits 
(REV), cardiovascular emergency visits (CEV), non-external cause mortality (NECM), 
cardiovascular mortality (CM), PM10 and maximum temperature from top to bottom. 
 
Figure 2. Temperature-morbidity/mortality relationship. RHA, CHA, REV, CEV, NECM and 
CM denote respiratory hospital admissions, cardiovascular hospital admissions, respiratory 
emergency visits, cardiovascular emergency visits, non-external all cause mortality and 
cardiovascular mortality, respectively. Solid lines represent point estimates and dashed lines 
for 95% confidential intervals (CI). 
 
Figure 3. Bivariate response surfaces of minimum temperature and PM10 on health outcomes 
on current day. RHA, CHA, REV, CEV, NECM and CM denote respiratory hospital 
admissions, cardiovascular hospital admissions, respiratory emergency visits, cardiovascular 
emergency visits, non-external all cause mortality and cardiovascular mortality, respectively. 
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