This is the author version of article published as:

Copyright 2006 Elsevier

Accessed from http://eprints.qut.edu.au
Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals

Jan M. Jasiewicza, John H.J. Allumb, James W. Middletonc, Andrew Barriskilld, Peter Condiea, Brendan Purcella and Raymond Che Tin Lia

Gait & Posture
Volume 24, Issue 4, December 2006, Pages 502-509

Copyright © 2006 Elsevier B.V. All rights reserved.

aSchool of Human Movement Studies, Centre for Health Research, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
bDepartment of ORL, University Hospital, Basel, Switzerland
cRehabilitation Studies Unit, Faculty of Medicine, The University of Sydney, New South Wales 2006, Australia
dRestorative Therapies Incorporated, Baltimore, Maryland 21224, USA

Received 10 April 2005; revised 14 December 2005; accepted 18 December 2005. Available online 23 February 2006.

Abstract

We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate ($p < 0.02$). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.

Keywords: Gait analysis; Inertial sensors; Foot contact detection

Acknowledgements

This work was supported in part by a QUT Strategic Links with Industry Grant. The authors would like to thank the Royal Rehabilitation Centre (Moorong Spinal Unit) in Sydney for access to ASIA D patients. JHH Allum was supported by Swiss National Research Grant 3100AO-104212/1.
References

Corresponding author. Tel.: +61 7 3864 5821; fax: +61 7 3864 3390.

\[\text{CMT is an inherited peripheral neuropathy disease affecting approximately 10–36 individuals in 100,000. It is characterized by progressive muscle weakness accompanied by mild sensory loss.}\]

Gait & Posture

Volume 24, Issue 4, December 2006, Pages 502-509