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Measure representation and multifractal analysis of complete genomes
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This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and mul-
tifractal analysis are then performed on the measure representations of a large number of complete genomes.
The main aim of this paper is to discuss the multifractal property of the measure representation and the
classification of bacteria. From the measure representations and the values of theDq spectra and relatedCq

curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses
performed indicate that these measure representations, considered as time series, exhibit strong long-range
correlation. Here the long-range correlation is for theK-strings with dictionary ordering, and it is different from
the base pair correlations introduced by other people. For substrings with lengthK58, theDq spectra of all
organisms studied are multifractal-like and sufficiently smooth for theCq curves to be meaningful. With the
decreasing value ofK, the multifractality lessens. TheCq curves of all bacteria resemble a classical phase
transition at a critical point. But the ‘‘analogous’’ phase transitions of chromosomes of nonbacteria organisms
are different. Apart from chromosome 1 ofC. elegans, they exhibit the shape of double-peaked specific heat
function. A classification of genomes of bacteria by assigning to each sequence a point in two-dimensional
space (D21 ,D1) and in three-dimensional space (D21 ,D1 ,D22) was given. Bacteria that are close phyloge-
netically are almost close in the spaces (D21 ,D1) and (D21 ,D1 ,D22).

DOI: 10.1103/PhysRevE.64.031903 PACS number~s!: 87.14.Gg, 87.10.1e, 47.53.1n
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I. INTRODUCTION

DNA sequences are of fundamental importance in und
standing living organisms, since all information of the h
reditary and species evolution is contained in these ma
molecules. The DNA sequence is formed by four differe
nucleotides, namely adenine (a), cytosine (c), guanine (g),
and thymine (t). A large number of these DNA sequences a
widely available in recent times. One of the challenges
DNA sequence analysis is to determine the patterns in th
sequences. It is useful to distinguish coding from noncod
sequences. Problems related to the classification and ev
tion of organisms are also important. A significant contrib
tion in these studies is to investigate the long-range corr
tion in DNA sequences@1–16#. Li and co-workers@1# found
that the spectral density of a DNA sequence contain
mostly introns shows 1/f b behavior, which indicates the
presence of long-range correlation when 0,b,1. The cor-
relation properties of coding and noncoding DNA sequen
were first studied by Penget al. @2# in their fractal landscape
or DNA walk model. The DNA walk@2# was defined as tha
the walker steps ‘‘up’’ if a pyrimidine (c or t) occurs at
position i along the DNA chain, while the walker step
‘‘down’’ if a purine (a or g) occurs at positioni. Penget al.
@2# discovered that there exists long-range correlation in n
coding DNA sequences while the coding sequences co
spond to a regular random walk. By undertaking a m
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detailed analysis, Chatzidimitriou-Dreismann and Larha
mer@5# concluded that both coding and noncoding sequen
exhibit long-range correlation. A subsequent work by Prab
and Claverie@6# also substantially corroborates these resu
If one considers more details by distinguishingc from t in
pyrimidine, anda from g in purine ~such as two- or three
dimensional DNA walk models@15# and maps given by Yu
and Chen@16#!, then the presence of base correlation h
been found even in coding sequences. On the other h
Buldyrev et al. @12# showed that long-range correlation a
pears mainly in noncoding DNA using all the DNA se
quences available. Based on equal-symbol correlation, V
@8# showed a power law behavior for the sequences stud
regardless of the proportion of intron contents. These stu
add to the controversy about the possible presence of co
lation in the entire DNA or only in the noncoding DNA
From a different angle, fractal analysis is a relatively ne
analytical technique that has proven useful in revealing co
plex patterns in natural objects. Berthelsenet al. @17# consid-
ered the global fractal dimensions of human DNA sequen
treated as pseudorandom walks.

In the above studies, the authors only considered sho
long DNA segments. Since the first complete genome of
free-living bacteriumMycoplasma genitaliumwas sequenced
in 1995@18#, an ever-growing number of complete genom
has been deposited in public databases. The availabilit
complete genomes induces the possibility to establish s
global properties of these sequences. Vieira@19# carried out a
low-frequency analysis of the complete DNA of 13 microb
genomes and showed that their fractal behavior does no
ways prevail through the entire chain and the autocorrela
functions have a rich variety of behaviors including the pr

r
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ZU-GUO YU, VO ANH, AND KA-SING LAU PHYSICAL REVIEW E 64 031903
ence of antipersistence. Yu and Wang@20# proposed a time
series model of coding sequences in complete genomes
fuller details on the number, size, and ordering of ge
along the chromosome, one can refer to Part 5 of Lewin@21#.
One may ignore the composition of the four kinds of base
coding and noncoding segments and only consider the gl
structure of the complete genomes or long DNA sequen
Provata and Almirantis@22# proposed a fractal Cantor patte
of DNA. They mapped coding segments to filled regions a
noncoding segments to empty regions of a random Canto
and then calculated the fractal dimension of this set. T
found that the coding and/or noncoding partition in DN
sequences of lower organisms is homogeneouslike, whil
the higher eucariotes the partition is fractal. This result d
not seem refined enough to distinguish bacteria because
fractal dimensions of bacteria given by them@22# are all the
same. The classification and evolution relationship of ba
ria is one of the most important problems in DNA resear
Yu and Anh@23# proposed a time series model based on
global structure of the complete genome and conside
three kinds of length sequences. After calculating the co
lation dimensions and Hurst exponents, it was found that
can get more information from this model than that of frac
Cantor pattern. Some results on the classification and ev
tion relationship of bacteria were found@23#. The correlation
property of these length sequences has been discussed@24#.

Although a statistical analysis performed directly on DN
sequences has yielded some success, there has been
indication that this method is not powerful enough to ampl
the difference between a DNA sequence and a random
quence as well as to distinguish DNA sequences themse
in more details@25#. One needs more powerful global an
visual methods. For this purpose, Haoet al. @25# proposed a
visualization method based on counting and coarse-grai
the frequency of appearance of substrings with a gi
length. They called it theportrait of an organism. They
found that there exist some fractal patterns in the portr
which are induced by avoiding and under-represen
strings. The fractal dimension of the limit set of portraits w
also discussed@26,27#. There are other graphical methods
sequence patterns, such as chaos game represen
@28,29#.

In the portrait representation, Haoet al. @25# used squares
to represent substrings and discrete color grades to repre
the frequencies of the substrings in the complete genom
is difficult to know the accurate value of the frequencies
the substrings from the portrait representation. In order
improve it, in this paper we use subintervals in on
dimensional space to represent substrings and then we
directly obtain an accurate histogram of the substrings in
complete genome. We then view the histogram as a mea
which we call themeasure representationof the complete
genome. When the measure representation is viewed
time series, a spectral analysis can be carried out.

Global calculations neglect the fact that DNA sequen
are highly inhomogeneous. Multifractal analysis is a use
way to characterize the spatial inhomogeneity of both th
retical and experimental fractal patterns@30#. Multifractal
analysis was initially proposed to treat turbulence data.
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recent years it has been applied successfully in many dif
ent fields, including time series analysis@31,32# and financial
modeling ~see Anhet al. @33#!. For DNA sequences, appli
cation of the multifractal technique seems rare~we have
found only Berthelsenet al. @34#!. In this paper, we pay more
attention to this application. The quantities pertained to sp
tral and multifractal analyses of measures are describe
Sec. III. Application of the methodology is undertaken
Sec. IV on a number of representative chromosomes. A
cussion of the empirical results and some conclusions
drawn in Sec. V, where we also address the use of the m
tifractal technology in the classification problem of bacter

II. MEASURE REPRESENTATION

We call any string made ofK letters from the set
$g,c,a,t% a K-string. For a givenK there are in total 4K

differentK-strings. In order to count the number of each ki
of K-string in a given DNA sequence 4K counters are
needed. We divide the interval@0,1@ into 4K disjoint sub-
intervals, and use each subinterval to represent a cou
Letting s5s1•••sK ,siP$a,c,g,t%,i 51, . . . ,K, be a sub-
string with lengthK, we define

xl~s!5(
i 51

K
xi

4i
, ~1!

where

xi55
0 if si5a

1 if si5c

2 if si5g

3 if si5t

~2!

and

xr~s!5xl~s!1
1

4K
. ~3!

We then use the subinterval@xl(s),xr(s)@ to represent sub-
string s. Let NK(s) be the number of times that substrings
with lengthK appears in the complete genome. If the numb
of bases in the complete genome isL, we define

FK~s!5NK~s!/~L2K11! ~4!

to be the frequency of substrings. It follows that
($s%FK(s)51. Now we can define a measuremK on @0,1@ by
dmK(x)5Y(x)dx, where

YK~x!54KFK~s!, when xP@xl~s!,xr~s!@ . ~5!

It is easy to see*0
1dmK(x)51 and mK(@xl(s),xr(s)@)

5FK(s). We callmK the measure representationof the or-
ganism corresponding to the givenK. As an example, the
histogram of substrings in the genome ofM. genitaliumfor
K53, . . . ,8 aregiven in Fig. 1. Self-similarity is apparent in
3-2
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FIG. 1. Histograms of substrings with different lengths.
is dif-

the measure. For simplicity of notation, the indexK is
dropped inFK(s), etc., from now on, where its meaning
clear.

Remark.The ordering ofa,c,g,t in Eq. ~2! will give
the natural dictionary ordering ofK-strings in the one-
03190
dimensional space. A different ordering ofK-strings would
change the nature of the correlations. But in our case, a
ferent ordering ofa,c,g,t in Eq. ~2! gives almost the same
Dq curve~therefore, the same with theCq curve! which will
be defined in the next section when the absolute value ofq is
3-3
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ZU-GUO YU, VO ANH, AND KA-SING LAU PHYSICAL REVIEW E 64 031903
relatively small. We give Fig. 2 to support this point of view
Hence a different ordering ofa,c,g,t in Eq. ~2! will not
change our result. When we want to compare different b
teria using the measure representation, once the orderin
a,c,g,t in Eq. ~2! is given, it is fixed for all bacteria.

III. SPECTRAL AND MULTIFRACTAL ANALYSES

We can order all theF(s) according to the increasin
order of xl(s). We then obtain a sequence of real numb
consisting of 4K elements that we denote asF(t),t

51, . . . ,4K. Viewing the sequence$F(t)% t51
4K

as a time se-
ries, the spectral analysis can then be undertaken on th
quence.

We first consider the discrete Fourier transform@35# of the
time seriesF(t),t51, . . . ,4K, defined by

F̂~ f !5N2(1/2)(
t50

N21

F~ t11!e22p i f t . ~6!

FIG. 2. The dimension spectra of measure representations g
by different ordering ofa,c,g,t in Eq. ~2!.
03190
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Then

S~ f !5uF̂~ f !u2 ~7!

is thepower spectrum of F(t). In recent studies, it has bee
found @36# that many natural phenomena lead to the pow
spectrum of the form 1/f b. This kind of dependence wa
named 1/f noise, in contrast to white noiseS( f )5const, i.e.,
b50. Let the frequency f take k values f k5k/N,k
51, . . . ,N/8. From the ln@S(f)# vs ln(f) graph we can infer
the value ofb using the above low-frequency range. F
example, we give the logarithmic power spectrum of t
measure ofE. coli with K58 in Fig. 3.

The most common operative numerical implementatio
of multifractal analysis are the so-calledfixed-size box-
counting algorithms@37#. In the one-dimensional case, for
given measurem with supportE,R, we consider theparti-
tion sum

Ze~q!5 (
m(B)Þ0

@m~B!#q, ~8!

qPR, where the sum runs over all different nonempty box
B of a given sidee in a grid covering of the supportE, that
is,

B5@ke,~k11!e@ . ~9!

The exponentt(q) is defined by

t~q!5 lim
e→0

ln Ze~q!

ln e
~10!

and the generalized fractal dimensions of the measure
defined as

Dq5t~q!/~q21! for qÞ1 ~11!

and

en

FIG. 3. The logarithmic power spectrum of the measure of
coli corresponding toK58. The estimated value ofb is
0.598 691 2.
3-4
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MEASURE REPRESENTATION AND MULTIFRACTAL . . . PHYSICAL REVIEW E 64 031903
Dq5 lim
e→0

Z1,e

ln e
for q51, ~12!

where Z1,e5(m(B)Þ0m(B)ln m(B). The generalized fracta
dimensions are numerically estimated through a linear
gression of

1

q21
ln Ze~q!

against lne for qÞ1, and similarly through a linear regres
sion of Z1,e against loge for q51. For example, we show
how to obtain theDq spectrum using the slope of the line
regression in Fig. 4.D1 is calledinformation dimensionand
D2 is calledcorrelation dimension. The Dq of the positive
values ofq give relevance to the regions where the meas
is large, i.e., to theK-strings with high probability. TheDq of
the negative values ofq deal with the structure and the prop
erties of the most rarefied regions of the measure.

Some sets of physical interest have a nonanalytic dep
dence ofDq on q. Moreover, this phenomenon has a dire

FIG. 4. The linear slopes in theDq spectra.
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analogy to the phenomenon of phase transitions
condensed-matter physics@38#. The existence and type o
phase transitions might turn out to be a worthwhile char
terization of universality classes for the structures@39#. The
concept of phase transition in multifractal spectra was int
duced in the study of logistic maps, Julia sets, and ot
simple systems. Evidence of a phase transition was foun
the multifractal spectrum of diffusion-limited aggregatio
@40#. By following the thermodynamic formulation of multi
fractal measures, Canessa@32# derived an expression for th
‘‘analogous’’ specific heat as

Cq[2
]2t~q!

]q2
'2t~q!2t~q11!2t~q21!. ~13!

He showed that the form ofCq resembles a classical phas
transition at a critical point for financial time series. In th
next section we discuss the property ofCq for our measure
representations of organisms.

IV. DATA AND RESULTS

More than 33 bacterial complete genomes are now av
able in public databases. There are six Archaebacteria:Ar-
chaeoglobus fulgidus, Pyrococcus abyssi, Methanococcus
jannaschii, Pyrococcus horikoshii, Aeropyrum pernix, and
Methanobacterium thermoautotrophicum; five Gram-positive
Eubacteria:Mycobacterium tuberculosis, Mycoplasma pneu-
moniae, Mycoplasma genitalium, Ureaplasma urealyticum,
andBacillus subtilis. The others are Gram-negative Eubac
ria, which consist of two Hyperthermophilic bacteri
Aquifex aeolicusandThermotoga maritima; four Chlamydia:
Chlamydia trachomatisserovar, Chlamydia muridarum,
Chlamydia pneumoniae, andChlamydia pneumoniae AR39;
two Spirochaete:Borrelia burgdorferiandTreponema palli-
dum; one Cyanobacterium:Synechocystis sp. PCC6803; and
13 Proteobacteria. The 13 Proteobacteria are divided
four subdivisions, which are as follows. The alpha subdi
sion: Rhizobium sp. NGR234and Rickettsia prowazekii;
gamma subdivision:Escherichia coli, Haemophilus influen-
zae, Xylella fastidiosa, Vibrio cholerae, Pseudomonas
aeruginosa, andBuchnera sp. APS; beta subdivision:Neis-
seria meningitidis MC58andNeisseria meningitidis Z2491;
epsilon subdivision:Helicobacter pylori J99, Helicobacter
pylori 26695, andCampylobacter jejuni.

The complete sequences of some chromosomes of
bacteria organisms are also currently available. In orde
discuss the classification problem of bacteria, we also
lected the sequences of chromosome 15 ofSaccharomyces
cerevisiae, chromosome 3 ofPlasmodium falciparum, chro-
mosome 1 ofCaenorhabditis elegans, chromosome 2 ofAra-
bidopsis thaliana, and chromosome 22 ofHomo sapiens.

We obtained the dimension spectra and ‘‘analogous’’ s
cific heat of the measure representations of the above or
isms and used them to discuss the classification problem
calculated the dimension spectra and analogous specific
of chromosome 22 ofHomo sapiensfor K51, . . . ,8, and
found that theDq andCq curves ofK56,7,8 are very close
to one another~see Figs. 5 and 6!. Hence it seems appropri
3-5
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ZU-GUO YU, VO ANH, AND KA-SING LAU PHYSICAL REVIEW E 64 031903
ate to use the measure corresponding toK58. ForK58, we
calculated the dimension spectra, analogous specific hea
the exponentb of the measure representations of all t
above organisms. As an illustration, we plot theDq curves of
M. genitalium, chromosome 15 ofSaccharomyces cerevisia,
chromosome 3 ofPlasmodium falciparum, chromosome 2 of
Arabidopsis thaliana, and chromosome 22 ofHomo sapiens
in Fig. 7; and theCq curves of these organisms in Fig.
Because allDq are equal to 1 for the complete random s
quence, from these plots it is apparent that theDq and Cq
curves are nonlinear and significantly different from those
the completely random sequence. From Fig. 7, we can cl
that the curves representative of the organisms are cle
distinct from the curve representing a random sequen
From the plot ofDq , the dimension spectra of organism
exhibit a multifractal-like form. From Fig. 4, we can see t

FIG. 5. Dimension spectra of measures of substrings with
ferent lengthsK in chromosome 22 ofHomo sapiens.

FIG. 6. Analogous specific heat of measures of substrings w
different lengthsK in chromosome 22 ofHomo sapiens.
03190
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linear fits ofq522,21,1,2 are perfect and better than th
of other values of q, Hence we suggest to us
D22 ,D21 ,D1 ,D2 in the comparison of different bacteria
We give the numerical results forD22 ,D21 ,D1 ,D2 in Table
I ~from top to bottom, in the increasing order of the value
D21).

If only a few bacteria are considered at a time, we can
theDq curve to distinguish them. This strategy is clearly n
efficient when a large number of organisms are to be dis
guished. For this purpose, we suggest usingD21 ,D1, and
D22, in conjunction with two-dimensional points (D21 ,D1)
or three-dimensional points (D21 ,D1 ,D22). We give the

f-

th

FIG. 7. Dimension spectra of chromosome 22 ofHomo sapiens,
chromosome 2 ofA. thaliana, chromosome 3 ofP. falciparum,
chromosome 1 ofC. elegans, and chromosome 15 ofS. cerevisiae
andM. genitalium.

FIG. 8. Analogous specific heat of chromosome 22 ofHomo
sapiens, chromosome 2 ofA. thaliana, chromosome 3 ofP. falci-
parum, chromosome 1 ofC. elegans, chromosome 15 ofS. cerevi-
siaeandM. genitalium, and a complete random sequence.
3-6
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TABLE I. The values ofD21 , D1 , D22, andD2 of all bacteria selected.

Species Category D21 D1 D22 D2

Xylella fastidiosa Proteobacteria 1.023 935 0.973 450 5 1.046 237 0.943 4
Treponema pallidum Spirochaete 1.024 096 0.974 452 9 1.048 537 0.945 68
Vibrio cholerae Proteobacteria 1.027 849 0.975 419 3 1.060 974 0.952 9
Bacillus subtilis Gram-positive Eubacteria 1.031 173 0.969 183 1 1.062 364 0.939 2
Chlamydia trachomatis Chlamydia 1.031 900 0.970 572 3 1.067 158 0.942 12
Chlamydia pneumoniae Chlamydia 1.034 190 0.969 118 9 1.075 935 0.939 61
Rhizobium sp. NGR234 Proteobacteria 1.034 821 0.968 923 3 1.068 532 0.943 0
Chlamydia muridarum Chlamydia 1.036 608 0.964 696 0 1.075 166 0.929 36
Chlamydia pneumoniae AR39 Chlamydia 1.037 127 0.959 307 4 1.078 164 0.910 61
Pyrococcus abyssi Archaebacteria 1.038 142 0.968 308 1 1.091 387 0.939 33
Aeropyrum pernix Archaebacteria 1.040 248 0.953 563 0 1.074 807 0.903 31
Synechocystis sp. PCC6803 Cyanobacteria 1.045 674 0.965 713 7 1.127 265 0.936 41
Mycoplasma pneumoniae Gram-positive Eubacteria 1.046 260 0.958 464 9 1.092 869 0.925 0
Archaeoglobus fulgidus Archaebacteria 1.047 071 0.963 125 2 1.130 371 0.927 94
Escherichia coli Proteobacteria 1.047 849 0.971 164 5 1.174 754 0.947 4
M. thermoautotrophicum Archaebacteria 1.048 569 0.962 648 0 1.116 451 0.930 67
Thermotoga maritima Hyperthermophilic bacteria 1.053 824 0.954 563 7 1.145 209 0.910 1
Aquifex aeolicus Hyperthermophilic bacteria 1.055 210 0.954 089 3 1.134 702 0.914 5
Pyrococcus horikoshii Archaebacteria 1.056 144 0.958 792 4 1.139 402 0.923 76
Neisseria meningitidis MC58 Proteobacteria 1.058 779 0.952 268 1 1.132 902 0.913 2
Neisseria meningitidis Z2491 Proteobacteria 1.058 805 0.949 750 3 1.133 201 0.906 5
M. tuberculosis Gram-positive Eubacteria 1.061 496 0.941 034 1 1.115 466 0.892 0
Haemophilus influenzae Proteobacteria 1.062 565 0.951 123 1 1.147 970 0.912 2
Buchnera sp. APS Proteobacteria 1.085 581 0.895 585 1 1.152 650 0.790 4
Rickettsia prowazekii Proteobacteria 1.088 237 0.919 265 5 1.173 883 0.856 7
Pseudomonas aeruginosa Proteobacteria 1.109 776 0.915 498 0 1.187 378 0.862 2
Borrelia burgdorferi Spirochaete 1.111 380 0.903 053 9 1.261 299 0.829 83
Campylobacter jejuni Proteobacteria 1.123 096 0.905 343 7 1.279 505 0.834 9
Ureaplasma urealyticum Gram-positive bacteria 1.124 616 0.884 348 1 1.260 287 0.806 5
Helicobacter pylori J99 Proteobacteria 1.128 590 0.929 961 4 1.390 791 0.875 8
Helicobacter pylori 26695 Proteobacteria 1.149 943 0.927 606 2 1.460 757 0.871 9
Mycoplasma genitalium Gram-positive Eubacteria 1.160 435 0.914 271 8 1.365 716 0.863 1
Methanococcus jannaschii Archaebacteria 1.165 208 0.911 373 1 1.349 664 0.862 82
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distribution of two-dimensional points (D21 ,D1) and three-
dimensional points (D21 ,D1 ,D22) of bacteria in Fig. 9.

V. DISCUSSION AND CONCLUSIONS

The idea of our measure representation is similar to
portrait method proposed by Haoet al. @25#. It provides a
simple yet powerful visualization method to amplify the d
ference between a DNA sequence and a random sequen
well as to distinguish DNA sequences themselves in m
details. If a DNA sequence is random, then our measure
resentation yields a uniform measure (Dq51,Cq50).

From the measure representation and the values ofDq and
Cq , it is seen that there exists a clear difference between
DNA sequences of all organisms considered here and
completely random sequence. Hence we can conclude
complete genomes are not random sequences.

We obtained the values of the exponentb of our measure
representations (b50.393 003 for V. cholerae, b
03190
e
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e
p-

he
he
at

50.311 623 forA. pernix, b50.240 601 forX. fastidiosa,
b50.381 293 forT. pallidum, b50.334 057 forC. pneumo-
niae AR39, and b is larger than 0.4 for all other bacteri
selected!. These values are far from 0. Hence when we vi
our measure representations of organisms as time series,
are far from being random time series, and in fact exh
strong long-range correlation. Here the long-range corre
tion is for theK-strings with the dictionary ordering, and it i
different from the base pair correlations introduced by ot
people.

Although the existence of the archaebacterial urkingd
has been accepted by many biologists, the classificatio
bacteria is still a matter of controversy@41#. The evolution-
ary relationship of the three primary kingdoms, name
archeabacteria, eubacteria, and eukaryote, is another cr
problem that remains unresolved@41#.

WhenK is large (K>6), our measure representation co
tains rich information on the complete genomes. From F
5 and 6 we find the curves ofDq and Cq are very close to
3-7
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one another forK56,7,8. Hence, for the classification pro
lem, it would be appropriate to takeK58. We calculated the
b, Dq , andCq values of all organisms selected in this pap
for K58. We found that theDq spectra of all organisms ar
multifractal-like and sufficiently smooth so that theCq
curves can be meaningfully estimated. From Fig. 5, with
decreasing ofK, the multifractality becomes less sever

FIG. 9. Distributions of two-dimensional points (D21 ,D1) and
three-dimensional points (D21 ,D1 ,D22) of the bacteria selected.
o,

re

03190
r

e
.

With K58, we found that theCq curves of all other bacteria
resemble a classical phase transition at a critical point sim
to that ofM. genitaliumshown in Fig. 8. But the analogou
phase transitions of nonbacteria organisms are differ
Apart from chromosome 1 ofC. elegans, they exhibit the
shape of a double-peaked specific heat function which
known to appear in the Hubbard model within the weak-
strong coupling regime@42#.

It is seen that theDq curve is not clear enough to distin
guish many bacteria themselves. In order to solve this pr
lem we use two-dimensional points (D21 ,D1) and three-
dimensional points (D21 ,D1 ,D22). From Fig. 9 it is clear
that bacteria roughly gather into two classes~as shown in
Table I!. Using the distance among the points, one can ob
a classification of bacteria.

From Table I we can see all Archaebacteria belong to
same class exceptM. jannaschii. And four Chlamydia almost
gather together. It is surprising that the closest pairs of b
teria,Helicobacter pylori J99andHelicobacter pylori 26695
andNeisseria meningitidis MC58andNeisseria meningitidis
Z2491, group with each other. Two hyperthermophilic bac
ria group with each other and are linked with the Archaeb
teria. It has previously been shown thatAquifexhas a close
relationship with Archaebacteria from the gene comparis
of an enzyme needed for the synthesis of the amino a
trytophan@43# and using the length sequence of a compl
genome@23#. In general, bacteria that are close phylogene
cally are almost close in the spaces (D21 ,D1) and
(D21 ,D1 ,D22).
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