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ABSTRACT

Modelling the risk factors driving an environmenpabblem can be problematic when
published data describing variables and their augons are sparse. In such cases, expert
opinion forms a vital source of information. Here demonstrate the utility of a Bayesian Net
(BN) model to integrate available information inisk analysis setting. As an example, we use
this methodology to explore the major factors iaflaing initiation ofLyngbya majuscula
blooms in Deception Bay, Queensland. Over the geastdd yngbya blooms have increased in
both frequency and extent on seagrass beds in Desday, with a range of adverse effects.
This model was used to identify the main factoeg ttould trigger a.yngbya bloom. The five
factors found to have the greatest effectgmgbya bloom initiation were: the available nutrient
pool, water temperature, redox state of the sedisnenrrent velocity and light. Scenario
analysis was also conducted to determine the satysdf the model to different combinations
of variable states.

The model has been used to identify knowledge gagdgherefore to direct additional
research efforts in Deception Bay. With minor chesithe model can be used to better

understand the factors triggerihgngbya blooms in other coastal regions.
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INTRODUCTION

Ecological problems are often complex and multifadeThe traditional method of
dealing with this complexity is to focus on smalther narrow aspects of the problem then try
and interpolate across the results. Althoughafien necessary to study microcosms of the
overall problem in order to progress understandirig,equally important that this detailed
information is integrated to provide an overall arglanding of major factors influencing the
problem. It is only with this broad understandirighe relative importance of the key factors
that we can hope to better manage the problem.

This process of integrating the available knowledgdemanding because it involves
bringing together the best scientific informatioarh a variety of disciplines, and coupling this
with a range of possible management actions thdtlaainimise the risk of the problem
occurring (Holling 1998). In many complex envirormted systems the best available scientific
information may be in the form of the knowledgesgperts who have the capacity to inform the
structure of an appropriate model together witimfof interaction that may occur among
variables. It is important to evaluate appropriagthodologies in a risk setting that model the
complexity of environmental systems together witchranisms for incorporating the best
possible information.

This complexity is particularly evident with nuisanalgal blooms where a number of
possible interactions between key factors havettential to influence the probability of a
bloom occurring. These include high incidence il@ade and water temperature, various
anthropogenic influences such as different land asel point source outflows leading to high
nutrient concentrations in waterways and bays (Bemet al. 1999; Thacker and Paul 2001;
Watkinson 2005), and even nutrient levels in grovateér (Andersomt al. 2002; Aherret al.
2006). In coastal marine environments, it is alsoassary to consider currents, tides and other
hydrodynamic features. To complicate matters fetither, these variables may operate at
different spatial and temporal scales. Due to tialmer and complexity of interacting variables,
empirical evidence will often describe only parwdfat is required to model such systems.

The success of any model used to assist in théggmdand management of algal
blooms will depend on its capacity to include amdutaneously examine these multiple
interactions. While process-based models are oféed for this purpose, and can be useful for

exploring mechanisms, they tend to be overly complal thus are less useful for predicting



algal blooms (Clark 2001). Additionally, they rarelccount for the uncertainty inherent in
predicting the behaviour of ecological systems tlagoessential characteristic of predictive
ecosystem models (Clark 2001).

By comparison, Bayesian Network (BN) models hawedhpacity to incorporate
interactions between multiple variables at différgpatial and temporal scales, and do this
within a probabilistic framework. BNs provide a genof advantages for investigating complex
ecological problems such as algal blooms, and thaitagement. The use of conditional
probabilities implicitly incorporates uncertaintyté the results (Sadoddahal. 2005). BNs
provide a rational method for the integration @ thest possible data from a variety of sources,
including expert opinion, simulation results andp@moal data (Wooldridge and Done 2004).
Thus they allow information from a variety of soes¢cand potentially of different quality, to be
merged and easily updated. A BN can also incorpgrabr knowledge in order to more
accurately model a complex system, which may Hecdif when using other techniques (Pollino
et al. 2005).

BNs have been successfully used to model managesoenarios, and are also emerging
as an efficient means of integrating the scienkifiowledge of complex ecological problems that
serves as a necessary precursor to effective maneege.g.,, Borsuket al. 2004; Pollinoet al.
2005). Unlike determinstic methods, probabilistiodels deal effectively with the uncertainty
inherent in environmental systems through the Gigeatabilities. Rather than being ignored,
this uncertainty flows through to the results, Wwhage likely to be framed in terms of the
probability of some outcome. BNs have previouslgrbbeen promoted as effective tools for risk
assessmeneg.,, Hartet al. 2006), although to our knowledge there are no gasrto date
examining marine algal blooms. One purpose ofgihafser is to describe the development and
demonstrate the utility of a of a BN model to bettederstand the major drivers that trigger
blooms of a nuisance cyanophytsgrigbya majuscula) in a system where much of the
information needed to model the system is not ghblil. This study focusses on modelling the
initiation of blooms olyngbya majuscula in an area of particular concern, Deception Bay, a
embayment within Moreton Bay, Queensland. Thig aras selected for a number of reasons,
including the fact that data and modeling outpwdesl for input into the Bayesian Net model

were most readily available for Deception Bay, #rat this embayment is the area in which



Lyngbya has the greatest impact in terms of the numbpeople affected. It is thus important to
closely link the risk factors found in the curretudy into a future management model.

One further purpose of this paper is to demonsthattan important function of a model
can be to refine ideas and to organise and integoasting information, and that appropriate
methodology such as BNs allow ongoing improvemierdgugh further iterations. While the long
term goal of the current BN model is to predict tbaditions under whichyngbya blooms will
be triggered in Deception Bay, the process of argatnd refining the model was valuable as a
means to direct ongoing research efforts and tergé® new hypotheses. Future stages will be to
examine other features of the bloom cy@e.(, bloom maintenance and senescence), and to
couple these BN models with a complementary manageBN model so that we can predict

the best management actions for minimising theafdkyngbya blooms in Deception Bay.

Bayesian Networ ks

Bayesian Networks have been well described elseavpey, Jensen 2001; Borsukal.
2004). They consist of a fusion between a grapmadel and an underlying probabilistic
framework. The graphical model depicts the mostartgnt variables in the system (often
represented as circles or boxes), and shows cdegahdence relationships among those
variables with unidirectional arrows. The variafstem which an arrow originates is said to be
the parent of the variable that the arrow conniec(the child).

This representation of conditional dependence poitant because of the probabilistic
nature of a Bayesian Networ®onditional probability distributions for a child node are
constructed using every possible state of the ‘shildrent node(s), and when distributions can
be discretised, these are encoded in conditiomdlgtnility tables (CPTs). These probability
relationships may be based on empirical data, ottoelels €.9., process or simulation models)
or the opinions of experts, which may include stigt® or others with expert knowledge in the
problem domain. Nodes that have no parents areideddy unconditional (marginal)
probability distributions.

BNs have been successfully used for a variety virenmental problems, including
phosphorus management in a watershed in Northezin (Atmeset al 2005), algal bloom
management in a North Carolina estuary (Bortudt 2004), a survival model for a freshwater

clam exposed to bottom water hypoxia (Borsuél 2002), assessing the viability of native fish



in the highly regulated Goulburn River in VictofRollino et al. 2006), and providing advice on
best management practice for an area of endangesaup eucalyptus trees (Pollino and White
2005). BNs have been recognised as being a flexiblgelling approach for quantifying
ecological risks (Burgman 2005; Hattal. 2006).

The Lyngbya Problem

Moreton Bay is a large, sheltered bay adjacertéccity of Brisbane in southeast
Queensland and the subject of significant sciensifiidy (Dennison and Abal 1998)yngbya is
normally present in trace amounts in the coastainaaediments here (Arquitt and Johnstone
2003), and occasionhklngbya blooms may have been a natural occurrence (Demeiso.

1999). However, the size and frequency of thasggbya blooms has increased since the early
1990s (Dennisost al. 1999; Dennison and Abal 1999), such that it is wowsidered to be a
major threat to the safe and effective use of Mor@&ay and its beaches.

Lyngbya blooms in Moreton Bay occur on shallow seagras&$¥an both sides of the
Bay, and can grow rapidly having been observedteicover 8 kriwithin several days
(Watkinsonet al. 2005) and it is know known that biomass can vamnsaerably across the area
of Lyngbya coverage. Once established, blooms gfégsist for 3 to 6 months before declining
(Arquitt and Johnstone 2003). During a blobymgbya displays a progression from being
sediment derived to forming thick mats, covering damaging sea grasses. Much of the bloom
may become free floating and under windy conditibagarried ashore. When floatibgngbya
washes ashore it not only decays but represerdteatal health risk, necessitating its removal
by the local authorities at considerable cost. €i#eoms therefore represent a significant
economic impost on the communities of South Eagte@sland and directly affect commercial
and recreational fishing, tourism, human health @ossible future land development in the
coastal zone.

Lyngbya has a range of adverse effects on both humarhhesadt aquatic ecosystems. It
has been shown to cause severe contact dermayiisiritation and respiratory symptoms
(Osborneet al. 2001).Lyngbya blooms have caused significant economic effeetiycing
recreational and commercial fisheries, and deangahbie recreational use of an affected region
(Dennison and Abal 1999). While ecological damageoorly understood, it is known that

Lyngbya blooms can lead to seagrass loss resulting froedaction in light availability and



anoxia (Dennisoet al. 1999), and movement of turtles (Arthatral. 2005) out of seagrass beds.
There is also some evidence that toxins assocratad_yngbya can cause fish kills (Sadekal.
1986). The toxins have also been found to disteilbatother biota such as damselfish (Marnane
and Bellwood 1997) and sea hares (Capgpat. 2006).

MODEL DEVELOPMENT

Despite a considerable research and monitoringteff@r the last six years, the causes
of Lyngbya blooms are not yet well understood. Constructiba BN provided an opportunity to
integrate existing knowledge within a single statad framework and identify knowledge gaps.
Development of the model was commenced during &stap with a group of individuals who
had specialist scientific, planning and impactswdedlge ofLyngbya. Initially, a conceptual
model was formulated so that.gngbya bloom could be understood within its environmental
context. This conceptual model incorporated cHitizdural cycles relating to physical,
biochemical, and biological processes in Moretog, Ba well as adjacent land based systems,
and placed these within appropriate spatial anghteat frames (Hamiltoet al. 2005).

Once a firm conceptual basis 1oyngbya blooms was established, the BN modelling
process commenced. In important initial stage i® pinocess was identification of the modelling
focus. Although the primary interest for stakehodoaffected by yngbya was to identify
possible mechanisms for the reduction or even eltion of blooms, it was recognised that any
management actions must be scientifically defeasitthe modelling focus for the BN was
agreed on as the early (initiation) phase bfiagbya bloom.

Once the modelling focus had been decided, congiruof a graphical structure
continued by discussion during two further workshoporder to identify the hierarchy of
variables that influenceldyngbya bloom initiation; those that immediately influeddeyngbya
bloom initiation (.e., nodes preceding bloom initiation), then nodeggiéeng them, and so on.
The initial model consisted of 13 nodes and 20dink

Following the group meetings a series of small grand individual meetings was
instituted to enable/allow clarification of specifietails relating to parts of the BN and the
definitions to be used in population of the indivadl conditional probability tables. Each of the
changes made by individuals and small groups watgisised and confirmed by the entire

group, and the initial 13 node model was expandehiiterative fashion during this process.



Participants also agreed to use a 12 month tinmeffar the model in the first instance,
anticipating a subsequent model at a time frantevofto three months around the specific

period when initiation takes place.

Graphical Model Description

The current model (Figure 1) consists of 23 nodaeb4 links. The central nodBloom
Initiation, considers the process in which the biomadsyodbya majuscula in Deception Bay
accelerates dramatically over the course of 1-4k«wadeading to its domination of the benthic
algal assemblage. The model focuses on the pratyadfilLyngbya bloom initiation over a 12
month period.

The remainder of the model can be logically congidén terms of 5 interacting
subunits:Nutrient sources, Dissolved nutrients, Nutrient interactions, Light and Temperature
andHydrodynamics. A description of the graphical model is providedow, starting from the
model endpoinBloom Initiation and the following the causal chain to variablesatly

affecting this endpoint.

Light and temperature

The growth ofLyngbya will be affected by both incident light at the sednt surface and
water temperature. The growth of cyanobacteriabil® has previously been shown to be
strongly temperature dependant (Sellner 1992) vaardh water temperatures have been
implicated in the onset dfyngbya blooms in Deception Bay (Watkinsenhal. 2005). Thus, the
Temperature variable is directly connected wiBloom Initiation. Light Climate at the sediment
surface directly affects photosynthetic productow therefore the growth bfngbya (Sellner
1992).Light climate is influenced by the characteristics of sunlidgight Quality (spectral
composition) andLight Quantity (total available light) (Longsta#t al. 2001). However, it will
also be influenced by the varialdlarbidity, with low turbidity (clear water conditions)
seemingly optimal fot.yngbya blooms (Watkinsomt al. 2005).Bloom Initiation is thus
considered to be directly influenced by two envimemtal variabled,ight Climate and

Temperature.

Hydrodynamics



There are four nodes within tisydrodynamics subunit that describe the speed of the
current across the benthic surface, and the fatltiatsaffect this spee@ottom Current Climate
describes the rate of water movement across thmsatlsurface. As the velocity of water
currents in Deception Bay increase, they tend toycaore suspended solids, thus increase
Turbidity. Current speed is in turn affected by the tide lapavind characteristics. Neap tides aid
in water column stability (Watkinsoat al. 2005), and empirical observations show that cusrent

in Deception Bay are stronger under south to seast wind conditions.

Dissolved nutrients

A third node that directly affecBloominitiation is theAvailable Nutrient Pool. This is a
composite node that describes the levels of availalirients Dissolved Iron, Dissolved
Nitrogen andDissolved Phosphorus) in Deception Bay. It is affected not only by tiedative
concentrations of these bioavailable nutrienthendissolved phase, but alsoBgttom Current
Climate. This is because of the belief that, during catmditions when light and temperature
have maximum influence, dissolved nutrients camadate in sediment interstitial spaces and
are thus available fdryngbya initiation. As water currents increase the geodbahtonditions
change so that the pool of some dissolved nutrierttse surface sediments may decrease due to
oxidation, and the removal of materials also insesaThis decreases the overall availability of
some nutrient species to Lyngbya. The dissolvedenis that have been included in this model
have each been implicated in the growth wigbya. Nitrogen and phosphorus have often been
associated with algal blooms, and are suspectedrtipibute to the initiation dfyngbya
(Dennisonet al. 1999; Elmetri and Bell 2004; Watkinsehal 2005; Albertet al. 2005).
Dissolved Nitrogen andDissolved Phosphorus are thus two key nutrients. Bioavailable dissolved
iron is often a limiting factor for cyanobacterisison assists in the fixation of nitrogen and is a
key element for a range of energy transfer reast(®aerl 1994; Arquitt and Johnstone 2003).
Dissolved Iron is therefore also believed to be a key factohainitiation ofLyngbya blooms
(Watkinsonet al. 2005; Albertet al. 2005).Dissolved Organics are included in the model
because they can complex with iron, which actaitistantially extend its bioavailability (Rose
and Waite 2003a,b).

We note that in this section we consider the aldity of dissolved N and P as being

important factors in the initiation of a bloom, it is the dissolved form of these nutrients that



is required for organism uptake. A valid alternatapproach to represent the issue of nutrient
uptake would be to account for the Redfield rati@ (N:P ratio of nutrient availability versus
nutrient composition of the organism). This wasinotuded in our model, however, as we had

no useful data that would allow its inclusion aglavant node.

Nutrient interactions

The concentration and availability of different memts in the dissolved phase also
depends on the relative redox state of the sedinmatitated by the variablgediment Nutrient
Climate. This node is affected Barticulate Matter, Bottom Current Climate andTemperature.
Oxygen is more soluble in cold water, and thushaneiase in water temperature leads to a
decrease in oxygen saturation and a more reduowvigpement. AsParticulate Matter in the
water increase, the environment becomes more neglasi the particles absorb energy from
sunlight, leading to an increase in water tempeeaRarticulate Matter also scatters light,
decreasing the photosynthetic productivity of pdamthich increases this effect. When currents
are strong, however, the benthic environment resemore oxygen leading to a more oxidising

environment.

Nutrient inputs

This subunit consists of 2 marginal and 4 condalorodes. The four conditional nodes
in this subunit Groundwater, Land Run-off, Air andPoint Sources) describe the sources of
nutrients that flow into Deception Bay. Althou@noundwater could be considered in terms of
shallow and deep groundwater, it is believed heaeit is shallow groundwater that has the
greatest potential to contribute nutrients to ystesn (Aherret al. 2006).Land Run-off
considers the overland flow of water bearing nataéoth into waterways and directly into
Deception Bay. This might include the run off fragricultural land, urban areas and natural
habitats Point Sources of nutrients include elements such as waste viilsgatment plants,
aguaculture operations and quarries. Aeolian ssuwtautrients (including dust or other
pollutants) may be a significant contributor ofnierits to marine environments. This source of
nutrients is considered within the variaBlie.

The volume of rain that has fallen within the pastays (the marginal nodRain) is a

major influence on all of these nodes, influendimg level of nutrient output from each nutrient
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source. In addition, folir theNumber of previous dry days (i.e., the number of days in which
there was no rainfall) in which aerosol concentragican build will also determine levels of wet

deposition with rainfall.

Quantification of Relationships

Nuisance outbreaks afyngbya majuscula have been reported in Deception Bay since
1996. Despite a significant research effort, howethe identification and broad consideration of
factors that trigger bloom initiation, and theitaractions, have only recently been considered.
As a consequence of this, there are as yet fewtdatescribe the relationship between variables
at this early stage. An ongoing research programrerrently being undertaken on several
fronts, and more data will become progressivelylabke with time. Indeed, the BN modelling
process has been integral to the strategic ideatifin of critical but data poor areas, lending
focus to the ongoing research effort.

The software in which the BN was constructed (Neficrequires distributions to be
discretised. The probabilities underlying marginadles, and relationships between nodes, were
described using a combination of empirical datausation results and expert opinion (Table 1).
A number of published and unpublished data sowsege used to populate CPTs (see below for
access to reports on data sources). Data for nedngoaes relating to environmental features
(e.g., Rain, Number of Dry Days) were available from sources such as the Bureau of
Meteorology. Simulation results from a hydrodynaalicdriven numerical model of water
quality in Moreton Bay, the Receiving Water Qualpdel (RWQM) were used to populate
CPTs for several nodes, includimgrbidity andBottom Current Climate. This model predicts
flows and nutrient sediment loads coming off ther&on Bay catchment area, being transported
by waterways to Moreton Bay. Where no data or sitmos were available, the opinions of the
expert members of the group that constructed thevBi¢ used to define the conditional
relationships. These members have extensive experia their respective fields, from both
practical and theoretical perspectives, and thumdd an important source of knowledge for this
project.

Although it is impractical to detail the inputs falt nodes here, three nodes will be used
as exemplars. These three nodes weamfall, Land Run-off andTurbidity. Priors for these

nodes can be found in Figure 2. Note that the cetapletails of the model, including
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guantification of categories, sources of informatior CPTs and inputs for nodes, will be
included in a technical report as part of a sesfagports to be prepared for the Moreton Bay
Healthy Waterways Partnership. These will be abélan request by contacting the Partnership

once completed.

RESULTS

With no evidence entered, the probability.ghgbya bloom initiation was 13%. One
particular aspect of interest in this BN analysithie sensitivity of thBloom Initiation node to
other variables (sensitivity to findings analyssdetermine which factors most strongly
influenceLyngbya bloom initiation. In Netica®, this is determined talculating an Entropy
Reduction Value (ERV) (Pearl 1991), a means of shgwow much one node affects another,
with larger ERV values showing greater impact. Sheodes which strongly influence Bloom
Initiation, together with ERVS, are reported in TeaB.

One way in which a BN can be used is to ‘enter @vig’ and generate scenarios that
show the effect of interactions between the difieredes. Obviously a model with a substantial
number of nodes such as the current model makeshtbitively time consuming and unlikely
to be useful to exhaustively compare all possibénarios. Therefore, the BN was used to test
the influence of a number of scenarios that englistudies (Watkinsoat al. 2005), dynamic
systems models (Arquitt and Johnston 2003), anapir@on of the expert group highlighted as
potentially important in promoting or preventiBgpom initiation. It is generally believed that
algal blooms occur during times of high light inéég and high water temperature. Furthermore,
it has been noted that blooms will often followesipd of high rainfall, with clear conditions
afterwards. Water clarity is another element belieto be important in bloom initiation. In this
particular region, it has been argued for some timéthe availability of dissolved iron from
freshwater inputs contribute kgyngbya blooms in Deception Bay (Dennisenal. 1999; Albert
et al. 200; Ahernet al. 2006).

Scenario 1 - Temperature and Light climatéth the current model, initiation would not

occur if Temperature was set to low (water temperature beloWw @, regardless of the values at
any other nodes. If sufficient nutrients were aafali @Available Nutrient Pool set to ‘enough’),
high temperatures and suboptimal light increasebatility of bloom initiation to 25%. When

Light Climate is optimal, this rises to 100%.

12



Scenario 2 - TurbidityThe clarity of water has been highlighted as gé@mportant by a

number of experts. The influenceTfrbidity on Bloominitiation was determined by setting
Light Quality andLight Quantity to high and adequate respectively, and settindémperature
node to high in the presence of adequate nutrigvitenTurbidity is low, the probability of
initiation was 100%. Whemurbidity is subsequently set to high, leaving all otherasoas
described, the probability of initiation dropped3©&s.

Scenario 3 - Dissolve Iron Concentration and Orcmriihe role ofDissolved Iron

Concentration was initially assessed by leaving other nodes uwknand changing this node
from low (probability of initiation 8%) to high (pbability of initiation 18 %). Whehight
Climate andTemperature were both set to maximum values, setthigsolved Iron to low
resulted in a probability of initiation of 25%. Gaersely, the probability of initiation was 48%
when this node was set to high. Appreciable diffees to these probabilities were made when
evidence was entered for t@eganics node. WherOrganics were set to low (with high
Dissolved iron, and highLight and highTemperature), the probability of initiation was 43%;
when set to high, this rose to 51%. Indeed, inéngathe level ofOrganics from low to high in
the absence of any other evidence increased tibalpitity of highDissolved Iron from 31% to
59%

Scenario 4 - RairRain was believed by a number of experts to be a ntajeer of

bloom initiation, in that substantial rain incredgbe rate of nutrient inflow to the Bay from
various sources. When all other nodes were unkntomnRainfall gave rise to a probability of
Bloominitiation of 11%, while highRainfall only increased this to 16%. However, under
conditions of highLight and highTemperature that are generally believed to promote bloom
initiation in Deception Bay, the probability of tr@tion rose from 31% under low rainfall to 50%
under high rainfall.

Scenario 5 - Contribution of Land Run Off andriP@ourcesThese are considered to be

the major sources of nutrients added to Decepten Bheir contribution was initially tested, as
in other scenarios, by settifigmperature andLight Climate to maximum values. With both
Land Run Off andPoint Sources set to low, the probability dloominitiation was 26%. When
both were set to high, this rose substantially3®4A further analysis was run, considering low
levels of oxygen in the benthic environmesadiment Nutrient Climate set to reducing) and low

current Bottom Current Climate set to low). Under these conditions, laand Run Off and low
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Point Sources give rise to a probability dloom initiation of 44%, while setting these nodes to
high increased the probability to 69%. The relatiwatribution of these nodes Bboom

initiation is also interesting to examine. Under these cammdif settind-and Run Off to high and
Point Sourcesto low gives a probability if initiation of 54%.eRersing this brings about a

marginal change to 50%.

DISCUSSION

Using the scientific BN model to test scenarios &lamsved different combinations of risk
factors to be analysed using the most recent kranyelérom the various scientific disciplines.
Unsurprisingly given the biology of marine cyanof@s/such akyngbya, these scenarios
confirm the importance of warm water, a high lightzironment and sufficient nutrients in order
for blooms to occur (Watkinsast al. 2005). More interesting in this analysis has bben
effects and interactions among other nodeBloom initiation. Turbid water by definition
decreases the penetrability of the water colunligha, reducing the photosynthetic energy
production of the organism that is necessary fomgn. Thus turbid water severely reduces the
probability of bloom initiation even when other clitons are ideal. Increasing the concentration
of Dissolved Iron in the marine environment also has appreciabkxtff Under high light and
temperature conditions, increasiDgssolved Iron from low to high almost doubled the
probability of bloom initiationOrganics also make a noticeable difference to initiation
probabilities, probably playing a role in extendihg bioavailability of dissolved iron. This is
interesting in light of a previousyngbya bloom model (Arquitt and Jonstone 2003), that
suggested the importance of complexed iron inrtfimtion of Lyngbya blooms. During clear
and hot weather, rain also appears to be an imgqutacursor to bloom initiation, increasing the
probability of bloom formation by about 20%. Frormadelling perspective this is particularly
interesting given the number of linkages that ssjgatheRain andBloom Initiation nodes.

Nodes that are closest to a node of interest (withie or two linkages) will typically
have the greatest effect on that node, since feetefof more distant nodes are “filtered”
through intermediate probability relationships timitoduce more conditional uncertainty (Cain
2001). The minimum path betweBtoom Initiation andRain contains 4 intermediate nodes,
suggesting that rain has major effects on nutiigmit into Deception Bay. It should be noted at

this point in the model’s evolution that alternatikey process pathways for the influence of
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rainfall and catchment inputs may exist, however.dxample, here it has been assumed that
immediate short-term rainfall plays a key role niathrough the supply of some waterborne
nutrients, given that the catchment inputs actuach the site of algal bloom formation.
Conversely, rainfall may have a longer term infleeby delivering a sediment and nutrient load
that is deposited in the bay and only becomesabailwhen conditions such as high
temperature, light and low currents support disslrutrient evolution.

Land runoff and point sources are commonly heldedhe major sources of nutrients
entering most marine environments, including Deiloe@Bay. Increasing these sources from low
to high approximately doubled the probability oddn initiation. Under otherwise ideal
conditions for bloom initiation, increasing bothtbese nodes from low to high resulted in an
almost 70% probability of bloom initiation. Intetegly, and contrary to the expectations of
some experts, Land Run Off and Point sources dnn&iapproximately equally to the effect
under the current model. While this may be a realslenconclusiona priori it would be
expected that land run off from the catchmentsosumding Deception Bay would provide a
larger source of nutrients than point sources ftioisimoderately populated region. This
suggests either that the particular nutrient mat tomes from Point sources has a relatively
greater effect than those from Land run off, ot tha available data and opinion used to
populate one of both of these nodes is somewhartanc. In fact, it is a methodological
challenge to accurately model the nutrient load Déception

With this study, we have aimed to highlight thditytiof BNs in incorporating diverse
sources of information to analyse the risk of ooeice of a problem cyanophyte that has
considerable adverse ecological, economic, and humealth effects. There have been a number
of benefits from this approach. First, it is a gitative methodology, allowing a diverse range of
factors to be integrated and their effectdgngbya bloom initiation to be refined. As a
probabilistic method, uncertainty is inherently ltd@ath. As an iterative method, typical of
Bayesian approaches, incorporating new informasaasy and increases the power of the
method to provide useful answers to a complex gpcdb question. This is an important point in
the current research programme. The BN model Hasdhéo define research priorities, and as
new research comes to hand the model will be addaptmcorporate the new knowledge.

No less important than the quantitative aspectseler, has been the usefulness of the

BN as a means of communicating between experts &ronmber of different fields. A typical
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problem with such groups is that a lack of commodesstanding and consensus surrounding
concepts which are important to the problem — thféesn tend to speak different ‘languages’.
Creating and refining this scientific BN has all@w@nceptual misunderstandings between
group members to be identified and resolved, algvior increased communication and
fostering the ability to examine the problem froiffedent perspectives.

While this BN has been formulated for Deception Baygbya majuscula outbreaks
have been recorded in a number of locations throutgueensland (Great Keppel Island,
Shoalwater Bay, Hardy Reef and Hinchinbrook Islddennisonet al. 1999, Albertet al. 2005,
Arthur et al. 2005), and in other tropical and sub-tropical maenvironments worldwide. It
would be easy to adapt the structure of the cumerdel for application to the problem domains,
although the underlying relationships between Wédemmay varyi(e., the CPTs may change)
necessitating the inclusion of appropriate regiat@h. Nonetheless, as shown in this study, BNs
present as a flexible and robust method to askesssk factors and probability of outbreak of
Lyngbya majuscula. This in turn will assist in identifying approptgamanagement actions to

minimise the risk of such algal blooms.
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Table 1. List of nodes for the Lyngbya bloom initiation B&hd the information used to
populate CPTs (conditional probability tables)oimhation types are A. Data B.Expert Opinion
and C. Simulation results (information sourcesareptheses; BOM, Bureau of Meterology;
RWQM, Receiving Water Quality Model).

Node

Definition

Information
Type (source)

Rain

Daiy volume of rain falling in the
catchment area

A (BOM)

Number of Dry Days

Number of days (cumulative) whe
rainfall is <5mm anywhere within
the catchment

eA (BOM)

Ground Water

The nutrients supplied by
underground water sources

A()

Air

Nutrient load from aeolian sources
that are, after a dry period, brough
down from the atmosphere by the
rain and deposited

B

Point Sources

Discharge of nutrients from source
which can be pinpointec.§.,
Waste Water Treatment Plants,
urban stormwater drains)

8B

Land Run Off

The overland flow of water bearing C (RWQM)

nutrients both into waterways and
directly into Deception Bay

Dissolved Organics the carbon incorporated in organig B
matter from natural sources
Dissolved Iron Bioavailable iron in the water B
column
Dissolved Phosphorus Bioavailable phosphorous inthe | B
water column
Dissolved Nitrogen the total amount of dissolved B
nitrogen in the water column
Turbidity a measurement of the amount of | C (RWQM)
light scattered by particle matter in
the water column
Bottom Current Climate | The velocity of the movement of | C (RWQM)
the water column immediately
above the bentho
Particulate Matter Nutrients (nitrogen and B
phosphorus) attached to particulate
matter and remaining in suspension
in the water column
Sediment Nutrient the relative state of the sediments| B

Climate

associated with the supply of

nutrients and trace elements to th
adjacent alga (measured as redox
state)

U

Wind Speed

The rate at which the wind travels
over the surface of the water

C (RWQM)

Wind Direction

The measured course of the wind
relative to the compass

C (RWQM)

Tide

The periodic variation in the surfa

e A(RWQM)




level of the oceans caused by ’L
gravitational attraction of the moo
and sun

Light Quantity The total available light B
(photosynthetically active radiation)
as measured at sediment surface

Light Quality The spectral composition of the | B
light
Light Climate The amount and quality of natural| A (Watkinsonet. al 2005)

sunlight that penetrates to the
benthic surface

Temperature The temperature of the water A (BOM; Watkinsonet.
column (average daily temperature)l 2005)
Available Nutrient Pool | the sum total of all nutrients B

necessary for, and available to, the
growth ofLyngbya

Bloom Initiation The early phase of algal bloom B
growth

*Note that some CPTs have been in part informedripublished studies. However, the details
of data sources for all CPTs will be available,enompleted, from the Healthy Waterways

Partnership.
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Table 2. Sensitivity to findings analysis. The top 5 ratikeriables that influence ttigdoom
Initiation node. Entropy reduction values (ERV) provide amseaf evaluating the

sensitivity of each node.

Node ERV

Available Nutrient Pool 0.22

Temperature 0.14

Sediment Nutrient Climate0.05

Bottom Current Climate 0.034

Light 0.033
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Figure 1. Complete Bayesian net for bloom initiationLghgbya majuscula.
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Ground Water Amount

Low
High

Dissolved Organics

Rain

Number of previous dry days

Low 62.0 —
Medium  26.0 pu
High 12.0m

142 + 190

S

Land Run-off Load

Low
High

low
High

Point Sources

26.3
30.1
43.7 pu——

~

Dissolved Fe Concentration

Borderline  34.0 i

Dissolved P Concentration Dissolved Nitrogen Concentration
Low  46.3 mmmm Low 54.2 Low i Low 48.2
High 53.7 High 45.8 High High 51.8
Bottom Current Climate
Turbidity LQW -—
Low 415 mm High e
High 58.5
Tide
Wind Speed Spring  50.0 ==
Low 50.7 Neap  50.0 e
High  49.3 e
Light Quality Wind direction
33.0

33.0 jumm

SwW 36.0 fu—m

Particulates (Nut)

Low  48.0 e
High  52.0 e

Sediment Nutrient Climate

NonReducing  58.7

41.3 p——

Temperature

Available nutrient pool (dissolved
SE 29.0 49.5 mmm— Enough 34.5 mumm
Other  35.0 jmmm 50.5 —— Not enough 65.5 [———

Light Quantity

Light Climate

Suboptimal  40.0
Optimal 60.0

Adequate 50.0
Inadequate  50.0 =

T  Bloom Initiation

Yes 12.8m

No 87.2 n—
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Figure 2. Node priors for a) Turbidity b) Particulates andissolved Organics. Each column
shows the probability of a node being in a high loeE state ( en the states of the parent(s).

Parent states are labelled L (Low) or H (High) ke&ach column (BCC- Bottom Current

Climate).
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