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Abstract 

 
This work focused on two main outcomes. The first was the assessment of the response of the 

Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) for two different fungal spore species. 

The UVAPS response was investigated as a function of fungal age and the frequency of air current that 

their colonies exposure to. This outcome was achieved through the measurement of fungal spore 

fluorescent percentage and fluorescent intensity throughout a period of culturing time (three weeks), 

and the study of their fluorescent percentage as a function of exposure to air currents. The second 

objective was to investigate the change of fungal spore size during this period, which may be of use as 

a co-factor in this differentiation.  Fungal spores were released by blowing the surface of the culture 

colonies with continuous filtered flow air. The UVAPS was used to detect and measure auto-

fluorescing biomolecules such as riboflavin and nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) present in the released fungal spores.  

The study demonstrated an increase in aerodynamic diameter for fungal spores under investigation 

(Aspergillus niger and Penicillium species) over a period of time. The fluorescent percentage of spores 

was found to decrease for both fungal genera as they aged.  It was also found that the fluorescent 

percentage for tested fungi decreased with frequency of air exposure. The results showed that, while 

the UVAPS could discriminate between Aspergillus and Penicillium species under well-controlled 

laboratory conditions, it is unlikely to be able to do so in the field.  
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1. Introduction 

 

The presence of biological aerosols such as bacteria and fungi in the air is 

associated with risk to human health (Maus et al., 2001; Murray et al., 1990; Vijay et 

al., 1999b). In particular, fungi are responsible for many allergic diseases such as 

asthma, allergic bronchopulmonary mycoses and hypersensitivity pneumonitis, to 

name just a few (Vijay et al., 1999). To assess and minimise risks to human health, it 

is important to develop a better understanding of the dynamics of these aerosols in the 

air, which can only be achieved with the application of fast and accurate real time 

detection methods. 

Traditional methods used for detection of airborne biological aerosols are based on 

sample collection and subsequent laboratory analysis. As such, they only allow for 

snapshots of biological particle characteristics and are unable to yield high resolution 

time series of the characteristics. This is a major limitation, preventing progress on the 

understanding the dynamics of these particles. As such, further work aimed at 

extending the capabilities of real time detection techniques, is very important for 

developing a better understanding of the science of biological aerosols and without 

developing these techniques, it would be difficult to achieve any real progress. 

During the last decade, different trials with instruments for measurement of 

fluorescence spectra as a method for real time detection of single viable airborne 

bioaerosols have been reported. These can be divided into three groups. The first 

group includes trials and studies to design and test an instrument capable of 

differentiating between biological and non biological aerosols such as a Fluorescence 

Spectrum Analyser and an Ultraviolet Aerodynamic Particle Sizer (UVAPS) 

(Brosseau et al., 2000; Chen et al., 1996; Hariston et al., 1997; Hill et al., 1995; Ho et 

al., 1999; Kaye et al., 2000; Nachman et al., 1996; Pan et al., 2003; Pinnick et al., 

1998; Pinnick et al., 1995). The second group of studies aimed at designing and 

testing an instrument with the capability to characterise particle composition in order 

to discriminate between the bioaerosols themselves (Cheng et al., 1999; Pan et al., 

1999; Seaver et al., 1999; Sivaprakasam et al., 2004; Weichert et al., 2002). Some of 

these studies used multiple UV excitation wavelength to create more than one 

fluorescence spectra for each species under investigation (Cheng et al., 1999; 

Sivaprakasam et al., 2004). The third group coupled the UVAPS with other 

technologies, such as wet chemistry technology, so that if unusual aerosols were 
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detected by UVAPS, samples were collected for further analysis to identify the 

microorganisms using the wet chemistry technique (Ho, 2002). The key findings for 

the first group are most encouraging, however groups two and three still require 

further investigation. 

The UVAPS operation is based on the excitation and emission of auto-fluorescent 

biomolecules, which exist in most bioaerosols. The main biomolecules present in 

fungal spores are reduced fluorescent coenzymes: nicotinamide-adenine dinucleotide 

(NADH), nicotinamide-adenine dinucleotide phosphate (NADPH), and riboflavin 

(Billinton and Knight, 2001; Brosseau et al., 2000; Li et al., 1991). However, the 

basis of the instrument’s operation, the fluorescence of the excited biomolecules, has 

been found to be strongly affected by environmental and biomolecule-related factors. 

For example, Agranovski et al. (2003b) have shown that bacterial stress has an impact 

on these fluorescence properties. Huber et al. (2000) found that the fluorescence 

spectra for free NADH and those bounded to protein were different. Schmit and 

Brody (1976) found that Neurospora crassa spores had low level of reduced cofactors, 

NADH and NADPH,  compared with a high level for its mycelia. It was also shown 

that many non biological aerosols such as peptone water, broth or other materials, had 

strong fluorescent signals (Agranovski et al. 2003a). Thus there is a need for a better 

understanding of these environmental factors and their effect on the instruments 

response to different bioaerosols. 

It can be seen from the above summary that the UVAPS has been the main 

research tool for real time detection of viable bioaerosols to date. Whilst a significant 

amount of work has been published regarding the application of the UVAPS to the 

aerosols carrying bacteria (Agranovski et al. 2003a, Agranovski et al. 2003b), only a 

very limited amount of work has been done on the fluorescence spectra of fungal 

spores and application of the UVAPS to detection of fungal spores present in the air. 

Work by Kanaani et al.(2006), addressed the efficiency and the limits of the UVAPS 

in detecting fungal spores, showing the ability of the instrument in detecting and 

measuring fungal spores and that its upper detection-limit (the point beyond which the 

relationship between total and fluorescent particle concentration cease to be linear) of 

fluorescent particles was around 7 × 107 particles/m3.  However, there is still a need 

for further characterisation and validation of the instrument, and more research is 

necessary to develop a full understanding of the capabilities and limitations its 

application, for studies of airborne fungal spores. 

3 



The aim of this work was to characterise and quantify the effects of aging of fungal 

spores and of repeated air exposure, on the ability of the UVAPS to discriminate 

between different species. The fungi included in the study were Aspergillus niger and 

Penicillium species. The novel approach used in the study measured relative 

fluorescence intensities and, to some extent, spore size distribution, utilising the 

UVAPS for these two parameters for the first time, in order to investigate its potential 

to discriminate between fungal spores.  

 

2. Materials and Methods  

 

The work was conducted at the International Laboratory for Air Quality and Health 

(ILAQH) at Queensland University of Technology, inside a Class II, Type A, 

Biological Safety Cabinet (SG-400 SterilGARD, E-mail Westinghouse Pty Ltd., 

Australia). 

Three sets of experiments were conducted using the UVAPS. The first experiment 

was to investigate the effects of fungal spore age on their size and fluorescent 

percentage, while the second experiment studied fungal spore fluorescent percentage 

as a function of the frequency of air exposure. The third experiment identified 

whether the particles released were spores or not. After the fungal species were 

cultured, they were released into a purpose-built box and their fluorescence signals 

and size distributions were measured using the UVAPS. 

 

2.1. Aerosol preparation  

 

Penicillium (ACM 4616) was inoculated onto three Sabouraud Dextrose Agar 

plates (SDA), and incubated at 25oC for a total of twenty-one days. The incubated 

cultures were tested after two, four, seven, fourteen and twenty-one days. The same 

steps were followed in preparing Aspergillus Niger (ATCC 9142).  

Another three plates of each species were incubated for seven days, released in the 

box and sampled by the UVAPS; then refrigerated for a further week, sampled again  

and later refrigerated for another week to be used a third time as discussed in section 

2.2.3.   

To minimize the impact of the variation in culture characteristics during fungal 

growth, which occurs commonly (Raper et al., 1965), the following protocol in 
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culturing was applied. Firstly, a single culture divided into five segments was used 

instead of five separate cultures, and secondly, the replicate cultures were prepared 

using the same conditions as the original culture. 

 

2.2. Apparatus description 

 

The Ultraviolet Aerodynamic Particle Sizer, [UVAPS, model 3312, TSI, St. Paul., 

MN,] is the instrument which was designed to monitor and detect bioaerosols. It 

provides accurate particle count size distributions, as well as a real-time fluorescence 

for particles with aerodynamic diameters of 0.5-15 µm. Fluorescence measurements 

are produced by exciting particles with an UV laser beam at a wavelength of 355 nm 

and then detecting the fluorescence emission from 420 to 575 nm. 

The fluorescence spectra detected by the UVAPS are very sensitive to change in 

the UV laser pulse energy and photomultiplier tube (PMT) gain, i.e. doubling the 

value of each of the two parameters would lead to doubling of the measured 

fluorescence intensity (Agranovski et al., 2003a; TSI-Incorporated, 2000). The 

detected threshold baseline was controlled and checked during the course of this study. 

The UV laser pulse energy was set to 50 ± 1% of the lasers full power and 482V were 

applied to the PMT to produce a measurable gain.  

Using the UVAPS, aerosols with no fluorescent compounds appear in channel 1 

and in a very small fraction at channel 2; while the bioaerosols (with endogenous 

metabolites) appear in the channels from 3 to 64. The particles with higher fluorescent 

intensity will be found at higher channels (TSI-Incorporated, 2000). 

The mixing chamber in this study, used to provide homogenous particle 

distribution before sampling to the UVAPS, was made of aluminium with one side 

made of Perspex used as a door. Its dimensions were (100cm×39cm×39cm). 

 

2.3. Experimental Methodology 

 

The instrument calibration and background measurements were monitored before 

and after each experiment conducted in this study. The average background was 

subtracted from each single reading before data interpretation. However, in most cases 

it was found to be negligible compared to the tested sample. In all these experiments 
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the UVAPS sample time was 20 seconds. Each data point presented in this paper is a 

mean value of at least three replicate measurements.  

The experiments were conducted at temperatures inside the box ranging from 22 to 

26oC and relative humidity of 50 to 54%. This is a moderate humidity range, in which 

the spores remain as singlets and do not aggregate (Reponen et al., 1996). In contrast 

to the humidity, temperature plays an insignificant role in the hygroscopic growth of 

the particles (Li and Hopke 1993), therefore room temperature was used for 

convenience and to represent typical indoor environment 

 

2.3.1. UVAPS calibration. 

 

The UVAPS was calibrated using 0.993 µm particle diameter monodisperse 

Polystyrene Latex (PSL) Particles (Duke Scientific Corporation, Palo Alto, CA) and 

0.91 µm particle diameter Blue Fluorescent (BF) microspheres (Duke Scientific 

Corporation, Palo Alto, CA). Both were used at a density of 1.05 g/cm3 and their 

aerodynamic diameters (diameter of unit-density sphere) were 1.02 and 0.93 µm, 

respectively (Willeke and Baron, 1993). Suspension of each was made by diluting one 

drop from stock in sterilized distilled water to a concentration of the order of 107 

particle/m3.  

PSL aerosols were generated using a 6-jet Collison nebulizer (BGI Inc., Waltham, 

MA). The nebulizer was operated at a flow rate of 7 L/min and the supply compressed 

air was filtered with a HEPA filter. Droplets carrying aerosols were dried before 

entering the mixing chamber by a silica gel dryer, and in addition, when entering the 

chamber, by compressed-HEPA-filtered-air. A schematic representation of the 

experimental set-up is presented in Figure 1.  

Monodispersed polymer standard particle suspensions, from DYNO PARTICLES 

AS, of 0.1% solids (SS-2-PXG 0.1%), (SS-5-PXG 0.1%) and (SS-7-PXG 0.1%) and 

of the density of 1.05 g/cm3, corresponding to particle aerodynamic diameters of 2.05, 

5.12 and 7.17 µm respectively, were also used for calibration of the UVAPS. 

Procedure as recommended by the UVAPS manufacturer (TSI) was followed in the 

instrument calibration, and it was conducted before and after each experiment.  

The mean aerodynamic diameters of standards obtained were within the diameter 

accuracy provided by the supplier (± 3%). The size range of standard particles that 

were used for calibration covers the size of fungal spores under investigation. 
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2.3.2. The fungal spore size and fluorescent percentage as a function of fungal 

age 

 

The experiments were conducted using the set-up presented in Figure 2. The dry 

generation method, which was described in detail by Kanaani et al (2006), was used 

for fungal spore release. In this method, the compressed air was filtered by a HEPA 

filter and introduced into the mixing chamber at a flow rate of 10 L/min in all the 

cases, except for the two-day-old cultures for which a flow rate of 20 L/min was used. 

Spore release was induced by directing a narrow jet of air at the surface containing 

Aspergillus or Penicillium mycelia at an angle of 60o from a distance of 1.5 cm. This 

short distance above the spores was used so it would not affect the adjacent sections. 

The culture dish was divided into approximately five equal sections by marking the 

dish bottom using a narrow paper tape and pen. Each marked section was used for 

experiments applying a specific culture time, i.e. two, four, seven, fourteen or twenty-

one days. The exhaust airflow of the UVAPS was HEPA- filtered and the airflow was 

returned to the biological cabinet to prevent any contamination (Figure 2).  

Sampling by the UVAPS was conducted from the same sampling point within the 

chamber during all the experiments to measure spore concentration, fluorescent 

particle counts and total particle counts.  

 

2.3.3. Fungal spore fluorescent percentage as a function of the frequency of 

exposure  

 

The same method of spore release was used as described above. The culture dish 

was divided into three, approximately equal, spore covered sections. After the first 

seven days of culturing time, measurements were conducted for one section only. The 

airflow was directed towards each individual section via specific exposure points and 

the air speed decreased as the distance from the exposure point increased. As such, it 

was at a minimum when it reached the adjacent section, so the effect on the adjacent 

section was negligible. This section was exposed to the air current at a flow rate of 10 

L/min for 20 minutes, during which the sampling from the chamber was conducted. 

The culture was then refrigerated for seven days and the measurements were repeated 

for the previously exposed section, as well as conducted for the second section. After 
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the culture had been left in the refrigerator for another seven days, measurements of 

fungal spores from all the three sections were conducted. Hence the last (third) section 

was exposed to compressed air once, the second section was exposed twice and the 

first section underwent three exposures. The experiment was repeated three times with 

three cultures exposed to same conditions. 

 

2.3.4. Fungal particle identification 

 

In parallel to culture testing, the released fungal particles were identified, using an 

optical microscope, to determine whether they were in fact spores or not. Pieces of 

transparent adhesive tape and uncoated microscope slides were placed inside the box, 

so released particles attach to or fall on them. This was followed by microscopy 

testing to identify the releasing particles, as described in detail by Kanaani et al. 

(2006). A light microscopy (Model CX31RTSF, Olympus Corporation, Tokyo, Japan) 

was used to identify the particles.  

 

3. Results 

 

3.1. Fungal particle identification 

  

Using the optical microscope and based upon particle characteristics such as shape, 

size and appearance, the particles were identified as spores. However, fungal hypha 

was not recognized on these slides. Using the UVAPS, the mean aerodynamic 

diameter for Aspergillus and Penicillium fungal particles at age one and two weeks 

were 2.40± 0.12 and 3.55± 0.14, respectively. The mean aerodynamic diameters 

results that obtained by UVAPS for Aspergillus and Penicillium were in good 

agreement with literature data for the spores under investigation (Ramirez, 1982; 

Raper et al., 1965). The above results support each other and indicate that the sampled 

particles were fungal spores, for detail see Kanaani et al.(2006) and the following 

section in this study. 
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3.2.  Fungal spore size 

 

It can be seen from Figure 3a and Table 1a that the mode aerodynamic diameter of 

Aspergillus spores was 3.05µm for two-, four- and seven-day-old spores. By the 

fourteenth and twenty first-day of culturing time, the mode increased to reach 3.28 

and 3.52 µm, respectively. The percentage of spores in the large size range (beyond 

the mode, i.e. 3.52-6.24 µm) also increased (the spectrum shifted to the right), whilst 

spores in the small size range (lower than 3.28 µm) decreased (Table 1a).  

Figure 3b and Table 1b show that the spores of Penicillium follow the same trend 

as that of the Aspergillus. While the spore mode was 2.29 µm for two-, four- and 

seven-day-old spores, it increased to 2.46 µm and 2.64 µm for the fourteen- and the 

twenty-one-day-old spores, respectively. The percentage of spores in the large size 

range (beyond 2.46 µm) increased with age, while spore size lower than 2.46 µm 

decreased (Table 1b).  

Spore sizes of Aspergillus and Penicillium are cited in literatures as falling in the 

ranges from 2.5 to 5.0 µm  (Raper et al., 1965) and 2 to 4 µm (Ramirez, 1982), 

respectively. The results of this study are in agreement with these figures. 

 

3.3.  Fungal spore fluorescence as a function of culturing time 

 

Total particle number is the number of particles counted by the UVAPS in the 

channels 1-64, while fluorescent particle number is the number of particles counted in 

the channels 2-64. Fluorescent percentage is the number of fluorescent particles as a 

percentage of total particle number. 

Figure 4 shows that total fluorescent percentage decreases with increasing age of 

the spores for both Aspergillus and Penicillium. The total fluorescent percentage of 

Penicillium is higher than that of Aspergillus for each age of the spores.  

The results also show similar trends for spore size and its fluorescent percentage 

for both Aspergillus and Penicillium species (Table 2), i.e. fluorescent percentage of 

spores increase with increasing aerodynamic diameter. As presented in Table 2, the 

fluorescent percentage for Aspergillus spores with diameters of 2.64µm and 4.70µm, 

were 48.1 ± 13.7 and 93.3 ± 5.0, respectively. Alternatively, Penicillium spores 

showed a fluorescent percentage of 58.9 ± 14.0 and 97.8 ± 2.0, for diameters of 
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1.84µm and 3.05µm, respectively. These measurements were conducted using spore 

samples obtained after seven days of culturing. A similar trend was found for the 

other ages. 

 

3.4.   Fluorescent Intensity  

 

The intensity of spore fluorescence was investigated in this work by two different 

methods. Firstly, investigation was conducted in terms of the spore concentration 

percentage (for all diameters in a single channel) versus fluorescent intensity, which is 

proportional to the channel number. Spore concentration percentage is the ratio of the 

sum of spore concentration of all diameters with same fluorescent intensity, and 

therefore the same fluorescent channel (single channel) to the sum of spore 

concentration of all diameters in all 64 channels expressed in percentage. The 

fluorescent intensity distributions are shown in Figure 5. The fluorescence intensity 

distribution of 0.993 µm monodispersed Polystyrene Latex (PSL) Particles was 

markedly different to that of 0.91 µm Blue fluorescent (BF) microspheres. The non 

fluorescent aerosol PSL showed 99.9% ± 0.1 in the first channel and 0.1% in the 

second channel, while 2.9% ± 0.1 of BF was found in the first channel and 96.5% ± 

0.2 in the last channel (the highest intensity channel [64]).  However for Penicillium 

and Aspergillus species, fluorescent intensity distribution was different, as expected, 

to the distribution for PSL and BF particles; but also different between the two species. 

This can be seen from the results presented in Figure 5a for Aspergillus and 

Penicillium species cultured for seven days, where Aspergillus fungal spore 

percentage in the first four channels is higher than that for Penicillium spores. For 

channels above the fourth, the inverse situation was obtained and in many of the 

channels the Penicillium spore percentage was double that of Aspergillus.  

However, when comparing spectra of the two species cultured for different periods 

of times the situation changes. Figure 5b shows that the spectrum of seven-days-old 

Aspergillus is almost identical to the spectrum of fourteen-day-old Penicillium. This 

indicates the change of spectra with age of species and thus the importance of taking 

culture age into account when comparing fungal species.   

The second method of investigating spore fluorescent intensity utilized the spore 

concentration percentage (for specific diameters in a single channel) versus channel 

number.  Spore concentration percentage, in this case, is the ratio of the spore 
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concentration of a specific diameter in one channel to the sum of spores of that 

specific diameter in all 64 channels expressed in percentage. The results of application 

of this method are presented in Figure 6 (including only every second value, to make 

the diagram clear).  

The channel numbers on the UVAPS reflect the degree of fluorescence, with 

increasing numbers reflecting an increase in the fluorescent intensity. It can be seen 

from Figures 6a and b that high concentrations were recorded for small spores in the 

lower intensity channels (1-5), and low concentrations in the higher intensity channels 

(6-64); while the inverse was found for the larger spores. The same trend was found 

between spore size and their fluorescent intensity. Figure 6a illustrates, for example, 

that Aspergillus spores of size 2.84 µm were present only up to channel 29, while the 

3.79 and 4.37 µm spores were present up to 51, and 64 channels, respectively. There 

was, with very limited exception, a proportional relationship between the spore size 

and their concentration in the channels from 6 to 64. On the other hand the results in 

channel 1, the non fluorescent channel, showed an inverse relationship between spore 

concentration and its size, with 2.46 and 2.84 µm spores showing the highest 

concentration (of 50.3% and 44.3% respectively) and 4.37 µm spores, the lowest (at 

5.8%). 

For Penicillium, large spores (2.64 and 3.05 µm) can be found in all sixty-four 

channels, with the spore concentration increasing in the higher channels with 

increasing fungal spore size (Figure 6b). Spores of smaller diameters (1.98 and 2.29 

µm), were found mainly in the lower channels, with very low concentrations (less 

than 0.1%) present in the higher intensity channels. For example spore with 1.98 µm 

diameters were present up to channel 21, while the 2.29 µm diameter spores were 

present up to channels 40. In general, from channel 15 to channel 64, the spore 

percentages were proportional to their sizes, i.e. when the spore size increases, its 

concentration percentage in the higher channels increase. The same trend between 

spore size and concentration as that observed for Aspergillus was found in channel 1, 

with the exception of 3.05 µm diameter spores, which showed a minor deviation from 

this relation.  

It was observed that twenty-one-day-old fungal spores for both species were found 

at lower fluorescent intensity channels than those that were seven-day-old (graphs not 

included). The spore concentration decreased in the higher channels and increased in 

the lower channels (1-5). For example, the concentration of the large Penicillium 
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spores (3.05 µm) in the last channel was 2.3% for seven days old spores, while it 

decreased to about 0.2% for twenty-one-day-old spores. 

 

3.5.   Fungal spore fluorescent percentage as a function of frequency of the 

exposure 

 

The investigation of the effect of the frequency of the exposure to air on the fungal 

spore fluorescent percentage showed that the percentage decreases with the increasing 

number of exposure times (Figure 7).  The section that was measured for the third 

time (exposed three times to air current) showed the lowest fluorescent percentage 

(67.5% ± 5.4). The section exposed twice showed a fluorescent percentage of 75.3 % 

± 3.8, while the section exposed only once (after fourteen days refrigeration) 

demonstrated the highest fluorescent percentage (79.2% ± 3.9). Using the same 

procedure, Penicillium showed a similar relationship (Figure 7).   
 

4. Discussion  

 

In this work fungal spore size and fluorescence of Aspergillus and Penicillium 

species were investigated using the UVAPS. The spore sizes were studied as a 

function of fungal spore age, while the fluorescence was measured as a function of 

age and number of air exposures.   

The concentration levels of the generated spores were not high enough to result in 

rapid coagulation, which would interfere with the interpretation of the results of the 

study.  The ranges of the total spore concentrations, in all these studies except for two 

days culturing time, were from 3.05 to 10.46 and from 3.56 to 14.4 particle/cm3 for 

Aspergillus and Penicillium, respectively. The concentrations for two days culturing 

time were very small (of the order of 0.2 #/cm3 after blank subtraction). A linear 

relationship between total particle concentration and fluorescent particle concentration 

was identified for all of the concentrations obtained in this study, as was shown in 

previous work  (Kanaani et al., 2006). 
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4.1.   Fungal spore size as a function of age 

 

The change of spore size distribution for fungal species as a function of time is a 

parameter that may help in the discrimination between the species. In this study, the 

mode of the spore size distribution (Table 1) was investigated as a function of time 

under well controlled conditions as a factor aiding in discrimination between 

Aspergillus and Penicillium. However, analysis of the entire spore size distribution 

proved to be more helpful in discriminating between the two species (Figure 3c).  

While the location of the modes of Aspergillus and Penicillium spores of the same 

age, i.e. twenty-one-day-old (3.52 and 2.64 µm respectively), were quite different, the 

modes of different ages, i.e. 4-day-old Aspergillus and twenty-one-day old 

Penicillium spores, were less different (3.05 and 2.64 µm). Thus, as the difference 

between their ages increased the ability to discriminate between them decreased 

(Figure 3c).  

 

4.2. The effect of age on fungal spore fluorescent percentage  

 

 Figure 4 shows that the fluorescent percentage decreases for both fungal spores 

during the culturing time, and that at all stages the fluorescent percentage of 

Penicillium is more than that of Aspergillus. This may be interpreted as follows. 

It has been reported that the viability of fungal spores decline from the moment 

that they are released  (Flannigan and Miller, 1994). Aspergillus and Penicillium 

spores have been found to survive in dry air for decades (Flannigan and Miller, 1994), 

however in humid environment, fungal spores’ viability declines with time. For 

example, Penicillium chrysogenum spores subjected to moving air at 75% RH showed 

a reduction in culturability (Muilenberg and Burge, 1994), and dehydrated N. crassa  

conidia have remained viable for several years but they lost viability after nine days 

when stored under conditions of 100% relative humidity (Griffin, 1994). In this work 

the relative humidity during incubation, which was 60% ± 9, could have been the 

parameter resulting in the decrease of fungal spore viability with age. The decrease in 

the levels of cofactors such as nicotinamide-adenine dinucleotide (NADH), 

nicotinamide-adenine dinucleotide phosphate (NADPH), and riboflavin with age is 

responsible for the decrease of fluorescence signals. 
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The different fluorescent percentage between Aspergillus and Penicillium fungal 

spores pointed out the possibility of using this parameter to differentiate between the 

two species. However, when conducting the experiments under conditions similar to 

those expected for a real home environment, and thus by varying culture age and air 

exposure, the results were not so encouraging. Figure 4 shows that Aspergillus after 

four days had the same fluorescent percentage as Penicillium after fourteen days 

culturing time, and also that fourteen-day-old Aspergillus had the same fluorescent 

percentage as twenty one days old Penicillium. This indicates that it is not possible to 

differentiate between mixed populations of species of mixed ages, as would be the 

case in a typical home environment.   

For both Aspergillus and Penicillium, the increase of fluorescent percentage with 

the increase in spore sizes, (Table 2), is likely to be a consequence of the increase of 

total fluorescence amount with spore size. Hence the proportion of spores with 

fluorescence exceeding the threshold detection baseline increased (as a results of 

spore growing), and was detected by UVAPS as fluorescent particles, and 

subsequently located within 2-64 channels. This was the case for size channels with 

average or high number of spore counts; but not for size channels with low spore 

counts (Table 2). This could be explained as resulting from the influence of particle 

coincidence (phantom) (Heitbrink and Baron, 1991; Holm et al., 1997) and the slower 

recovery of the UV laser compared to the recovery of the APS laser of the UVAPS 

(Agranovski et al., 2003a), which leads to lower estimates of the real fluorescent 

percentage. The effect of the last phenomenon was obvious when the fluorescent 

particle number was low i.e. nine particles in the 4.70µm and eight particles in the 

3.52µm channels for Aspergillus and Penicillum, respectively (Table 2).  

 

4.3.  The effect of age on the fungal spore fluorescent  intensity  

 

All fungal spores contain the same sources of autofluorescence such as the 

reducing fluorescent coenzymes nicotinamide-adenine dinucleotide (NADH) and 

nicotinamide-adenine dinucleotide phosphate (NADPH), as well as the metabolic 

function riboflavin (vitamin B2) (Billinton and Knight, 2001; Brosseau et al., 2000; Li 

et al., 1991). However, fluorescent intensity of these biomolecules may vary 

according to the environmental conditions under which the fungal colonies are placed, 

and due to their concentration.  
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Under well-controlled conditions fluorescent intensity constitutes another 

parameter, which helps to differentiate between fungal species under investigation. In 

order to extract more information from spore fluorescence signals, spore fluorescence 

intensity was considered according to two methods (Figures 5 & 6). The spectra, as 

shown in Figure 5, aid in discriminating between the two species of the same age; but 

they are not of much help for spores of mixed ages as would normally be the case in 

home environment.  In particular, for spores of the same age, spore size distributions 

(the second method, see section 3.4.) were different for the two species with two 

major differences, as can be concluded from inspection of Figure 6. Firstly, the spore 

concentrations of Penicillium in higher intensity channels were more than that for 

Aspergillus. Secondly, in contrast to Aspergillus, Penicillium was detected in all of the 

higher intensity channels. The entire size distributions could serve as finger prints (or 

signatures) for each of the species (Figure 6a &b). However, it was found that each 

genus changed its fingerprint dramatically with age, which makes it difficult to 

discriminate between mixed ages on the basis of their fluorescent intensity. In spite of 

both spore species containing the same biomolecules (NAD(P)H)and riboflavin, they 

were found to be distributed in different channels, which implies that the amount of 

these biomolecules and their location within the spore are different for the same  and 

different species (i.e. same species but different age and different species of the same 

or different ages). Under-well controlled laboratory condition the spore size 

distribution, together with spore fluorescent percentage and intensity proved to be 

useful parameter in differentiating between the species under investigation. However 

in ambient air, where large populations of fungal species of different ages are present 

(Dix and Webster, 1995; Vijay et al., 1999a) as well as other biological and non 

biological airborne particles, the task of differentiating between fungal spores, using 

the UVAPS, appears to be very difficult, or even impossible.  

 

4.4. The effect of air current on spore fluorescent percentage 

 

The results presented in Figure 7 demonstrate the effect of air current on fungal 

spore fluorescence signals. The decrease in fluorescent percentage with the increase in 

the number of exposures to air, for both of fungal spore types, was in agreement with 

a previously reported study that investigated the effect of  sampling time on fungal 

culturability (Wang et al., 2001). Wang et al.(2001) showed that the relative 
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culturability of P. melinii and A. versicolor, using two personal filter samplers, was 

much higher when sampled for 10 minutes than when sampled for 10 hours for both 

samplers. Stanevich and Petersen (1990), also found that the viability of five-minute 

samples taken with an Andersen N6 sampler was six times lower than that of one-

minute samples.  The decrease in both culturability and fluorescent percentage is 

likely to be due to the impact of exposure to air current and desiccation stress.  

Fungal spores grow in different places in the indoor environment, and 

consequently are subject to air exposure for different periods of time and under 

different air speeds. According to the findings from this study, the variation in the 

number of exposure times to the air, air speed and the duration of exposure periods 

will complicate the process of differentiating between different fungal genera.   

There are many other variables affecting fungal differentiation using the UVAPS 

such as UV exposure, surfaces on which they are growing (for example timber, tile or 

gypsum) and relative humidity, which will be the topics of future studies.   

 

5. Conclusions  

 

This study showed that the fungal spore size of the genera under investigation 

(Aspergillus and Penicillium) increased with culturing time. Spore size distribution 

helped as additional parameter in differentiating between the genera of the same age; 

but not for genera of different ages. The fluorescent spore percentage decreased with 

increasing fungal spore age and also with the number of times the fungal spores were 

exposed to air currents. Based on fungal spore size distributions, together with 

fluorescent percentages and intensities, the study demonstrated the ability of UVAPS 

to discriminate between two fungal spore species under controlled laboratory 

conditions. In the field, however, it would not be possible to use the UVAPS to 

differentiate between different fungal spores due to the presence of different micro-

organisms of varying ages and subjected to different environmental conditions. In 

addition, the environment may contain non biological aerosols which, when 

illuminated with the same wavelength as the spores, will fluoresce, making the task of 

differentiation more difficult. 
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The captions of all tables and figures are: 

 

1. Figure 1.  Experimental set-up for the UVAPS calibration. 

2. Figure 2.  Experimental set-up (direct method generation). 

3. Table 1. Average percentage of different sizes of fungal spores at different 

ages; (a) Penicillium; (b) Aspergillus 

4. Figure 3. Average spore size distribution spectra as a function of culturing 

time: (a) Aspergillus; (b) Penicillium; (c) Comparison of Aspergillus and 

Penicillium. 

5. Figure 4.  Fluorescent percentage as a function of culturing time of Aspergillus 

and Penicillium.  

6.  Table 2. Fluorescent percentage of fungal spores (Aspergillus and 

Penicillium) after seven days culturing time. 

7. Figure 5. Spore concentration percentage (for all diameters in a single 

channel) as distributed between UVAPS channels (channel numbers reflect 

degree of fluorescence): (a) Aspergillus and Penicillium species after seven 

days culturing time; (b) Aspergillus after seven days and Penicillium after 

fourteen days culturing time. 

8.  Figure 6.  Average spore concentration percentage (for specific diameter in a 

single channel) of seven day old spores as distributed between UVAPS 

channels (channel numbers reflect degree of fluorescence): (a) Aspergillus (b) 

Penicillium.  

9.  Figure 7. Fungal spore fluorescent percentage as a function to number of 

times exposed to air flow rate of 10 L/min.  
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