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Abstract 

Particle number size distribution data in the range from 0.015 to 0.630 μm were 

collected over a five-year period in the central business district (CBD) of Brisbane, 

Australia. Particle size distribution was summarised by total number concentration 

and number median diameter (NMD) as well as the number concentration of the 

0.015-0.030 (N15-30), 0.030-0.050 (N30-50), 0.050-0.100 (N50-100), 0.100-0.300 (N100-300) 

and 0.300-0.630 (N300-630) μm size classes. Morning (6:00-10:00) and afternoon 

(16:00-19:00) measurements, the former representing fresh traffic emissions (based 

on the local meteorological conditions) and the latter well-mixed emissions from the 

CBD, during weekdays were extracted and the respective monthly mean values were 

estimated for time series analysis. For all size fractions, average morning 

concentrations were about 1.5 higher than in the afternoon whereas NMD did not vary 

between the morning and afternoon. The trend and seasonal components were 

extracted through weighted linear regression models, using the monthly variance as 

weights. Only the morning measurements exhibited significant trends. During this 

time of the day, total particle number increased by 105.7% and the increase was 
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greater for larger particles, resulting in a shift in NMD by 7.9%. Although no seasonal 

component was detected the evidence against it remained weak due to the limitations 

of the database. 

Keywords: Submicrometre particles, ultrafine particles, number size distribution, time 

series, regression models. 

1. Introduction 

Until recently, ambient airborne particulate matter monitoring has focused on its mass 

concentration, usually as PM10 (mass concentration of particles < 10.0 μm) and PM2.5 

(≤ 2.5 μm). Over the last ten years or so, with growing concerns about the potential 

health effects of smaller size fractions, an increasing number of studies began to 

measure submicrometre (< 1.0 μm) and ultrafine particles (< 0.1 μm). Although their 

contribution to the total particle mass is very low, in urban air they dominate the 

particle number (eg. Jaenicke, 1993) with over 80% of the total count lying in the 

ultrafine range (Morawska et al., 1998a; 1998b). Number concentrations above 104 

cm-3 are common in the literature, and some studies have reported concentrations 

above 105 cm-3(Hussein et al., 2004; Shi et al., 1999). However, since at present there 

are no air quality standards for particle number concentration, routine monitoring of 

particle number has not been conducted and therefore long-term trends of this 

important particle characteristics are unknown. Yet, this information is required in 

order to investigate any epidemiological associations.  

Some insight into particle number concentration trends was provided by the studies 

conducted at different locations in former East Germany, including the city of Erfurt 

and the counties of Bitterfeld, Hettstedt and Zerbst, during two different campaigns, 

the first one in the early and the second one in the late 1990’s, which found that 
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ultrafine particle number increased between 38.1% (Pitz et al., 2001) and 115% (Ebelt 

et al., 2001). Unfortunately, most measurement campaigns have been of very short 

duration, lasting only a few months (Buzorius et al., 1999; Wahlin et al., 2001, and 

others). Only a handful of investigations have continuously monitored submicrometre 

particles for periods of at least one year: these include a report of different campaigns 

lasting between one and three years in five European  cities (Paatero et al., 2005), and 

reports of 13-months monitoring in the urban area of Atlanta (Woo et al., 2001), 12 

months at supersites in Pittsburg, Philadelphia (Cabada et al., 2004) and Fresno, 

California (Watson et al., 2005), four years in Leipzig, Germany (Wehner and 

Wiedensohler, 2003) and two years in the subtropical atmosphere of Brisbane, 

Australia (Morawska et al., 1998b). Findings from these studies include strong 

particle number associations with nitrogen oxides (Morawska et al., 1998b; Paatero et 

al., 2005), correlations with global radiation levels and wind conditions (Wehner and 

Wiedensohler, 2003); seasonal differences in chemical composition and higher 

number concentration in winter (Cabada et al., 2004), and low particle concentrations 

associations with low levels of sulphur precursors and relative humidity (Watson et 

al., 2005), but no evidence on the long-term trends. The only exception is a Helsinki 

study by Hussein et al. (2004), who measured particle number between May 1997 and 

February 2003, and found that annual geometric mean particle number concentration 

increased by 3.2% in 1999, followed by a decreased of 6.7% in 2000  and 17.6% in 

2002; although the monitoring site was moved after the first three years 3km from its 

original location, thereby influencing the results, their main conclusion was that the 

annual variation in total particle number was associated with traffic density and the 

predominance of new vehicles in the Helsinki area. 
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To address this limitation in knowledge this paper presents the results of time series 

analysis of size-fractionated particles number concentrations in the ranges 0.015-

0.030, 0.030-0.050, 0.50-0.100, 0.100-0.300 and 0.300-0.630 μm, as well as the total 

in the range from 0.015-0.630 μm, collected over a five-year period in the subtropical 

city of Brisbane, Australia. The objective was to identify the short and long-term 

components and test the hypothesis that submicrometre particle number has increased 

over time. This hypothesis was formulated based on the evidence of the increase in 

vehicle traffic, associated with population growth and increased vehicle usage, in the 

South East Queensland, where Brisbane is located (Neale and Wainwright, 2001b). 

2. Methods 

2.1. The city of Brisbane 

Brisbane, the capital city of the state of Queensland, Australia, is situated at 27o 28’ 

latitude and 153o 02’ longitude. The greater Brisbane region lies in the coastal plains 

east of the Great Dividing Range, although the urban area is dotted by large hills 

reaching up to 300 metres.  Generally, the city is a low-lying floodplain, presenting a 

potential for blocking and channeling of local winds, particularly in the upper valley 

areas.  

Brisbane has a subtropical climate, typical of the eastern coastal locations of the high 

pressure belt of the southern hemisphere (Simpson, 1989). In general, during the 

warm season (November-April), unstable sea breeze flows from the Pacific Ocean; 

the weather is dominated by strong winds with average speeds of 11-21 km h-1 and 

frequent strong rain.  During the cool half of the year (May-October), the large scale 

of air drift is from the southwest quadrant and this continental air is relatively dry (0-
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50% relative humidity) and stable, low winds speeds prevail and pollutant persistence 

times are increased in the absence of precipitation. 

Its population enjoys a high level of vehicle ownership with private and commercial 

vehicles being the dominant mode of transport. Over the past two decades, the city 

has experienced the fastest population explosion in the country and therefore a 

substantial increase in vehicle traffic.  

2.2. Description of the monitoring site 

The data used for this analysis was collected at the Air Monitoring and Research 

Station (AMRS) of the Environmental Protection Agency (EPA), situated in the sixth 

floor of a building at the Queensland University of Technology (QUT). The project 

was a joint venture between the university and the EPA. Campus is located at the 

south-western end of the central business district (CBD) and is bounded by a busy 

freeway 100 m southeast to the station, and the City Botanic Gardens in the opposite 

side (Figure1)  

The CBD covers an area of approximately 2.2 km2 and is located in a curve of the 

Brisbane River. A general meteorological trend around the area is the reversal of wind 

direction between the morning (wind originating from the SE quadrant towards the 

city) and the afternoon (wind moving towards the SE), owing to the opposite 

directions of sea and land breezes. This means that in the morning the wind moves 

predominantly from the freeway towards the station and in the afternoon it moves in 

the opposite direction, bringing to the station well-mixed air from the CBD. 

By far, traffic is the principal pollution source around the CBD. There are also a 

limited number of small industries in the nearby suburbs including a brewery, and 

further away, a power station, oil refineries and an oil terminal. Biomass burning is a 

common land management practice in the surrounding forestry and agricultural areas 
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during the low wind speed period of July to September. On these occasions, the city 

may be covered in smoke channeled through the drainage flows.  

2.3. Sampling procedure 

Particle number size distribution (NSD) was measured using a TSI Model 3394 

scanning mobility particle sizer (SMPS) covering the size range 0.015-0.630 μm 

(referred in this study as submicrometre particles). The details of the operation of the 

instrument have been provided in an earlier study (Morawska et al., 1998b). 

Monitoring was conducted between July 1995 and November 2000. Prior to 1998, the 

SMPS was used for regular “grab sampling” of NSD in triplicates everyday in the 

mornings (9:30 – 10.00) and afternoons (16:30 – 17.00). On days characterised by 

notable atmospheric or meteorological conditions such as haziness or hazard 

reduction burning, NSD were measured at regular intervals during the whole day. 

Since January 1998, the instrument was used to collect data at hourly intervals on a 

continuous basis. The scan time per sample was 90s seconds, and the data were 

averaged over 1-hour intervals. A total of 9,060 datapoints were obtained, the earliest 

corresponding to 10 July 1995 and the last one to 7 November 2000. 

During this entire period also concentrations of other pollutants were monitored at the 

station, including PM10, NOx, SO2, CO, as well as light scattering. Analysis of the 

correlation between concentration of these pollutants based on the first two years of 

monitoring was presented earlier (Morawska et al., 1998b). 

2.4. Description of the database and calculation of selected particle 

parameters 

Particle number size distribution (NSD) data was grouped into 64 size channels. The 

number median diameter (NMD) of the distribution was calculated using the formula:  
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where L is the lower limit of the channel containing the NMD, NTotal is the total 

particle number concentration, Ncum the cumulative concentration of the channels 

preceding the one containing the NMD, Nmedian and w the number concentration and 

the width, respectively, of the channel containing the NMD. 

The data was then divided into different size fractions in order to analyse and compare 

their behaviour over time. The following size classes were used in this analysis: 

0.015-0.030 (N15-30), 0.030-0.050 (N30-50), 0.050-0.100 (N50-100), 0.100-0.300 (N100-300) 

and 0.300-0.630 (N300-630) μm. The number concentration (Np-q) of each size class (p-

q in nm) was calculated by adding the concentrations of all the channels contained 

within that class. In other words: 

∑=−

q

p
pqp dNN )(α                                        (2) 

Where  is the number concentration of the channel covering the size interval 

from to . The lower and upper limits of each size channel had to be 

calculated from the midpoint diameter. Therefore, it was necessary to introduce a 

correction factor α, which was obtained from the equation: 

)( pdN

pd pp dd Δ+

)(log)(log 1010 ppp ddd −Δ+=α               (3) 

Calculations of the log difference between consecutive channels gave an average α-

value of 0.03125 and this was the value used in equation (2). 
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2.5. Data analysis methods 

2.5.1 Daily variations in particle number 

The database was divided into hourly intervals and the measurements were averaged 

over each interval. Time of the day was defined as the grouping variable and the 

hypothesis that particle number varied with time of the day was tested through one-

way analysis of variance (ANOVA). The procedure was done separately for each size 

class. Homogeneity of variance between groups, or homocedasticity, was tested using 

Levene’s statistics. The F-ratio was used when this condition was satisfied and 

Brown-Forsythe statistics when it was violated.  

Post hoc tests aimed to gain further insight into the association between time of the 

day and particle concentration levels. The aim was to identify data subsets that could 

explain the underlying dynamics and their variations throughout the day. Each pair of 

means was compared in order to determine whether the differences were statistically 

significant. Tukey tests were applied in the case of equal variances and Games-

Howell tests when they were unequal. Both ANOVA and post hoc tests were 

computed with SPSS (version 12.0.1, SPSS Inc., 2003). 

2.5.2 Outliers and missing data 

The objective of analysing the quality and level of completeness of the database was 

to identify sources of estimate bias that could lead to incorrect interpretations of the 

data. Outliers and missing observations were expected in the present investigation and 

therefore their influence on the estimates was evaluated. Some outliers were predicted 

to be kept as valid observations and others to be eliminated thereby increasing the 

amount of missing information. 
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In the present dataset, outliers had to be defined and carefully scrutinised before their 

retention or elimination. The aim was to minimise their influence on the estimates and 

ensure the retention of legitimate measurements. The first step was to define upper 

and lower total particle number concentration limits based on the expected 

concentration range in urban air. The minimum concentration reported for Brisbane 

was 4.0 x 102 cm-3 (Morawska et al., 1998b). In this study, the lower limit was set to 

1.0 cm-3 with the values around this limit anticipated to be quite rare. The upper limit 

was set to 2.0 x 105 cm-3. Higher concentrations have been found elsewhere, for 

example during a 4-day study in Birmingham (Shi et al., 1999), but they were rare in 

the present database. The number size distributions around and outside these limits 

were then analysed using robust statistical techniques, including the analysis of local 

or temporal correlations with the other pollutants measured at the station. 46 

datapoints (around 0.5 percent of all the available data), considered to be outliers, 

were removed. Of these, 9 observations had total concentrations above the established 

upper limit with particles > 0.100 μm exhibiting concentrations above 105 cm-3and the 

remaining 39 observations showed zero concentrations for ultrafine particles, thus 

implying that these measurements were affected by instrument malfunction. 

The next step was to consider the differences between weekday and weekend 

measurements. In general, there were somewhat bigger gaps in data for the weekend. 

In addition, Morawska et al. (2002) found that in Brisbane particle number was 47% 

higher on weekdays than on weekends. Therefore it was considered that weekend data 

was of less interest in achieving the aim of this work and therefore excluded from the 

database used for the analysis. 

The final step in the data preparation was the analysis of the missing information. 

Treatment of missing information ranges from deletion of missing cases to data 
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imputations. This study aimed to model the existing data and therefore a different 

approach was considered more appropriate. A common procedure in missing value 

analysis is testing the assumption that the data is missing completely at random 

(MCAR), which means that there is no link between missing data and some 

explanatory variable. Particle number was expected to exhibit daily, weekly and 

annual fluctuations and therefore the data would be MCAR if the missing information 

was independent of the time parameters associated with these fluctuations. Pre-1998 

missing data was clearly dependent on time of the day and therefore the MCAR 

assumption had to be redefined. A less stringent and therefore more appropriate 

approach was the assumption of data missing at random (MAR), indicating no link 

between a data subset and some control variable. The hypothesis that missing data 

was independent of month of measurement was tested using the procedure in section 

2.5.1, taking the number of unavailable measurements per monthly interval as the 

dependent variable and month of the year as the group variable. 

2.5.3 Time series analysis methodology 

The most salient features of a time series are the trend, seasonal and irregular 

components. The trend and seasonal components were extracted by expressing the 

data as function of time through univariate and multivariate linear regression models 

respectively. The results from missing value analysis showed that the data were MAR 

and therefore it was appropriate to divide it into monthly intervals, using the mean 

concentrations as the observations. The parameter estimates for the models were 

obtained through weighted least squares. Variances were incorporated as weights so 

that the models would allocate less weight to larger variance estimates. 
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For the trend models, a dummy variable representing the number of months since first 

observation (t) was added to the database and the estimates were regressed on time 

through the equation (Chatfield, 1989): 

tt tX εβα ++=                  (4) 

where Xt represents the actual data point at time t, α the intercept of the equation, β 

the slope,  and εt denotes a random error term with mean around zero.  

For the seasonal model, a series of dummy Boolean variables representing the months 

of January (i = 1) to November (i = 11) were inserted as regressors, following the 

procedure shown in Makridakis et al. (1983), so that the models took the form: 

∑
=

++=
11

1
0

i
iitt DbbeX                  (5) 

Where et is the estimated residual, b0 the intercept, Di the Boolean regressors and bi 

their coefficients. The December effect is measured by the intercept while the effect 

of other months is measured by the difference between the intercept and the 

coefficients of the regressors. 

The residuals (differences between observed and fitted values) were extracted and 

analysed in order to investigate the presence of regularities yet to be modelled. 

Residual analysis included time plots, correlogram analyses and normal probability 

plots.  

3. Results  

3.1. Short-term variations in particle number 

Normality of the distribution of the hourly means and homogeneity of the hourly 

variances were checked through Levene’s tests. The results indicated that there were 

significant deviations from the above conditions at the 99% confidence level (p < 
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0.01) and therefore it was necessary to transform the original data through their 

natural logarithms. The means and standard variation of the transformed values were 

then calculated and plotted against time of the day, as shown in Figures 2(a) and 2(b) 

respectively. 

Figure 2(a) shows that, for most of the day, the N15-30 remains the largest contributor 

to the total count, followed by the N30-50 and in turn larger size classes. An exception 

occurs between midnight and 4:00, where the largest contribution comes from the N50-

100, followed by the N30-50. The sum of the mean concentrations is calculated by 

adding the inverse function of the natural logarithms of the concentrations of each 

class (i.e. ∑ −=−
)ln(

63015
qpNeN , where Np-q is the number concentration of each size 

class p-q). Using this formula, total particle number reaches maximum number 

concentration of 17.3 x 103 cm-3 at 7:00 hrs and a minimum of 5.14 x 103 cm-3 at 

16:00 hrs.  

Figure 2(a) also shows that although particle number declines sharply after the 

morning peak, the decline is less pronounced for the fraction > 0.100 μm (N100-630), 

especially at around midday. Particle levels then increase gradually between 18:00 

and 21:00, remaining more or less stable at about 5.5 x 103cm-3 until the next morning 

peak.   

Figure 2(b) shows that daily variability in hourly standard deviations is very stable 

and the size classes follow more or less parallel patterns. The only exception is the 

N300-630, which shows a higher and broader range of variance and several peaks during 

the day, reaching its highest peak at around 9:00, coinciding with a drop in variance 

for the smaller size classes. The reason for the daily pattern of variance in the N300-650 
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being different is likely to be linked to the fact that its concentration range is on to 

two orders or magnitude lower than the concentrations of the other size classes. 

In general, as it can be seen in Figure 2(a), all size classes follow more or less the 

same daily pattern of variation. In the first instance, a one-way ANOVA test was 

applied to the hourly mean of total particle number concentration to test the 

hypothesis that particle number varied with respect to time of the day. The results 

indicated variations in particle number associated with time of the day (p < 0.01 for 

all size classes). Post hoc pairwise comparisons indicated the presence of four data 

subsets: morning rush (6:00-10:00), midday (11:00-15:00), afternoon rush (16:00-

19:00) and night-time (20:00-5:00). The application of ANOVA and pairwise 

comparisons to the other size fractions produced similar results, confirming that all 

size classes exhibited the same daily variability, pointing out to the same source as the 

origin of these particles, which in this case was predominantly traffic. 

The interpretation of the results included analyses of the daily variations in traffic 

flow and wind direction, as was shown in Figures 3(a) and 3(b) respectively. Wind 

originating from the freeway prevails between midnight and the morning rush, which 

occurs around 6:00-9:00, causing the observed peak during these hours. In the 

afternoon rush (around 16:00-17:00), the wind direction is reversed, moving from the 

station towards the freeway, thereby substantially reducing the amount of the fresh 

traffic emissions and bringing to the station well-mixed air from the CBD. 

3.2. Time series results 

The most complete data subsets corresponded to the morning and afternoon 

measurements. These two data subsets represented two different types of emissions, 

as discussed above, affected by fresh emissions from the freeway in the morning and 
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well-mixed urban air in the afternoon. Therefore the understanding of their nature is 

necessary for the interpretation of the trend model outputs. The summaries of these 

two subsets are shown in Table 1. The statistics include the mean, standard deviation, 

minimum and maximum values, and their quartiles. Figures include the NMD for the 

total size range (in nm), as well as the number concentrations (cm-3) of each of the 

chosen size classes and the total.  

The next step was to prepare the morning and afternoon data subsets for time series 

analyses. Unlike the hourly estimates of the log-transformed data, the corresponding 

log-transformed monthly estimates were not normally distributed. The best 

approximation to normal distribution was obtained by logarithmic transformation of 

the monthly mean and variance estimates obtained from the original measurements.  

Figure 4 presents the time series and corresponding trend components of (a) total 

particle number concentration, (b) N15-30, (c) N30-50, (d) N50-100, (e) N100-300, (f) N300-630 

and (g) NMD. Student t-tests were applied to the trends and the outputs indicated that 

only the morning trends were significant at the 95% confidence level. The morning 

trend accounted for 11.8%, 1.6%, 8.9%, 19.6%, 18.5%, 7.6% and 17.0% of the total 

variance for each series in (a) to (g) respectively. 

The results showed that, in the morning, total particle number (N15-630) increased from 

7.5 to 15.4 x 103 cm-3 (i.e. by 105.3%). Of these, the ultrafine fraction (N15-30-N50-100) 

increased from 6.5 to 11.8 x 103 cm-3, which represents an 81.5% increase.  

F-tests were applied to the seasonal models and the results indicated that they were 

statistically insignificant (p > 0.05). The only exception was for the morning NMD, 

which showed a weak seasonal component accounting for 16.7% of its variance. In a 

further attempt to identify a seasonal pattern, autocorrelation plots were applied to 
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each series. Figure 5 shows the autocorrelation plot of (a) total particle number and 

(b) NMD. The remaining autocorrelations were very similar to that in (a), particularly 

in terms of periodic behaviour, and are therefore not shown in this paper. 

4. Discussion and conclusions 

Analysis of the submicrometre particle number data collected over a five-year period 

clearly shows the same daily variation pattern on weekdays, for all size classes used 

in this study (Figure 2). The statistical tests indicated a time of the day effect upon 

particle number, with the maximum concentrations occurring around 6:00-7:00 hrs 

and minimum concentrations at 16:00-17:00. The range of the average total particle 

number concentrations found in this study was 5.14-17.3 x 103 cm-3. This range 

compares well with the concentrations reported for less polluted European cities and 

Santiago de Chile, as presented in (Figure 6), which shows the average daily particle 

number concentrations in selected cities around the world. The average concentrations 

measured in Brisbane’s are much lower than those reported for cities like Birmingham, 

Rome or the supersites in Detroit and Fresno.  

Comparisons with the daily variation pattern in other cities (eg. Harrison et al., 1999; 

Junker et al., 2000) show that there are differences between Brisbane and those cities. 

In Basel, Switzerland (Junker et al., 2000), peak concentrations were obtained during 

the morning and evening and rush hours whereas in Birmingham, UK, particle 

number peaked around midday (Harrison et al., 1999). Table 1 shows that at the 

Brisbane monitoring site particle number concentration levels in the morning were, on 

average, 1.5 times higher than in the afternoon. The interpretation of this daily pattern 

in concentrations is that it is affected by the daily patterns of traffic and wind 

direction, as shown in Figure 3. The peak observed in the morning rush hour is 

affected by emissions coming directly from the freeway to the station whereas the 
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lack of a corresponding peak in the afternoon rush is explained by the reversal of 

wind direction moving towards the freeway. This interpretation is based on the results 

obtained by Hitchins et al. (2000), who found that at a distance of 150 m particle 

number concentration was significantly affected, but decreased by 50% of its value 

when the wind was blowing directly from the road (in this study the distance was 100 

m) whereas particle number was similar to background urban concentrations even at 

the closest point to the road when the wind blew in the opposite direction.  

While there are differences in particle concentration levels between the morning and 

the afternoon, there were no significant differences in NMD, suggesting similar 

number size distributions and hence a predominance of vehicle emissions in the air 

affected by the fresh emissions from the road as well as in urban-background 

atmosphere. This assertion is based on the findings of Morawska et al. (1999), who 

showed that urban-influenced aerosols had a similar number size distribution as 

traffic-influenced aerosols, although the peak was not as clearly defined thus 

indicating the ageing of well-mixed emissions from many sources and a strong 

influence of traffic.  

In relation to long-term trends in particle concentrations, this study found that only the 

morning trend was significant and that during this time of the day total particle 

number increased from 7.5 to 15.4 x 103 (or 105.3%). In this study, submicrometre 

particles were divided into different size classes in order to derive more information 

on their changes in number size distribution. Our results show that although the N15-30 

remained the biggest contributor to the total count, its contribution decreased from 

38.7% to 26.7% whereas the contribution of N50-100 and the N100-300 increased from 

21.8% to 28.7% and from 11.6% to 16.6% respectively. This resulted in a shift in 

NMD as shown in Figure 3 (g). Nevertheless, the increase was only relative to the 
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number concentration of each size class. NMD increased from 42.6 to 46.0 nm, which 

represents only a 3.4 nm increase (7.9%) and remains within the NMD range for 

vehicle exhaust-emissions (Morawska et al., 1998b; 1996). 

In order to shed more light on the reasons underlying differences in particle number 

behaviour in the morning and afternoon, trend analysis for other air quality and 

meteorological parameters, including Bsp, PM10, Wind Speed, CO, NO and NO2 were 

conducted.  The results are summarised in Table 2. The trends were calculated from 

the monthly mean values and weighted (except for CO) against their corresponding 

monthly variances using least squared regression models. All values, except those for 

wind speed were transformed using logarithmic scale to normalize their distributions 

and stabilize their variances. Only some of the trends were found to be statistically 

significant. In particular, for the morning trends, only PM10 shows a statistically 

significant increasing trend. However, unlike particle number, its afternoon trend also 

increases thus confirming the independence between particle mass and particle 

number (Morawska et al., 1998b). During this period, major construction projects 

took place in and around campus thereby influencing the observed trends in particle 

mass. Bsp, in contrast, shows generally decreasing trends. A report by the 

Environmental Protection Agency (Neale and Wainwright, 2001a) indicates that 

during the drought periods of 1993-1996 and 2000 dry conditions increased the 

frequency and intensity of wildfires and biomass burning thereby increasing the mass 

concentrations of fine particles (< 2.5 μm), but during 1997-1999 their concentrations 

remained low therefore influencing the observed Bsp trends. 

Of the gaseous data, only CO and afternoon NO show significant trends. Being 

directly emitted into the air, these emissions show long-term reductions in the 

morning and afternoon. The CO and NO trends are likely to be the result of 
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technological improvements in vehicle design and the addition of catalytic converters 

(Neale and Wainwright, 2001a). The effects of these changes upon particle emissions, 

however, are not yet fully understood and an in-depth analysis of these effects is 

beyond the scope of the present investigation. Although the trends in primary gas 

emissions appear to be uncorrelated with particle number emissions, due to the 

different nature of these pollutants, both gases and particles are affected by trends in 

the vehicle fleet. Although there has been an increase in vehicle usage in the 

Southeast Queensland region (Neale and Wainwright, 2001b), there is no evidence to 

suggest that traffic flow in the freeway has also increased. The trend in morning 

particle emissions is likely to be linked to changes in the composition of the freeway 

traffic. Unfortunately, since there was no vehicle speciation data available during the 

project, this hypothesis cannot be verified. 

With regard to particle seasonality, no seasonal pattern was identified in this study.  . 

As it has been mentioned earlier, at times, mainly during the winter months between 

July and September, biomass burning could be an important contributor to the particle 

count. Vegetation burning-influenced aerosols have modal diameter around 0.06 μm, 

which is 0.02 μm larger than particles associated with traffic and urban background 

emissions (Morawska et al., 1999). Birmili et al. (2001) found that typical aerosol 

number size distributions are attributable to their air mass origin. Therefore, if all 

other factors were held constant, NMD would be expected to increase during these 

months, especially in the afternoon. The results, however, do not support this.  

Hussein et al. (2004) observed that the seasonal behaviour in particle number in 

Helsinki was inversely related to that of air temperature. Consistent to this pattern, 

many overseas urban studies have found higher number concentrations, specially at 

the lower end of the size range, in winter than in summer, independent of other 
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periodic variations (Cabada et al., 2004; Ebelt et al., 2001; Wehner and Wiedensohler, 

2003). Hussein et al. (2006) found that ambient temperature and local wind conditions 

were the most influential factors controlling particle number, but this influence was 

greater on particles larger than ultrafine. In contrast, the results obtained by Tunved et 

al. (2003) at five non-urban stations in Sweden and Finland showed higher 

concentrations in summer and spring than in winter. This suggests that in urban 

environments the association between particle emissions and meteorological 

conditions is influenced by social factors including summer holidays and household 

heating in winter. No study of this type has been conducted in a similar environment 

to that of Brisbane. While the studies above were conducted in areas where there are 

significant meteorological differences between summer and winter, resulting in 

significant variations in human life style patterns, in subtropical Brisbane there are 

much smaller differences between the seasons.  
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Figure Captions 

1. Monitoring site (AMRS) in relation to the CBD and Southeast Freeway. 

2. Particle number dependence on time of the day as measured at QUT AMRS 

between July 1995 and November 2000: (a) Mean hourly particle number and 

(b) hourly standard deviations. 

3. (a) Daily variation in vehicle traffic on weekdays on the Southeast Freeway. 

The datapoints represent mean hourly traffic counts (b) Daily pattern of 

predominant wind direction around QUT AMRS. The datapoints represent the 

modal wind direction values. 

4. Time series plots of monthly mean particle number concentrations in the 

morning peak (solid line) and afternoon peak (dashed line), over the period 

July 1995-November 2000 on weekdays in the following size ranges (μm): (a) 

0.015-0.630, (b) 0.015-0.030, (c) 0.030-0.050, (d) 0.050-0.100, (e) 0.100-

0.300, (f) 0.300-0.630 and (g) monthly mean NMD. All the data has been 

transformed using the natural logarithmic scale. Successive observations are 

joined by straight lines. 

5. Auctocorrelation functions of morning and afternoon (a) total particle number 

and (b) number median diameter. 

6. Mean particle number concentration levels obtained in selected cities around 

the world. The figures indicate average values of all the estimates provided in 

each study. 
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Table 1 

Morning Peak (6:00-10:30) 

Percentiles  Mean 
  

Std. Dev.
  

Min.
  

Max. 
  25th 50th  75th

NMD (nm) 44.4 13.1 22.2 197.6 35.1 42.6 50.8
*NTotal (cm-3) 1.28x104 1.98x104 13.1 1.99x105 4.62x103 8.34x103 1.39x104

N15-30 (cm-3) 4.07x103 6.91x103 1.3 8.13x104 1.33x103 2.41x103 4.46x103

N30-50 (cm-3) 3.02x103 4.48x103 2.9 7.59x104 1.09x103 2.04x103 3.42x103

N50-100 (cm-3) 3.12x103 5.58x103 5.7 1.78x105 1.09x103 2.04x103 3.62x103

N100-300 (cm-3) 2.11x103 5.37x103 3.3 1.84x105 0.64x103 1.23x103 2.12x103

N300-630 (cm-3) 0.47x103 2.52x103 0.0 3.16x104 42.0 82.6 0.15x103

Afternoon Peak (16:00-19:30) 

NMD (nm) 44.4 13.5 21.6 249.6 35.8 42.1 50.2
*NTotal (cm-3) 8.67x103 1.85x104 7.6 1.97x105 2.76x103 4.67x103 8.21x103

N15-30 (cm-3) 2.83x103 6.75x103 2.1 7.8x104 0.69x103 1.36x103 2.66x103

N30-50 (cm-3) 2.08x103 3.84x103 2.0 9.20x104 0.72x103 1.18x103 2.22x103

N50-100 (cm-3) 1.97x103 3.94x103 2.1 7.62x104 0.66x103 1.14x103 1.99x103

N100-300 (cm-3) 1.35x103 3.40x103 1.0 3.89x104 0.41x103 0.68x103 1.18x103

N300-630 (cm-3) 0.44x103 2.75x103 0.0 3.18x104 24.4 46.9 91.0

Morning/Afternoon Ratios 

NMD (nm) 1.000 0.970 1.03 0.792 0.980 1.012 1.012
*NTotal (cm-3) 1.474 1.068 1.72 1.010 1.675 1.785 1.696
N15-30 (cm-3) 1.436 1.025 0.62 1.042 1.919 1.769 1.676
N30-50 (cm-3) 1.456 1.169 1.45 0.824 1.506 1.729 1.538
N50-100 (cm-3) 1.581 1.418 2.71 2.331 1.647 1.831 1.815
N100-300 (cm-3) 1.561 1.579 3.30 4.718 1.559 1.820 1.798
N300-630 (cm-3) 1.063 0.915 - 0.994 1.721 1.761 1.698

 
Summary statistics of particle number concentration and number median diameters 

measured at QUT monitoring station during the morning and afternoon peak traffic 

hours on weekdays from July 1995 to November 2000. 
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Table 2 

Parameter Morning  Afternoon  

BBsp  *6.12x 10-6m-1 (31.8%) decrease *5.62 x 10-6m-1 (30.5%) decrease 

PM10  *0.45 μg m-3 (13.4%) increase **0.18 μg m-3
 (5.38%) increase 

Wind Speed  0.14 m.s-2 (26.6%) decrease **0.47 m.s-1 (32.1%) decrease 

CO  *0.45 ppm (62.5%) decrease *0.47 ppm (69.0%) decrease 

NO  8.79 x 10-2 pphm (2.38%) decrease **5.57 pphm (30.5%) decrease 

NO2 No change 0.11 pphm (7.84%) increase 

*Trend is significant at the 99% confidence level 

**Trend is significant at the 95% confidence level 

Summary of the morning and afternoon trends of Bsp, PM10, wind speed, CO and NOx 

data measured at QUT AMRS during June 1995-November 2000.  
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(d)   Morning       Afternoon
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