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Abstract   

As part of a large study investigating indoor air in residential houses in Brisbane, 

Australia, the purpose of this work was to quantify the particle deposition rate of size 

classified particles in the size range from 0.015 to 6 µm. Particle size distribution 

resulting from cooking, repeated under two different ventilation conditions in 14 

houses, as well as changes to particle size distribution as a function of time, were 

measured using a scanning mobility particle sizer (SMPS), an aerodynamic particle 

sizer (APS), and a DustTrak. Deposition rates were determined by regression fitting 

of the measured size-resolved particle number and PM2.5 concentration decay curves, 

and accounting for air exchange rate.  

The measured deposition rates were shown to be particle size dependent and they 

varied from house to house. The lowest deposition rates were found for particles in 

the size range from 0.2 to 0.3 µm for both minimum (air exchange rate: 0.61±0.45 h-1) 

and normal (air exchange rate: 3.00±1.23 h-1) ventilation conditions. The results of 

statistical analysis indicated that ventilation condition (measured in terms of air 

exchange rate) was an important factor affecting deposition rates for particles in the 
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size range from 0.08 to 1.0 µm, but not for particles smaller than 0.08 µm or larger 

than 1.0 µm. Particle coagulation was assessed to be negligible compared to the two 

other processes of removal: ventilation and deposition. This study of particle 

deposition rates, the largest conducted so far in terms of the number of residential 

houses investigated, demonstrated trends in deposition rates comparable with studies 

previously reported, usually for significantly smaller samples of houses (often only 

one). However, the results compare better with studies which, similarly to this study, 

investigated cooking as a source of particles (particle sources investigated in other 

studies included general activity, cleaning, artificial particles, etc).  

Keywords: indoor air quality; indoor particle deposition; supermicrometer particles; 
submicrometer particles; PM2.5  

 

1. Introduction 

It is well known that inhalation exposure to airborne particles, which occurs in 

outdoor and indoor environments, has adverse effects on human health. However, 

since people spend approximately 90% (95% in Australia, ABS 1996) of their time 

indoors (Fishbein and Henry, 1991; Jenkins et al., 1992; Byrne, 1998) and indoor 

particle concentrations often exceed outdoor concentrations (Yocom, 1982; Wallace, 

1996; Monn, 2001), indoor exposures are major contributors to total personal 

exposures (Janssen et al., 1998).  

As a result of a growing concern about the effects of particle exposure on human 

health, an increasing interest has been directed towards understanding and 

quantification of the mechanisms controlling particle dynamics in indoor 

environments. One of the significant mechanisms is particle deposition on indoor 

surfaces, which occurs when an aerosol particle adheres to a surface upon contact. In 
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indoor environments, particle deposition rate and air exchange rate are the two main 

components of the overall particle removal rate from the air. Knowledge of particle 

deposition rates onto indoor surfaces, and the factors governing these rates, is 

therefore important to the understanding of particle fate in indoor air. 

Indoor particle deposition rates have been investigated using the two available 

approaches, which are: theoretical modelling and experimental studies. The 

experimental investigations included both chamber and real house studies. However, 

owing to the large number of contributing factors, it is very difficult to measure 

particle deposition rates directly. As a result, the existing experimental data on the 

levels of deposition rates and their variability within residential houses, particularly 

for short time periods and for discrete particle sizes, is very limited (Howard-Reed et 

al., 2003). In summary, previous studies have shown that: 1) it is clear that the 

deposition process is strongly dependent on particle size, reaching minimums at 

particle diameters between 0.1 to 0.3 µm (Lai, 2002); 2) the trend in deposition rates 

as a function of particle size is the same for all the studies, however, there is a 

significant variation, often by an order of magnitude or more, in the values reported 

by individual studies; 3) while both modelling and experimental approaches predict 

similar trends,  model estimates are often significantly different from those derived 

from the experimental results, especially for particles smaller than about 0.5 µm 

(Morawska and Salthammer, 2003).  

As part of a large study investigating various aspects of indoor air in residential 

houses in Brisbane, Australia, the purpose of this work was to investigate particle 

deposition characteristics in indoor environments. The specific objectives of the study 

included: 1) quantification of particle deposition rates indoors in terms of particle 
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number and mass concentrations for normal and minimum ventilation conditions; and 

2) comparison of the results with literature data. 

 

2. Experimental Method 

The determination of deposition rates of particles resulting from cooking conducted in 

an identical way in all of the houses was a part of a larger indoor air quality study, 

with the other aspects of the study described elsewhere (Morawska et al 2001; 

Morawska et al 2003; Hargreaves et al 2003; He et al., 2004; Ayoko et al 2004). In 

summary, a residential suburb in Brisbane of reasonably flat topography and with a 

good mix of houses, both in terms of age and of style (i.e. newer and older houses, 

brick and timber, high set and low set), was chosen as the measurement site. Fourteen 

houses from this suburb were selected for the study, as well as one additional house 

from another suburb as a comparison site.  

Particle size and number concentration measurements were conducted using three 

different instruments: 1) the TSI Model 3320 Aerodynamic Particle Sizer (APS) (TSI 

Incorporated, St. Paul, MN, USA), which measures particle size distribution and 

number concentration in real time, in the range from 0.5 to 20 µm and up to the order 

of 102 or 103 particle cm-3 with coincidence errors of 1% and 5% respectively; 2) the 

TSI Model 3934 Scanning Mobility Particle Sizer (SMPS) (TSI Incorporated, St. 

Paul, MN, USA), which was set to measure particle size distribution and number 

concentration, in the range from 0.015 to 0.685 µm; and 3) the TSI Model 3022A 

Condensation Nucleus Counter (CPC). 
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For the purpose of this paper, particles measured by the SMPS are referred to as 

submicrometer particles; while particles measured by the APS are considered 

supermicrometer particles. 

An approximation of fine particle mass concentration (PM2.5) was measured by the 

TSI Model 8520 DustTrak aerosol monitor (TSI Incorporated, St. Paul, MN, USA). It 

should be noted that the DustTrak operates based on a light scattering technique 

where the amount of scattered light is proportional to the volume concentration of the 

aerosol. The approximation of PM2.5 values obtained in this study using this 

instrument are not actual gravimetric values, as the instrument was not calibrated for 

each specific aerosol studied. However, in order to obtain results closer to the true 

PM2.5 values, data collected by the DustTrak was corrected using an equation which 

was obtained from a calibration experiment. The experiment was conducted under 

laboratory conditions, and compared the DustTrak indoor readings with the readings 

of a TEOM (50ºC R&P 1400a with a URG PM2.5 cyclone inlet). For simplification, 

all the DustTrak results discussed in this paper are referred to as PM2.5, omitting the 

term ‘approximation’. 

The TSI Model 8551 Qtrak (Q-Trak - TSI Incorporated, St. Paul, MN, USA) was 

employed to measure CO2 concentrations, which were used to estimate air exchange 

rates (AER).  

These measurements were conducted under both normal and minimum ventilation 

conditions for each house. Normal ventilation condition means all the doors and 

windows of the house which are normally opened, stayed opened during the 

measurements. Minimum ventilation condition means that all the doors and windows 

of the house were closed.  
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The procedure for measurement was as follows: 10 minutes of background 

concentration measurements in the kitchen were made, followed by measurements 

during 10 minutes of cooking (half an onion was sliced and placed in a small frying 

pan containing 1 spoonful of vegetable oil, and the stove was switched onto high). A 

further 20 to 40 minutes of measurements were taken after the cooking ceased. The 

measurements were conducted first under minimum ventilation conditions, and then 

under normal ventilation conditions (in all houses with the exception of House 7). The 

data obtained from the test was used for estimation of particle deposition rates in 

conjunction with AER.  

2.1. Calculation of air exchange rate 

The tracer gas technique employed to calculate the air exchange rate involved 

injecting a tracer gas and mixing it through the house, then measuring its decay rate 

with an appropriate instrument. If exfiltration rates of the tracer gas are constant, 

mixing is uniform, the chemical reaction between the gas and other chemicals is 

negligible and no indoor source of the gas is operating, then the air exchange rate, α, 

can be calculated from the following equation (Nantka, 1990):   

0

ln1
C
C

t
t=α      (1) 

where t is time, and Ct and C0 are concentrations of the gas at times t and 0, 

respectively.  

In this study, the gas used for AER measurements was CO2. This was released into 

the house by a CO2 cylinder until the indoor CO2 level was more than 50% higher 

than the background level and a relatively stable concentration condition was 

established. Based on Equation 1, the value of AER was obtained by linear regression 

of the measured CO2 concentration (decay rate) for each house. In order to reduce 
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indoor sources of CO2, there were no people in the houses during the CO2 

measurements.  

2.2. Estimation of particle deposition rates  

Residential houses in Brisbane do not normally use air filtration systems. This means 

that the principal factors governing the levels of airborne particles indoors are the 

contributions from indoor and outdoor sources, the deposition rate of particles on 

indoor surfaces, and the air exchange rate (Thatcher and Layton, 1995). Taking these 

factors into consideration and assuming well-mixed conditions, a formula for 

calculation of indoor particle concentration levels can be written as follows 

(Koutrakis et al. 1992; Chen et al., 2000):  

in
s

out
in C

V
QCP

dt
dC )( καα +−+=    (2) 

where Cin and Cout are the indoor and outdoor particle concentrations, respectively; P 

is the penetration efficiency; α is the air exchange rate; k is the deposition rate; Qs is 

the indoor particle generation rate; t is time; and V is the efficient volume of the 

house. All the factors in this equation, with the exception of the efficient volume of 

the house (V), are functions of some other factors and can vary in time (for example 

penetration efficiency is a function of particle size). In the absence of indoor particle 

sources, Equation 2 can be written as: 

inout
in CCP

dt
dC

)( καα +−=     (3) 

In order to estimate the particle deposition rates (k), Equation 3 is simplified by 

assuming that α and k are constants and P equals one. The penetration efficiency is 

commonly assumed to be close to one for both fine and coarse particles (Wallace 

1996). This assumption simplifies Equation 3, however, it should be noted that a 

number of studies have indicated that the penetration efficiency is less then one and is 
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a function of particle size (Abt et al., 2000; Long et al., 2001). It was considered that 

the uncertainly resulting from the assumption of P being equal to one in this study 

was negligible. This is because concentrations during the cooking period were 

significantly higher (more than 10 times) than background levels (Cin0 >> Cout), thus 

the contribution of the outdoor source was comparatively small and could be ignored. 

Based on the above, the time-dependent solution to Equation 3 becomes:  

t
in

in
C
C )()ln(

0
κα +−=     (4) 

where, Cin0 is the peak indoor particle concentration. Based on this equation, it is 

possible to determine k by fitting a line to a plot of the log of Cin/Cin0 versus time and 

subtracting α from the slope. Several previous studies discussed the use of this 

equation for determination of particle deposition rate (Abt et al., 2000; Vette et al., 

2001; Howard-Reed et al., 2003).  

2.3. Data processing and analysis 

Measured particle characteristics were expressed as number concentrations (particle 

cm-3) and volume concentrations (µm3 cm-3), and divided into 18 size intervals: 

0.015-0.02, 0.02-0.03, 0.03-0.04, 0.04-0.06, 0.06-0.08, 0.08-0.1, 0.1-0.15, 0.15-0.2, 

0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.65, 0.7-1, 1-2, 2-3, 3-4, 4-5, 5-6 µm; for each house 

under both ventilation conditions. Data analysis showed that particle concentration 

levels for larger particles (> 6 µm) were very low and thus these particular results 

were associated with very large errors. Therefore this data was excluded from 

deposition rate quantification.  

The statistical analyses conducted included regressions and t-tests, and were 

performed using Microsoft Excel and a statistical analysis software package S-Plus 
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for Windows version 6.0 (Insightful Corp.). A level of significance of p = 0.05 was 

used for all statistical procedures. 

 

3. Results and Discussion 

3.1 Deposition rate and its dependence on air exchange rate 

An example of ln(Cin/Cin0) versus time plots generated by cooking under minimum 

ventilation conditions (AER = 0.1 h-1) in one of the houses are presented in Figures 1 

and 2. These two plots represent the 12 submicrometer and 6 supermicrometer 

particle size intervals respectively, with the results displayed on separate figures to 

enable easier visual inspection of the trends. As the linear correlation coefficient (R2) 

for particles larger than 6 µm was less than 4, deposition rates for these particles were 

not considered in the further analysis.  

The measured deposition rates varied from house to house under both ventilation 

conditions, but especially for normal ventilation. These variations are expected to be 

due to the differences in the surface-to-volume ratio, turbulent mixing patterns, and 

the types of houses and internal surfaces, all of which affect the rate of particle 

deposition on surfaces (Abadie et al., 2001; Long et al., 2001; Thatcher et al., 2002). 

The average particle deposition rates for the 18 size intervals under minimum and 

normal ventilation conditions are presented in Figures 3 and 4, respectively. It can be 

seen from these figures that the deposition rates are particle size specific. The 

polynomial fit line indicates that the lowest deposition rates were found for particles 

in the size range from 0.2 to 0.3 µm for both minimum (air exchange rate: 0.61±0.45 

h-1) and normal (air exchange rate: 3.00±1.23 h-1) ventilation conditions. However, 

the correlation coefficient under minimum ventilation conditions is significant and 
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much higher than that found under normal ventilation conditions. It can also be seen 

from Figures 3 and 4 that the average deposition rates under normal ventilation 

conditions are higher than those under minimum ventilation conditions for all particle 

sizes studied. However, statistical analysis (t-test) showed that the differences were 

significant (p < 0.05) for particles within the size range from 0.08 µm to 1.0 µm, but 

not for particles of sizes smaller than 0.08 µm or larger than 1.0 µm. This implies that 

ventilation conditions not only affect the air exchange rate, but also significantly 

affect the particle deposition rate for particles within the size range from 0.08 µm to 

1.0 µm.  

It has been recognized and confirmed that turbulence, influenced by the air exchange 

rate, is an important factor affecting particle deposition indoors (Xu et al., 1994; 

Mosley et al., 2001; Thatcher et al., 2002). Although the results of chamber studies 

(Nomura et al., 1997) have indicated that there is a positive correlation between air 

exchange rate and particle deposition rate; the real house studies showed inconsistent 

results. For example, data reported by Fogh et al., (1997), Abt et al., (2000) and Long 

et al., (2001) showed that correlation existed between these two factors; but the results 

reported by Howard-Reed et al., (2003) did not show any correlation. Furthermore, 

data from Thatcher and Layton (1995) showed deposition rates decreasing with higher 

air exchange rates. These inconsistent results may be due to a number of factors 

including different study designs, different type and size range of particles 

investigated or different measurement techniques.  

The average deposition rates of PM2.5 were 2.01±1.11 h-1 for minimum ventilation 

conditions and 3.61±2.6 h-1 for normal ventilation conditions. These results obtained 

from DustTrak measurements are comparable to the results obtained from APS 

measurements for deposition rates for the particle size interval of 2-3 µm (for 
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minimum ventilation conditions: 2.55±2.1 h-1, for normal ventilation conditions: 

3.79±2.50 h-1).  

Since some levels of particle deposition rates found in this study were higher than the 

levels of air exchange rates, the contribution of particle deposition rates to total 

particle remove rates could not be negligible and may be more important than AER in 

residential houses.  

3.2 The effect of coagulation on particle dynamics 

Equation 4, which was used for calculation of deposition rates, does not include 

coagulation as a factor affecting particle dynamics. In order to assess the effect of 

coagulation on particle dynamics in this study, calculations of deposition rates 

conducted using particle number concentrations were repeated for particle volume 

concentrations (recalculated from particle numbers assuming particle sphericity), and 

the two sets of results compared. The deposition rates using particle volume 

concentrations were estimated using the same method as for the deposition rates using 

particle number concentrations. If coagulation was a measurable factor, the deposition 

rate calculated from particle volume concentration would be lower than the deposition 

for particle number concentrations. This is because some of the particle loss 

accounted for as deposition in particle number calculations, would in fact be due to 

particle coagulation. Coagulation would increase volume concentration and would 

therefore result in an increase of what has been calculated as the deposition rate. The 

results of comparison indicated that there is no statistical difference between the two 

types of deposition rates (volume and number) for any of the particle size ranges 

studied under both ventilation conditions. This implies that overall, coagulation was 

not a significant factor for the particles investigated in this study, and therefore can be 

neglected. However, it should be noted that the count median diameter (CMD) of 
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submicrometer particles increased by 50% in three cases during the measurements. 

This indicates that in these specific cases, coagulation played a more important role.  

3.3 Comparison with literature 

As mentioned above, studies on particle deposition indoors can be classified into two 

categories: modelling and experimental studies. Experimental studies can be 

conducted in experimental chambers or controlled test houses (Xu et al., 1994; Byrne 

et al., 1995; Mosley et al., 2001; Thatcher et al., 2002; Lai et al., 2002), and in 

residential houses (uncontrolled real houses) (Thatcher and Layton 1995; Abt et al., 

2000; Wallace et al., 2004). Recently, Thatcher et al. (2002) compared the results of 

nine experimental studies, including their own, and also one modelling study 

published in the literature on indoor particle deposition. Similarly, Lia (2002) 

compared the results of fifteen experimental studies, conducted using either chambers 

or controlled test houses, as well as in residential houses. Howard-Reed et al. (2004) 

compared four controlled test house experiments and seven residential house 

experiments, including their own. Two of the main conclusions from these 

comparisons were that the results from individual experimental studies were fairly 

scattered and that model results were about an order of magnitude below that of the 

experimental results, especially for particles smaller than about 0.5 µm. The 

deposition rates measured in the controlled studies (chamber studies or test houses) 

were shown to be up to an order of magnitude smaller that those measured in the 

residential house studies, again particularly for smaller particles,.  

In order to compare the findings of this study with the results published in literature, 

nine experimental studies of particle deposition conducted in residential houses were 

selected. A summary of the experimental conditions of the studies (including this 

study) is presented in Table 1, while Figure 5 presents a comparison of the size 
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dependent particle deposition rates from the studies. Only under minimum ventilation 

conditions was the average AER (0.61 h-1) in this study close to the AERs of the nine 

selected experimental studies. Due to this, only the deposition rates under minimum 

ventilation conditions from this study were used for comparison.  

Several conclusions can be derived from inspection of the data presented in Figure 5. 

Firstly, although in general the pattern of the deposition rate as a function of particle 

size is similar for all the studies, deposition rates vary substantially between the 

studies. Secondly, particle type may be a factor influencing deposition rates. In 

particular, the deposition rates for particles with size < 0.05 µm obtained from all the 

studies where cooking was a source of particles (Abt et al., 2000; Wallance et al., 

2004a; 2004b; this study) are higher than those with non-cooking sources. The results 

of this study (under minimum ventilation conditions) compare better with the values 

of Wallance et al. 2004a, and Wallance et al. 2004b, in which cooking was a source. 

The third conclusion that may be drawn is that the method employed for the 

calculation of deposition rates may contribute to the differences encountered between 

the studies. The results reported by Long et al. (2001) are generally lower than those 

of the other studies. However, Long et al., (2001) estimated deposition rates by using 

regression of Cout/Cin, unlike in other studies where regression of Cin/Cin0 was used. 

Although both calculation methods use a physical-statistical model based on the 

indoor air mass balance equation, the concepts are different. The former one assumes 

that the indoor particle concentration is in a steady-state, which means that the 

quantity of particle infiltration from outdoor to indoor equates to the quantity of 

particles loss by deposition. The decay rate method (the latter one) assumes that the 

indoor particle concentration is not in a steady-state and that the contribution of 

particle infiltration from outdoor to indoor can be ignored. Long et al., (2001) noted 
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that their resultant deposition rates were lower than most experimental results 

reported in the literature, but that there was better agreement between their data and 

the theoretical predications.  

In summary, this study of particle deposition rates in indoor environments, the largest 

conducted so far in terms of the number of residential houses investigated, 

demonstrated deposition rates comparable with studies previously reported, usually 

for much smaller samples of houses (often only one).  Furthermore, size-dependent 

particle deposition rates were quantified. The study also showed that the effect of 

ventilation conditions on deposition rates is particle size dependant. The results 

presented in this study and the comparative analysis of other studies have 

demonstrated the considerable difficulty in estimating particle deposition rate indoors.  

This is largely due to the process of particle deposition being complex and controlled 

by a large number of factors. The fact that deposition rates are associated with large 

standard divisions and vary from house to house, suggests that care must be taken 

when choosing values for exposure studies since particle deposition rate is a very 

significant parameter in determining the indoor particle concentration. These results 

also suggest that in order to improve the predictive capability of particle deposition 

models and exposure models, it would be beneficial to employ local experimental 

data to validate particle deposition models and include the experimental data in 

exposure models. Since it is impossible to perform measurements for every house, 

employing experiment results or empirical equations may be a first order solution.  
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Table 1. A summary of the experimental conditions of the residential house studies on particle deposition rates 
Study House Particle source Particle size  

range (µm) 
Particle monitor AER 

(h-1) 
Thatcher and Layton (1995) 
Fogh et al. (1997) 
 
Abt et al. (2000) 
Long et al. (2001) 
 
Vette et al. (2001) 
Ferro et al. (2004) 
 
 
Howard-Reed et al. (2003) 
 
Wallance et al. (2004) 
Wallance et al. (2004)b 
 
This study 
 
 

a two-story house 
4 houses (furnished) 
 
4 houses 
9 nonsmoking houses 
 
a vacant residence 
1 house 
 
 
a townhouse  
 
a townhouse 
a townhouse 
 
14 houses 
 
 

vigorous housecleaning  
labelled silica particle 
 
cooking 
ambient 
 
ambient 
non-cooking human activity 
 
 
cooking, citronella candle, 
kitty litter 
Cooking only 
cooking, citronella candle, 
kitty litter  
Cooking only 
 
 

0.5 – 6 
0.5 – 5.5 
 
0.02 - 10 
0.02 - 10 
 
0.012 – 2.5 
0.3 - >5 
 
 
0.3 - >10 
 
0.0106 – 2.5 
0.0106– 5.425 
 
0.014 - 10 
 
 

OPC 
APS, air filter sample 
 
SMPS, APS 
SMPS, APS, TEOM 
 
SMPS, LASX 
PM2.5 and PM5 cyclone 
samplers, particle 
counter 
OPC 
 
APS, SMPS 
APS, SMPS, OPC 
 
APS, SMPS, DustTrak 
 
 

0.3  
0.077-1.128  
 
0.17-0.65  
0.89 (Winter) 
2.1 (Summer)  
~ 0.5  
0.46 ± 0.14 
 
 
0.64 ± 0.56 
 
0.39± 0.26 
0.64± 0.56 
 
0.61 ± 0.45 
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0.015-0.02 0.02-0.03
0.03-0.04 0.04-0.06
0.06-0.08 0.08-0.1
0.1-0.15 0.15-0.2
0.2-0.3 0.3-0.4
0.4-0.5 0.5-0.65

0.015-0.02: Slope = 2.90 h-1, R2 = 0.86
0.02-0.03:   Slope = 2.41 h-1, R2 = 0.91
0.03-0.04:   Slope = 2.13 h-1, R2 = 0.90
0.04-0.06:   Slope = 1.91 h-1, R2 = 0.89
0.06-0.08:   Slope = 1.74 h-1, R2 = 0.90
0.08-0.1  :   Slope = 1.91 h-1, R2 = 0.88
0.1-0.15  :   Slope = 1.68 h-1, R2 = 0.92
0.15-0.2  :   Slope = 1.61 h-1, R2 = 0.94
0.2-0.3    :   Slope = 1.41 h-1, R2 = 0.86
0.3-0.4    :   Slope = 1.56 h-1, R2 = 0.75
0.4-0.5    :   Slope = 1.94 h-1, R2 = 0.73
0.50-0.65:   Slope = 2.02 h-1, R2 = 0.60

 
Figure 1. An example of the relationship between ln(Cin/Cin0) and time for 12 
submicrometer particle size intervals.  
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0.7-1.0: Slope = 1.80 h-1, R2 = 0.82
1.0-2.0: Slope = 2.06 h-1, R2 = 0.87
2.0-3.0: Slope = 3.31 h-1, R2 = 0.83
3.0-4.0: Slope = 3.93 h-1, R2 = 0.76
4.0-5.0: Slope = 4.25 h-1, R2 = 0.71
5.0-6.0: Slope = 4.98 h-1, R2 = 0.47

 

Figure 2. . An example of the relationships between ln(Cin/Cin0) and time for 6 
supermicrometer particle size intervals.  
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Figure 3. The average of particle deposition rates for the 18 particle size intervals 
under normal ventilation conditions (Error bars represent one standard deviation). The 
polynomial fit line with the correlation coefficient (R2 = 0.33)  
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Figure 4. The average of particle deposition rates for the 18 particle size intervals 
under minimum ventilation conditions (Error bars represent one standard deviation). 
The polynomial fit line with the correlation coefficient (R2 = 0.84)  
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Figure 5. A comparison of particle deposition rates measured in real houses reported 
in literature and determined in this study (for minimum ventilation). 

 


