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Abstract

Psychologists and sociologists usually interpret happiness scores as cardinal and comparable across re-
spondents, and thus run OLS regressions on happiness and changes in happiness. Economists usually
assume only ordinality and have mainly used ordered latent response models, thereby not taking satisfac-
tory account of …xed individual traits. We address this problem by developing a conditional estimator for
the …xed-e¤ect ordered logit model. We …nd that assuming ordinality or cardinality of happiness scores
makes little di¤erence, whilst allowing for …xed-e¤ects does change results substantially. We call for more
research into the determinants of the personality traits making up these …xed-e¤ects.
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The empirical economic literature on self-reported happiness, also termed life satisfaction, seems

to be taking o¤. Whereas in the 1970s and 1980s there was only a trickle of articles on happiness,

1 the last couple of years witnessed a spate of empirical studies on this subject. 2,3. Next to the

economic literature, there are more than 3000 studies done in the last 30 years by psychologists

and sociologists (see Veenhoven et al.,1994; Veenhoven, 1997). This means that there is now a

large combined literature on what causes happiness.

In this paper, we investigate the robustness of all these …ndings. To this extent, we categorise

the empirical studies on used methodologies that re‡ect the assumptions imposed on the meaning

of satisfaction questions and on the in‡uence of unobservables.

On the meaning of satisfaction questions, psychologists have by and large interpreted the

answers as cardinal, i.e. that the di¤erence in happiness between a 4 and a 5 for any individual is

the same as between an 8 and a 9 for any other individual. In the economic profession, cardinality

is still considered very suspect (see Ng, 1997). In studies of individual happiness therefore, we …nd

that economic papers generally assume that satisfaction answers are only ordinally comparable,

i.e. that it is unknown what the relative di¤erence between satisfaction answers is but that all

individuals do share the same interpretation of each possible answer.

On the in‡uence of unobservables, we focus on the unobservables that are individual speci…c

and constant across time. The great practical advantage of a cardinality assumption is that one can

simply look at the changes in happiness and relate them to changes in observables. This means

that any e¤ect of time-invariant unobservables drops out in linear speci…cations. As a result,

there are a lot of papers in the psychological literature that allow for time-invariant unobservables

related to observables, i.e. econometric models with individual …xed e¤ects. Most of the economic

papers, on the other hand, employ latent variable models in which simple …rst-di¤erencing leads to

biased estimates, which has yielded a virtual absence of …xed-e¤ects models in economic analyses

of individual happiness.4

We compare the results of the various models to disentangle the in‡uence of the assumptions on



the results. To that end, we discuss the …ndings on a set of time-varying demographic and economic

variables that are available in nearly every analysis. These variables are: age, income, living in

partnership, number of children in the household, and health. Although these 5 variables have

been used widely, each study in this literature focuses on its own particular point of interest and

therefore includes a completely di¤erent set of controls. It will be clear that all the …ve variables

are related to many aspects of life and that controlling for other aspects will change the results

for these 5 variables. We therefore augment the empirical …ndings of others by adding for each

di¤erent model our own estimates based on the German Socio-Economic Panel (GSOEP), which

has been extensively used in satisfaction research and is summarily explained in the appendix A.

As a …nal exercise, we try to breach the methodological di¤erences between economists and

psychologists by setting up and estimating a latent-variable model with individual …xed-e¤ects,

i.e. a …xed e¤ect ordered logit model. This model is mathematically very similar to the …xed-e¤ect

logit model developed by Chamberlain (1980), but we demonstrate that it is able to use much

more information. Furthermore, it allows for an individual-speci…c interpretation of the happiness

question, and hence relaxes the ordinality assumption. The results for the 5 chosen variables using

the …xed-e¤ect ordered logit model are surprisingly close to the results of a simple OLS on the

changes in general satisfaction. Therefore, our main conclusion is that assuming cardinality or

interpersonal ordinality of the satisfaction answers makes little di¤erence to the results, while the

time-invariant factors related to observables are very important in explaining happiness. This leads

us to advocate a research shift towards the explanation of the distribution of these time-invariant

factors.

For completeness, we then brie‡y discuss other methodological issues.

1. Satisfaction questions

Psychologists and sociologists have used subjective questions regarding individuals’ happiness for

over three decades. Cantril (1965) developed a question for life satisfaction. Similar question



modules include the Likert (1932)-scale and the Visual Analog Scale (VAS). See also Bradburn

(1969). The answer to these subjective questions has been indiscriminately termed ‘happiness’,

‘general satisfaction’, and ‘sub jective well-being’. In the GSOEP the satisfaction question is:

Please answer by using the following scale in which 0 means totally unhappy, and

10 means totally happy.

How happy are you at present with your life as a whole?

Here, we call the response to this question the General Satisfaction (GS) level of the respondent.

In this case, there are 11 numerical categories, but the question has also been posed with 7 or

5 categories or with verbal labels, such as ‘very happy/happy/so-so/somewhat unhappy/very

unhappy’. The end result is invariably an ordered categorical evaluation of the quality of life of

the individual. In the remainder, we shall abstract from the di¤erent formulations between these

questions and simply use GSit as the name of the endogenous variable of individual i at time t

with happiness increasing together with the numerical values. This also allows for the possibility

that, say, ‘very happy’ is denoted as a 1 and every other answer as a 0. The general research

question is to determine, under various assumptions, the causal e¤ect of observed characteristics

xit on GSit when there are unobserved characteristics "it.

2. Assumptions

2.1. General assumptions

There are three main assumptions that have been used on the interpretation of the answers of the

satisfaction question. Increasing in restrictiveness, these are:

A 1 General satisfaction is a positive monotonic transformation of an underlying metaphysical

concept called welfare and denoted by W(.): if GSit > GSis then Wit > Wis .

A 2 General satisfaction is interpersonally ordinally comparable: if GSi >GSj then Wi >Wj.



A 3 General satisfaction is interpersonally cardinally comparable: (Wi¡Wj) = ω(GSi,GSj) with

ω(.) a function that is known up to a multiplicative constant. Most normally ω(GSi ,GSj ) is

taken to be (GSi -GSj).

The …rst assumption implies a correspondence between what is measured, GSit, and the meta-

physical concept researchers are actually interested in, Wit . Obviously, welfare is not a physical

phenomenon that can be easily and ob jectively measured. However, it is known (see Shizgal,

1999; Fernández-Dols and Ruiz-Belda, 1995; Sandvik et al., 1993) that there is a strong positive

correlation between emotional expressions like smiling, frowning, brain activity, and the answers

to the satisfaction questions. GSit are also predictive in the sense that individuals will not choose

to continue activities which yield low satisfaction levels (see Kahneman et al., 1993; Clark et al.,

1998; Frijters, 2000; Shiv and Huber, 2000). If emotional expressions and choice behaviour are

truly related to the underlying metaphysical concept of welfare, then GS can also be used as a

proxy for welfare.

The second assumption, ordinal comparability, implies that individuals share a common opin-

ion of what happiness is. This assumption relies on supporting evidence from two psychological

…ndings. The …rst is that individuals are somewhat able to recognise and predict the satisfaction

level of others. In interviews in which respondents are shown pictures or videos of other individu-

als, respondents were somewhat accurate in identifying whether the individual shown to them was

happy, sad, jealous, etcetera (see Sandvik et al., 1993; or Diener and Lucas, 1999). This also held

when individuals were asked to predict the evaluations of individuals from other cultural commu-

nities. Hence, it is arguable that there is a common human ‘language’ of satisfaction and that

satisfaction is roughly observable and comparable among individuals. The second …nding is that

individuals in the same language community have a common understanding of how to translate

internal feelings into a number scale, simply in order for individuals to be able to communicate

with each other. Respondents have been found to translate verbal labels, such as ’very good’ and



’very bad’, into roughly the same numerical values (e.g. Van Praag, 1991). The empirical analysis

of GS under the ordinal comparability assumption makes use of latent variable models, such as

ordered probit and logit.

The third assumption usually amounts to assuming that the di¤erence between a satisfaction

answer of, say, an 8 and a 9 is the same as the di¤erence between a 4 and a 5 (see Ng, 1996;

1997). It precludes any tendency for extreme response behaviour such as driven by cultural norms

where one is supposed to be either very sad or very glad in which case there is little welfare

di¤erence between the middle categories. Two arguments are in favour of it. Schwartz (1995)

argues that respondents try to work out what the researcher is trying to ask as if they were in

conversation with her. Hence, one may argue that respondents interpret a choice of numbers as a

cardinal question, much in the same way as they interpret weights in the supermarket in a cardinal

sense. The second, related argument, is that an even-spaced welfare di¤erence between satisfaction

answers, which is the most popular cardinalisation, corresponds to a situation where individuals

try to maximise the information they give in the questionnaire (Van Praag, 1991; Parducci, 1995).

When GS is assumed to be a cardinal measure of welfare, the empirical analysis is often realized

by means of OLS or similar methods.

2.2. Statistical assumptions

The statistical assumptions made hinge on the existence and e¤ects of unobserved factors in the

data set at hand:

S1 There are time-varying unobserved factors, εit , related to observables in an unknown way.

S2 There are time-invariant unobserved factors, Ài , related to initial levels of observed fac-

tors, and there are time-varying unobserved factors, εit , unrelated to observed factors:

cov(εit ,xit) = cov(Ài , ¢xit) = 0 and cov(Ài , xit) 6= 0.

S3 Unobserved factors, "it or Ài , are either unrelated to observed factors or their relationship

is known: cov("it , xit) = z1
it , and cov(Ài, xit) = z2

it , with z either 0 or a known function.



The …rst statistical assumption would seem to arise very often according to economic theory:

because individuals continuously make decisions based on constraints and future expectations,

anything unobserved that a¤ects GS and also changes expectations or constraints will in‡uence

observed decisions. Under an S1 situation causal inferences cannot be made.

Under S2, all relevant time-varying factors are thought to be observed. For instance through

randomised experiments or rich data sets, all the unobserved variables appearing under S1 are then

known or exogenous. The remaining …xed unobserved factors are believed to in‡uence the levels

of other variables, though not their changes. A prime candidate for such a …xed unobserved factor

in economic analyses are personality traits: Diener and Lucas (1999) and Argyle (1999) survey

extensive psychological evidence that very persistent personality traits are the best predictors of

satisfaction levels. Whereas demographic and socio-economic variables are at best found to be

able to capture only 15% of the variance of GSit (Diener, 1984), genes and persistent psychological

traits have been found to have a correlation of up to 80% with GSit (Lykken and Tellegen, 1996).

Personality traits are furthermore related to many demographic variables and hence studies that

do not include personality variables, which includes most of the economic studies mentioned in

this paper, operate in an S2-world.

Under S3, there may be unobserved factors, but they are either orthogonal to what is observed

and hence do not normally bias the results, or their relation to what is observed is (due to some

assumed structure) known and hence can be controlled for. This would seem to reasonably apply

only in cases where the data used is extremely rich and simultaneous account can be taken of all

this information.

3. Models used and their results

3.1. Models with A3.

One popular model under A3 is to estimate



GSit = x itβ + "it . (1)

Here, "it has expectation 0 and is orthogonal to x, leading to an OLS of the raw scores GSit on

xit . We include in this model set-up the very popular practice in psychology of having as the main

results a table with correlations between the raw scores GSit and some observed characteristics,

because this can be seen as a particular representation of the results of an OLS with 1 variable.

Note, however, that in that case, this single characteristic must be orthogonal to everything else

for its correlation score to be interpreted as causal.

This model requires an A3-S3 world for the resulting parameters to be seen as causal. It

is the workhorse model for cross-section data in psychology: for instance, of the more than 50

psychological studies cited in Argyle (1999) alone, all the psychological studies based on cross-

sections used this model. The same goes for cross-section studies in the surveys by Diener et al.

(1999) and Veenhoven (1997). Amongst economists, an early study by Morawetz (1977) looking

at individual satisfaction in two Israeli settlements and one of Gardner and Oswald (2001) with

time and region dummies, also employ an OLS. Apart from these two studies, the only other

examples in economics we could …nd of this model as the main model of a paper are those that

compare aggregates of satisfaction over countries and hence also implicitly rely on cardinality.

These studies include Easterlin (1974; 1995), Oswald (1997), Micklewright and Stewart (1999),

Kenny (1999), and Di Tella et al. (2001).

An advantage of assuming A3, is that it is particularly easy to relax S3 and to assume S2 by

taking a …rst-di¤erence estimator of (1):

GSit ¡ GSit¡1 = ¢xitβ + ¢"it, (2)

for which it is obvious that if there was a …xed linear individual trait, Ài, related to xit , it would

drop out. This formulation is the standard model on causality in the psychological literature

when using panel or time-series data sets (Diener and Suh, 1999; or Argyle, 1999). In economics,



Gerlach and Stephan (1996) and Korpi (1997) seem to have been the only ones so far to use the

same …xed-e¤ects OLS framework on individual level data.

Clark and Oswald (1994), Oswald (1997), Ng (1996), and the studies surveyed by Easterlin

(1995) also fall in this category because they use changes in aggregates of happiness indicators

and correlate them with changes in other aggregates. This allows for …xed-e¤ects at the level

of countries, though not for individuals. A hybrid is the paper by Di Tella et al. (2001). They

employ OLS-regressions on repeated cross-sections on individuals and, in a 2-step procedure, insert

country speci…c …xed-e¤ects. This means they do not allow for individual e¤ects. If this leads to

a bias in the coe¢cients of individual characteristics, then the changes in aggregate satisfaction

in countries will be related to changes in the averages of individual characteristics. These time-

varying changes cannot be picked up by time-invariant country …xed e¤ects. The same problem

applies for the other analyses of changes in aggregate satisfaction. Hence neither the paper by Di

Tella et al. (2001) nor the other economic papers looking at aggregate GS correct for individual

…xed-e¤ects.

A3, in conjunction with S3 or S2, has lead to the following …ndings on the ‘key’ variables of

interest in this paper, i.e. age, income, living in a partnership, children, and health:

Age, which is used as a proxy for cohort e¤ects or unobserved social status and health deterio-

ration, is found to have a small positive e¤ect (World Value Study group survey 1994). Proposed

explanations are that the old feel more in control of their environment (Ry¤, 1995), have lower

aspirations which are hence easier to meet (Cambell et al., 1976), or that it is the happy that live

longer (Argyle, 1999). The e¤ects, however, are small. Additionally, under speci…cation (2), a lin-

ear e¤ect of the change in age is indiscernible of the time-e¤ects, meaning that only its non-linear

e¤ect can be identi…ed but not its total e¤ect. More will be said on this later.

On income, opinion is very divided. Studies based on equation (1) …nd strong positive e¤ects

(Diener et al.,1995), but those based on (2) range from positive (Veenhoven, 1997; Gerlach and

Stephan, 1996; or Inglehart, 1990) to insigni…cant or even negative (Diener et al., 1993). The



most convincing studies with (2) use quasi-experimental designs that follow individuals who unex-

pectedly acquired a lot of money via lotteries or bequests. These studies also …nd little long-term

e¤ect of increases in income (see Argyle, 1999) though they do …nd strong positive short-term

e¤ects (Gardner and Oswald, 2001). This is attributed to the …nding that individuals adapt their

aspiration level when they earn more.

Living with a partner, usually proxied by a marriage dummy, is generally found to have a

strong positive e¤ect on happiness (Argyle, 1999; Veenhoven et al., 1994, Gerlach and Stephan,

1996), whether found via equation (1) or (2).

>From Cantril’s (1965) initial study of 35000 respondents in 11 countries onwards, the e¤ect

of having children on happiness does not appear to be very strong, though a meta-analysis on

cross-sectional evidence for the United States suggests their overall e¤ect to be negative (Glenn

and Weaver, 1979). This is thought to result from the fact that children increase stress levels

(Argyle, 1999).

The e¤ect of health on happiness has been found to be strongly positive under both (1) and

(2) (World Value Study group survey, 1994; Diener et al., 1999, Gerlach and Stephan, 1996).

Below, in Table 1, we show our own regressions on the GSOEP for both equation (1) and

(2). We only present the estimates of our 5 chosen variables. The sample was restricted to the

West-German workers in order to avoid the issue of the negative e¤ect of unemployment on satis-

faction and the related problem of the strong interrelation between age, health, and employment

(Clark and Oswald, 1996; Korpi, 1997; Blanch‡ower and Oswald, 2000a). Available time-invariant

controls are added for (1), but not for (2). In both speci…cations time-dummies are incorporated

for the di¤erent waves.

[Table 1 about here]

Several typical …ndings come out of Table 1. The results with model (1) are standard: satis-

faction increases with age, income, living with a partner, and health; and the e¤ect of the number

of children is negative. Adding several controls does not increase R2 much, and only signi…cantly



increases the marriage dummy. The R2 for model (2) is lower because the estimation only uses

information on the variation within the group. The results with model (2), reported in columns 5

and 6 of Table 1 are also conform to previous …ndings with this model: the number of children is

insigni…cant, whereas having a partner and health are positively signi…cant. One-year changes in

income have a reduced positive e¤ect, in line with most studies based on (2).

3.2. Models with A2

The main model under A2, i.e. assuming ordinal comparability, is of a latent variable form:

GS¤
it = xitβ + "it, (3)

GSit = k , λk · GS¤
it < λk+1,

where "it ? xit ; GS¤
it is the latent variable, and GSit is observed general satisfaction. Depending

on the assumed distribution of the error-term "it , this leads to an ordered probit or an ordered

logit model, which can be solved by maximum likelihood methods or logistic regression. In order

for the ensuing estimator to be causally interpreted, S3 has to hold. This is the model used

mostly by economists. The ordered probit model was used by Blanch‡ower and Oswald (2000a),

Clark and Oswald (1994), Plug (1997), Ferrer-i-Carbonell (2002), Frey and Stutzer (1999; 2000),

Hartog and Oosterbeek (1998), McBride (2001), Pradhan and Ravaillon (2000), van Praag et al.

(2003) and Wottiez and Theeuwes (1998). Ordered logit was the main model in, among others,

Alesina et al. (2001), Blanch‡ower and Oswald (2000b), Theodossiou (1998), Winkelmann and

Winkelmann (1998). The ordered latent-response model also seems to be the one most used in

economic analyses of job satisfaction (e.g., Clark, 1997; Levy-Garboua and Montmarquette, 1997;

Sousa-Poza and Sousa-Poza, 2000; see also Hamermesh, 2001) and health satisfaction (e.g., Cutler

and Richardson, 1997; Kerkhofs and Lindeboom, 1995).

Unlike (1), this model does not lend itself easily to an inclusion of unobserved individual

heterogeneity. In an ordered probit setting, it is known since Maddala (1983) that allowing for …xed



individual e¤ects yields inconsistent estimates. Fixed e¤ects also bias the estimates of statistics

like whether GSit increases or not, and hence there is no simple …rst-di¤erence estimator for the

…xed-e¤ect latent response model. This has severely hampered implementing an S2 assumption for

this model in a panel data context. There is a conditional maximum likelihood estimator for the

…xed e¤ects logit model that can be employed when one reduces the number of discerned categories

to two, which has been used once for general satisfaction by Winkelmann and Winkelmann (1998),

and which is more fully discussed in Section 2.5.

An alternative within this A2 world is to assume a concrete structure on the relationship

between time-invariant unobservables and observables. One option is that advocated by Mund-

lak (1978), which is to specify the correlation between the time-invariant unobservables and the

time-varying observables as a linear function of those observables (see, van Praag et al., 2003).5

Additionally, one can implement an ordered probit or ordered logit model with random individual

e¤ects that are …xed over time.6 The e¤ect of both options will be empirically examined below.

In the literature under speci…cation (3), the resulting estimate of the e¤ect of age is slightly

di¤erent in comparison with the literature under (1), not least because age-squared is often in-

cluded as a regressor in (3), whereas it is not in the psychological studies mentioned previously.

Some studies under (3) …nd that happiness increases with age till some point (around 40) where

it starts to decrease (Alesina et al., 2001), whereas others …nd that satisfaction is …rst decreasing

and then increasing (Blanch‡ower and Oswald, 2000a; Frey and Stutzer, 1999; 2000; van Praag

et al., 2003; Wottiez and Theeuwes, 1998). This high degree of ambiguity in the age e¤ect is also

noted by Theodossiou (1998). A possible explanation is that because age itself is only a proxy for

unobservables, its coe¢cient is highly dependent on the set of regressors included in the regres-

sion. For instance, the two studies based on the British Household Panel Survey (Blanch‡ower and

Oswald, 2000a; Theodossiou, 1998) do not include the number of children but do have extensive

information on work-related issues.

In all these studies, the e¤ect of income is strongly positive. In this sense, the results under



(3) are similar to the ones under (1): cross-sectional general satisfaction, be it ordinal or cardinal,

is higher with higher income.

The e¤ect of marriage or other indicators of having a steady partner is always strongly positive.

This result is consistent with empirical studies under (1) and (2).

The e¤ect of the number of children is mixed. Alesina et al. (2001) …nd for 13 countries a small

negative e¤ect of children. Negative e¤ects are also reported by Frey and Stutzer (1999; 2000)

and Wottiez and Theeuwes (1998). However, Plug (1997), using a much larger set of variables as

controls, …nds that the e¤ect is on average slightly positive, but that it varies with income and

turns negative for very low incomes.

The e¤ect of health, whenever included as a regressor, is positive (see Hartog and Oosterbeek,

1998; Wottiez and Theeuwes, 1998; or McBride, 2001).

>From the above evidence, we conclude that the results of the economic literature under (3)

and the psychological literature under (1), although di¤ering strongly in their willingness to make

a cardinality assumption, …nd surprisingly similar results with respect to these 5 key variables.

Below, in Table 2, the analyses of Table 1 are done for the ordered logit (column 1 and 2) and

ordered probit model (column 3 and 4). In column 5 and 6, the results for the ordered probit

model with individual random e¤ects are shown. Finally, in column 7 and 8, we present the

ordered probit with individual random e¤ects models in which we include the averages over time

of some variables xit under a Mundlak-assumption of the error-term.

[Table 2 about here]

>From the results in Table 2, there seems to be little di¤erence between running a simple OLS

on the raw scores, speci…cation (1), or taking an ordered logit or probit model. That is, the sign

of the coe¢cients are the same; whether a coe¢cient is signi…cant is the same; and the trade-

o¤s between variables are roughly the same, which means that indi¤erence curves are similar.

This is in line with Dunn’s (1993) simulation …ndings that the di¤erence between an OLS with

measurement error and an ordered logit without measurement error is very small. Nevertheless,



one has to keep in mind that di¤erent scaling of the variance of the error terms hampers the

comparison of the three models, i.e. OLS, Logit and Probit. The variance of the disturbance term

is 1 for Probit and π2/6 for Logit.

Adding individual random e¤ects also makes little di¤erence. Nevertheless, including the

averages of some variables to control for the correlation between the time-invariant unobservables

and the regressors xit does make a di¤erence. This di¤erence also holds when we compare it

with speci…cation (2), indicating that the results are sensitive with respect to the assumptions one

makes about time-invariant unobservables.

4. Ordinal response models with …xed e¤ects

In order to complete our empirical analysis, we here look at models that do not require S3, but

only S2, whilst avoiding the cardinality assumption often used in the psychological literature.

Such A2-S2 models combine the reluctance of economists to assume cardinality with the ability of

the ‘cardinalists’ to use individual …xed-e¤ects estimators. In the literature, there are two papers

within this approach, i.e., Winkelmann and Winkelmann (1998) and Hamermesh (2001). Their

model is

GS¤
it = xitβ + fi + " it , (4)

GSit = I(GS¤
it > 0).

Which is hence a dichotomous model with …xed e¤ects. This means they can only discern

two categories and both have to reduce their data in order to …t this model. Winkelmann and

Winkelmann reduce general satisfaction on a (0,10) scale to whether general satisfaction is higher

than 7 or not. Similarly, Hamermesh reduces his job-satisfaction measure on a 5 category scale to

a (0,1) scale. Both then look at the statistic that Chamberlain (1980) suggested:

P [GSi1, .., GSiT j
X

t

GSit , β, fi , xit] =
e

P
t(GSitxit)β

P
GS2S(

P
t GSit) e

P T
t=1 I (GSit>ki)xitβ

,



which in words is the probability of observing GSi1, .., and GSiT , conditional on their sum.7

Here, S(
P

t GSit) denotes the set of all the possible combinations of GSi1, ..,GSiT that sum up to

P
t GSit. For T=2, this means the likelihood becomes e(GSi1xi1+GSi2xi2)β

exi1β+exi2β and only uses individuals

for which GSi1 + GSi2 = 1.

Because this model can only use individuals who move across the cut-o¤ point, there is a large

loss of data. Winkelmann and Winkelmann (1998), who start out with around 10000 individuals

are left with only 2523 individuals who actually …t this condition. Hamermesh, working with the

same GSOEP data set as us, is left with only 712 individuals who …t his condition. A danger of

such heavy loss of data is that measurement errors may well become a large source of residual

variation.

Another limitation both papers face is that they do not include time-dummies which means

time-speci…c factors are not controlled for. To see what this implies, consider that for log-income

we can write ln(ptyit) = ln(pt) + ln(yit) where pt is the general price level. When including

time-dummies, any e¤ect of ln(pt) is absorbed in a time-speci…c intercept and the coe¢cient of

ln(ptyit) only re‡ects the pure e¤ect of the real incomes ln(yit). Similarly for age, we can write

ageitβage = agei1βage + (t ¡ 1)βage . Now, agei1βage is time-invariant and will hence be picked up

by the individual e¤ects. The term (t ¡ 1)βage is common to all individuals. Therefore, as noted

before, the linear e¤ect of age will be absorbed in a time-speci…c intercept. Vice versa, this means

that age will pick up any time-speci…c e¤ects if time-dummies are not used.

Hamermesh (2001) uses only a set of income variables as regressors, which means that terms

denoting current incomes can be a¤ected by in‡ation and other average di¤erences over time.

Winkelmann and Winkelmann (1998) also do not have time-speci…c intercepts, which allows them

to include age as a regressor. They …nd that age almost everywhere has a negative e¤ect which is

the reverse for what is found elsewhere in the literature. We show some sensitivity analyses in the

appendix B suggesting that the inclusion of time dummies indeed has a large e¤ect on estimated

coe¢cients.



Here, we try to address these limitations of the …xed-e¤ect logit case by extending the idea of

Chamberlain (1980) to a …xed-e¤ect ordered logit-setting. Our model is

GS¤
it = xitβ + fi + "it , (5)

GSit = k , λi
k · GS¤

it < λi
k+1,

t = 1, ..T ; k = 0, ..K ; G("it) = e"it

1+e" it is the c.d.f of "it . This is an ordered logit model with

…xed individual e¤ects and individual speci…c thresholds, λi
k. All we assume about the intercepts

are that they are increasing, i.e. that λi
k<λi

k+1. Ordinal comparability is not assumed. This means

it is an A1-S2 model.

The statistic we look at is

P [I(GSi1 > ki), .., I(GSiT > ki)j
X

t

I(GSit > ki) = c]

=

Q T
t=1f1+I(GSit>ki)(e

¡λi
ki

+(xitβ+fi )¡1)g
Q T

t=1(1+e
¡λi

ki
+(xitβ+fi )

)

P
GS2S(ki,c)

Q T
t=1f1+I(GSit>ki)(e

¡λi
ki

+(xitβ+fi)¡1)g
Q T

t=1 (1+e
¡λi

ki
+(xitβ+fi))

=
e

P T
t=1 I(GSit>ki)xitβ

P
GS2S(ki,c) e

P T
t=1 I(GSit>ki)xitβ

,

with 0<c<T and where S(ki , ci) denotes the set of all the possible combinations of GSi1, .., GSiT

for which
P

t I(GSit > ki) = ci , where ci denotes the number of times that general satisfaction is

above the barrier ki. We can again see that all the nuisance parameters drop out.

This is the same estimator as in the simple …xed-e¤ect logit case in the sense that the data

is still collapsed to binary variables, but then applied to an individual-speci…c recoding of the

data via the free parameter ki. It means we can include observations of all individuals whose

satisfaction score changes and hence much more fully encompasses the information gained by



having K categories instead of just 2.8 This includes practically all respondents with multiple

observations because any individual whose GSit changes can then be used. In the appendix D,

we describe the estimator more fully and work out how to choose ki e¢ciently.

There is another method that addresses the same limitations of the classic Chamberlain

method, namely Das and Van Soest (1996; 1999). They developed an estimator based on a

weighted average of the Chamberlain estimator for each particular k. Hence in their method,

they get an estimate βk based on those individuals for which T>
Pt=T

t=1 I(GSit > k) > 0 for each

0<k<K. Its intuitive appeal is that it involves for each individual all the possible k’s and hence

uses more information. Its main disadvantage is that there is not enough data in each category k

to actually estimate every βk. This means their method in our case cannot use the information for

all categories and hence also implies dropping a number of individuals. This would probably be

the case for most studies based on subjective satisfaction questions given that, at least in Western

countries, there are very few individuals who feel very dissatis…ed and answer one of the lowest

categories (see World Database of Happiness). Furthermore, the Das and van Soest estimator

needs stronger regularity assumptions because the weights of β k depend on the joint probability

of an individual being in the data sets for more than one k. This links it to the joint distribution

of GSi1, ..GSiT and hence to the nuisance parameters. The relative strengths and weaknesses of

the Das and Van Soest estimator as compared to our estimator are dicussed more fully in the

appendix C and D.

In Table 3 below, we report the results of our …xed e¤ects ordered logit estimator and the Das

and Van Soest estimator. For comparison, we include the results on ¢GS from Table 1 under

assumptions A3-S2. We have also added the relevant parameters of the ordered logit results,

A2-S3, of Table 2.

[Table 3 about here]

We can see that, at least for the signi…cant coe¢cients, the similarity between the coe¢cients

of the OLS on ¢GS and those of our …xed-e¤ect ordered logit is very high in the sense of size and



trade-o¤ ratios.9 Only the coe¢cients on age ¤ age are dissimilar. We also see that the number

of individuals that we lose with the …xed-e¤ect ordered logit compared to the OLS is only about

13%, which is hence the fraction of individuals whose GSit does not change in the period. Most

of these individuals in turn were only observed for 2 periods. The coe¢cients obtained by the

Das and Van Soest estimator are similar to those of our own estimator, though their standard

deviations are generally lower and the coe¢cients are somewhat larger. Their estimator is based

on less individuals though as it misses out on extreme responses.

The results of the …xed-e¤ect ordered logit models are, however, quite di¤erent from the ordered

logit results. For one, the coe¢cient of income without individual …xed e¤ects is much larger. The

age e¤ect for the simple ordered logit is negative over the relevant area. This means that although

we do not know the full e¤ect of age because of the ambiguity of the time-intercepts, we do know

that the e¤ect itself is decreasing over time. The e¤ect of the number of children with individual

…xed e¤ects is also contrary to the results of the simple logit in that the e¤ect is not negative and

non-signi…cant. For marriage and health the coe¢cients and signi…cance are much larger for the

simple logit model than when including individual …xed e¤ects.

We have performed several checks on the sensitivity of these results. Apart from varying the

set of variables included in the analyses, we have looked at the possible endogeneity problem of

self-reported health and general satisfaction. To this end, we have instrumented subjective health

with the reported number of days sicks during the year as the identifying instrument. Like Diener

et al. (1999), we also …nd that instrumenting health reduces the signi…cance of health, but the

health coe¢cient still remains strongly positive. The reported analyses in the appendix B show

that instrumenting health does not qualitatively change the other results.

The main conclusion here is that while the assumption of cardinality or ordinality does not

qualitatively change the results, the treatment of the unobserved time-invariant e¤ects does.

5. Other methodological issues in short



Some have used a structural equations framework (e.g. Van Praag et al., 2003), but this e¤ectively

only adds interpretation to a reduced form single equation as above.

Most writers throw away data with missing values. Some then reweight the data (e.g. Plug,

1997; Frey and Stutzer, 1999; 2000; Hartog and Oosterbeek, 1998), though none reports that

reweighting makes a di¤erence.

Bradlow and Zaslavsky (1999) take a di¤erent approach and, all be it for consumer satisfaction,

developed an estimator that interprets ‘no answer’ to a satisfaction question as a separate category

revealing that the individual does not have particularly strong feelings about the issue at hand.

In the case of happiness, this seems rather unlikely. Indeed, response rates are generally very high

for general satisfaction questions (in our data set above 90%).

Terza (1987) discusses how to deal with exogenous variables that are themselves only categor-

ically observed.

Terza (1985) proposes an ordered probit in which the value of the thresholds is person-speci…c

by allowing λk to be a linear function of xit . Kerkhof and Lindeboom (1995) apply this method

to health satisfaction. The main extra assumption one needs to make in order to separate the

di¤erences in thresholds across individuals from the di¤erences in actual latent satisfaction is a

reference group for whom thresholds are not a¤ected by individual circumstances.

Ravallion and Lokshin (2001; 2002) estimate an ordered probit model for a latent variable y¤
it

whose observed values yit are the change in reported satisfaction between t and t-1. If reported

satisfaction is bounded by 0 and K, then yit is bounded by -K and +K. Their model can, but in

their application does not, allow for dependence between the thresholds λk and the satisfaction

score in the previous period. The model relies on two unusual assumptions. First and foremost,

the latent variable y¤
it+1 is assumed to be 0 at t. This means that precisely after the interview

at t the happiness of the person resets itself at the middle of the category in which she happens

to be then and is not reset at any other time. Category boundaries are also reset only then. If

happiness were reset at other times, then the model of Ravallion and Lokshin (2001; 2002) no



longer holds.10 As a consequence, their notion of happiness is unique to their interviews and does

not exist at any other time. Second, the happiness change is unbounded only when happiness

changes from 0 to K or from K to 0 because only then does the variable yit attain its extrema of

-K or K. Put more intuitively: true bliss is only possible after total despair and total despair is

only possible after true bliss. We are not aware of anyone in the economic or the psychological

literature ever explicitly making or testing these two assumptions.

6. Conclusions and discussion

In this paper, we found that assuming cardinality or ordinality of the answers to general satisfaction

questions is relatively unimportant to results. What matters to the estimates is how one takes

account of time-invariant unobserved factors. The positive in‡uence of income on GS was reduced

by about 2/3 when allowing for …xed unobserved factors. Also, the e¤ect of having children

was found to be insigni…cantly positive with …xed-e¤ects, but signi…cantly negative without …xed-

e¤ects. We can only surmise that the e¤ect of many other variables used in the economic literature

so far, be they on the individual or on the national level, will turn out to be very di¤erent when

account would be taken of …xed individual traits.

As to future research, it would seem of great importance to take individual …xed-e¤ects into

account or else to include as regressors the time-invariant personality traits that have such large

in‡uence on general satisfaction. Additionally, given the importance of personality traits for

individual GS, it would seem important for disentangling the cross-country di¤erences in happiness

to understand what determines the distribution of personality traits in the population.

Finally, a note on the unimportance of income for happiness. The coe¢cient of 0.11 of log-

income in the OLS individual …xed-e¤ect model, implies that an individual would need an income

increase of over 800000 % to achieve an increase of one for general satisfaction on a (0,10) scale.

This in itself raises the question of why individuals expend so much e¤ort on obtaining more

income to the extent that most economists since Jevons (1871) have taken this as the main human



motivation. The psychologists Brickman and Cambell (1971) long ago answered this question by

proposing that humans can be on an ‘hedonic treadmill’ in which they are constantly chasing

objectives that cease to be satisfying once reached. This often repeated argument would …t the

…nding that average satisfaction hardly increases in countries where incomes increase (Diener and

Suh, 1999; Kenny, 1999), but it would seem to need a high degree of imperfect forecasting and

self-delusion on the side of individuals to be true. Is there perhaps more to individual choice than

happiness?
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Appendix A: The GSOEP sample.

The German Socio-Economic Panel (GSOEP) is a representative panel of the German popula-

tion that started in the Federal Republic of Germany in 1984. It currently tracks about 20000

individuals and 12000 households in both West Germany and the Former German Democratic

Republic (see Wagner et al., 1993; Landua, 1992; or Plug, 1997 for a detailed description). We

use the sample of 7806 West-German workers, which forms around 75% of the West-German total

sample. Because the transition to unemployment or work was low in this period (see Hunt, 1999),

this is a quite stable sample.

>From this sample, we look at the six waves of the period 1992-1997. The number of waves an

individual is observed di¤ers for various reasons. First, there are individuals who leave the panel

for reasons such as death, immigration and (temporary or permanent) attrition. Second, there are

new individuals included in the sample for reasons that include moving into a surveyed household,

reaching the age of 16, or splitting-o¤ from a surveyed household. Third, those who moved from

working to non-working, East to West, or vice versa, also have fewer than 6 observations. All this

means that we have 7995 individuals and 30569 observations in total, which can all be included

in the cross-sectional models (models (1) and (3)). Of this total, 1331 individuals only have one

recorded wave in the period and hence they drop out in the …xed-e¤ects OLS model (2), leaving

6664 individuals and 21104 observations. Of these remaining individuals, 863 have the same

general satisfaction in all waves, meaning they cannot be used for the conditional estimator of the

…xed-e¤ect logit model presented in Section 2.5, leaving 5801 individuals. Of these individuals, all

the observations are used in estimation however, meaning that these 5801 individual correspond

to 25442 observations for that model.

Regarding the variable de…nitions: age is calculated from the date of birth; income is net

monthly household income in German Marks; the number of children is the number of dependent

children younger than 16 who live in the household; whether the respondent lives in partnership is

self-reported and does not only include marriage; health is the cardinal score on the answer ‘how



satis…ed are you with your health situation’ on a (0,10) scale.



Appendix B: Sensitivity analyses of the …xed-e¤ect ordered logit model.

Our main worry is the endogeneity of GS and health since they are both subjectively evaluated.

Therefore, we estimate the linear relation ¢Healthit = ¢zitγ+uit and use ¢zit γ̂ as an instrument

for ¢Healthit . The identifying variable in zit is the number of days o¤ from work because of illness.

[Table 4 about here]

Replacing health by predicted health greatly reduces the signi…cance of the health coe¢cient

and the overall likelihood but only qualitatively a¤ects the age coe¢cient. Because age is, amongst

others, a proxy for health, this was to be expected. Hence, although the endogeneity of subjec-

tive health may indeed be responsible for the relatively high levels of R2 found in Table 1, this

endogeneity does not seriously a¤ect most results.

Table 4 also presents the sensitivity analysis for the inclusion of time-dummies. These inter-

cepts are, as expected, important to age and income results because their omission changes their

coe¢cients. Nevertheless, because the time-period we look at here is shorter and more recent than

those for Hamermesh (2001) and Winkelmann and Winkelmann (1998), this does not imply that

the same change necessarily occurs in their papers.



Appendix C: The Das and van Soest method.

The Das and van Soest (1996; 1999) method …rst recodes each individual vector fGSi1, .., GSiT g0

into a set of K vectors f(GSi1 > k), .., (GSiT > k)g0 for k=0 to K-1, where (K+1) is the number of

categories of the dependent variable and the lowest category equals 0. For each k, the parameter

vector is estimated using the Chamberlain method. Because this yields a consistent estimator we

have

p
nk(β k ¡ β ) ! N (0, §¡1

kk ), k = 0, .., K ¡ 1, (6)

whereby the data set for a particular k consists of all those individuals for whom T >

Pt=T
t=1 (GSit > k) > 0. Asymptotically §kk ! E[lk l0k ] where lk is the score vector ∂ ln L

∂βk
. To

obtain the …nal estimator β̂ , Das and Van Soest use a minimum distance step:

β̂ = arg min
β

1
2
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βK
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β
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1
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β

..

β

1
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], (7)

where the weighing matrix ­ = [wa,b] has entries wa,b = §¡1
aa §¡1

ab §¡1
bb with a, b = 0, ..K ¡ 1.

This estimator is made operational by replacing the unknown variance matrices with their sample

analog. This for instance means

§̂¡1
ab =

0
BBBBBB@

1
Nab

X

i

∂ ln Li
∂βa1

∂ lnLi
∂βbM

.. ∂ ln Li
∂βa1

∂ lnLi
∂ βbM

.. .. ..

∂ ln Li
∂ βaM

∂ lnLi
∂βb1

.. ∂ ln Li
∂ βaM

∂ lnLi
∂ βbM

1
CCCCCCA

¡1

, (8)

where M is the number of parameters and Nab is equal to the number of individuals that are both

in the data set for k=a and for k=b. Applying their method, we improve slightly on the Das and

Van Soest estimator by using the sample hessian for §¡1
aa in stead of 1

na

P
i[lik l0ik] because the

sample hessian has better …nite sample properties (see e.g, Hayashi, 2000, p. 476).



When the sample sizes are very high and there is a lot of variation in the exogeneous variables,

the Das and Van Soest estimator seems to make better use of all the available information than

our estimator. In applying it to our data though, there were a number of limitations. For one, the

estimation of β k requires that there are su¢cient individuals who have both some observations

of GSit higher than k and an observation equal or less than k. This in our case only held for

su¢ciently large k: the number of individuals reporting a 0 was for instance only 15. Even

the number of individuals reporting anything lower than a 5 was less than 300. Also, for some

variables, such as the number of children, there is not very much time-variation. This increases

the number of individuals one needs per k to get su¢cient variation for the estimator to have good

properties. Additionally, the estimation of §¡1
ab requires individuals both in the data set for k=a

and for k=b. This involves fewer individuals than that are in either the data set for k=a or k=b.

For these reasons, we could only apply the Das and Van Soest method to four groups: k=5, k=6,

k=7, and k=8. This implies a loss of data to the extent that the Das and Van Soest estimates in

the text are based on 5222 individuals which is about 11% less than the number of individuals for

our own estimator.

Apart from these practical limitations appearing in our data, there is also a theoretical disad-

vantage to the estimator of Das and Van Soest: §¡1
ab = E [lal0

b] depends on the joint distribution

of the sets k=a and k=b and hence on the distributions of λi
k and fi. This creates regularity

problems. For instance, if λi
a = λi

a+1 for some a 6= f0, Kg then category a is empty. This does

not a¤ect the validity of any of the estimators βk or their asymptotic properties. Neither will

this a¤ect our new estimator. However, in this case §¡1
ab = §¡1

a¡1,b and §¡1
b,a = §¡1

b,a¡1 for all b,

which means ­ is singular and the method breaks down. Another example: if λi
a = ¡1 for some

individuals and λi
b = +1 for all other individual with 1 < a < b < K + 1 , then no category is

empty. One still has consistent estimates for any β k and for our new estimator, but there are no

observations to estimate §¡1
a¡1,b .

Summarising, the Das and Van Soest method requires stricter regularity assumptions on the



distributions of λi
k and fi. For samples that are very big, with a lot of variation in xit , combining

the estimators βk in a fashion suggested by Das and Van Soest would seem to work well though.

In case of limited variation in some xit and where little can be presumed about the distributions

of λi
k and fi, our method is more robust.



Appendix D: The properties of the estimator.

Our discussion of the estimator and our strategy for e¢ciency takes the notionally convenient case

that β is of dimension 1 and T is equal for all individuals, but carries over to the case that T is

variable and β is multi-dimensional.

We …rst transform our data in a way that only preserves the information we can use. We

introduce the notation Ci for the set of possible di¤erent conditioning events for individual i. For

a vector fGSi1 = 5, GSi2 = 7, GSi3 = 4g0 this for instance means Ci = f

0
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1

0

1
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,

0
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0

1

0

1
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g

where the …rst element belongs to the conditioning event that GSi1 > 4 and the second element

belongs to the conditioning event that GSi1 > 5. The vectors in Ci are denoted as Cij , where j

runs from 1 to nC
i . Each vector Cij is implicitly related to a k, termed kij . The time observations in

each vector Cij are denoted by Cijt . The general problem is to …nd weights for the maximisation

problem

β̂ = arg max
β

[M =
1
N

NX

i=1

nC
iX

j=1

wij ln L(Cijj
TX

t=1

Cijt , β, xi)] (9)

s.t.
NX

i=1

nC
iX

j=1

(wij )2 = N, (10)

where M is the function to be maximised. Now, Cij is independently distributed over individuals,

but not identically distributed. We have:



lnLij = ln L(Cijj
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where C. denotes the random variable and C . the realisation. Because Ci is independently

distributed and E [L(Cijj
PT

t=1 Cijt , β,xi)] is shown above to be maximised at the true β for any

conditioning set, this establishes that the estimator β̂ follows the regularity conditions required for

extremum estimators to be consistent and normally distributed under mild conditions on wij (see

Hayashi, 2000, c. 7). Most importantly, it implies that E ∂ ln Lij
∂β = 0 for any kij . Our approach

is to impose the restriction that wij = 0,1 and that
PnC

i
j=1 wij = 1. One advantage of this is that

we can interpret the ensuing estimator as a Maximum Likelihood estimator. Starting out with a

consistent estimator of β which can be obtained by applying the standard Chamberlain method,

we in a second step set wij = 1 for the j that minimises the analytically calculated E ∂2 ln Lij

∂2β̂
for

each particular individual i. This weighting strategy is analogue to weighted least-squares analyses

where the variance is a known function of the conditioning information and the parameters β.

What our method circumvents is estimating P [wij = 1] because this would require estimating

the joint probability of Ci1, ..Cinc
i

which involves the unknown nuisance parameters. For the

same reason, we cannot construct a maximum likelihood estimator in which wij > 0 for more



than 1 j per individual because the joint probability of any pair Cij and Cil involves the unknown

nuisance parameters. Hence our method produces the maximum likelihood estimator with minimal

variance.

The Das and Van Soest method also circumvents the problem of estimating the joint probability

of Ci1, ..Cinc
i

by weighing M-1 separate consistent estimators (where each estimate for βk is, by

the way, not based on i.i.d. data because
PT

t=1 Cijt and even T varies per individual within the

same set for k). This uses more information but involves the disadvantages for …nite samples

discussed in the previous appendix and the implicit reliance on stronger regularity conditions for

the nuisance parameters.

An open question is whether we can do better than maximum likelihood. The essential problem

we have in …nding variance minimising wijP
j wij

is that this theoretically involves for each individual

estimating E ∂ ln Lij
∂β

∂ ln Lil
∂β . This expression can not be estimated empirically because we only have

one observation of ∂ ln Lij

∂β̂
∂ ln Lil

∂β̂
per individual. It also cannot be analytically calculated with some

initial estimate of β because E ∂ ln Lij
∂ β

∂ ln Lil
∂ β =

P
S(

P T
t=1 Cijt)

P
S(

P T
t=1 Cilt)

L(C ¤
ij,Cil)

L(C¤
ij)¤L(Cil)

∂Lij
∂β

∂Lil
∂ β

which involves L(Cij , Cil) which does not factor out because this joint probability depends on

the nuisance parameters. Hence, there seems no analytical way to optimally choose wijP
j wij

. A

second-best option is to order the data in such a way that we have groups of observations with the

same T and the same
PT

t=1 Cijt because these are i.i.d.. If each of these groups is large enough,

then the optimal weighting of these di¤erent groups can use sample estimates of the cross-variance,

circumventing the issue raised above. There is a large number of groups in our actual data however

because both T and
PT

t=1 Cijt vary in our data. Therefore, this is not an appealing way forward

in our case, but may be an option when data sets are very large and less heterogeneous.

Finally, we note that the implicit sampling out of Ci via the free parameter ki does not

a¤ect the estimators. For one, L(Cijβ,xi , fi , λi) is also maximised at the true β. Hence, even

though we do not know the true fi and λi , the conditional likelihood of each individual Cij

with an implicit kij will also maximise the unknown unconditional likelihood. Because we can



consistently estimate E ∂2 ln Lij
∂2β for each of the nC

i conditioning events
PT

t=1 Cijt and base our

weighing on it, means we consistently estimate the variance of our …nal conditional estimator by

1
N

P
i
P

j wij
∂ 2 lnLij

∂2 β̂
. It is the case that likelihoods with other conditioning information, such

as L(Ci jβ,xi, fi, λi) and L(GSijβ,xi, fi , λi), depend on the nuisance parameters: the asymptotic

variance of L(Cijβ,xi , fi , λi) for instance is related to the nuisance parameters fi and λk
i because

P[wij = 1] depends on them. The variance of the unconditional likelihoods is therefore unknown.



Footnotes

1 We found Easterlin (1974), Scitovsky (1975), Kapteyn and Van Praag (1976), Morawetz

(1977), Ng (1978), Wansbeek and Kapteyn (1983), Martin and Lichter (1983), Sirgy et al. (1985),

and Heady and Krause (1988).

2 E.g. Alesina et al. (2001), Blanch‡ower and Oswald (1998; 2000a), Clark and Oswald

(1994), Frijters (2000), Di Tella et al. (2000), Frey and Stutzer (1999; 2000), Hartog and Ooster-

beek (1998), Kenny (1999), Kahneman et al. (1997), Konow and Earley (1999), Oswald (1997),

Winkelmann and Winkelmann (1998), Woitiez and Theeuwes (1998).

3 There is also an increased interest in the analysis of the satisfaction with particular domains

of life, such as …nancial, job, health, consumption, and house satisfaction. See, for example, Cutler

and Richardson (1997), Ferrer-i-Carbonell and Van Praag (2002), Hamermesh (2001), Kerkhofs

and Lindeboom (1995), Pradhan and Ravallion (2000), Rain et al. (1991), Van Praag and Frijters

(1999), and Varady and Carozza (2000). The arguments in this present paper apply also to the

literature on domain satisfactions.

4 The articles by Hamermesh (2001) and Winkelmann and Winkelmann (1998) form an ex-

ception and they will hence be extensively discussed later on.

5 This implies "it = αxi + vi + ηit where αxi is meant to pick up the correlation between

…xed unobservables and observables. Obviously, other interpretations of αxi are also possible,

hampering the interpretation of results.

6 This means "it = vi +ηit with vi and ηit both normally distributed, orthogonal to each other

and both orthogonal to observed characteristics xit .

7 It is also conditional on xit , fi and β. This also holds for the models before and after but we

will from here on drop this in our notation.

8. This estimator, like the traditional …xed e¤ects logit model, cannot predict probabilities and

marginal e¤ects without making an extra assumption. For example, that the individual …xed-e¤ect

is zero.



9 These two sets of coe¢cients are also in line with the ones obtained by Ordered Probit

with random individual e¤ects when including the averages of some variables to control for the

correlation between the Ài and xit . (See Table 2).

10 The ‘resetting’ assumption is crucial because only then is there no in‡uence of …xed indi-

vidual traits on satisfaction changes in their model. Without resetting, the level of happiness last

period matters for the probability to change to another level and hence …xed traits re-appear. To

see why it matters that resetting does not occur outside of the interview, consider the extreme

alternative that resetting occurs very frequently. Then, only discrete jumps in variables or the

error term could shift a person from one happiness level to another, whilst spread-out changes in

variables could not. Hence, the assumed frequency of resetting a¤ects parameter estimates.
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