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ABSTRACT

Time-frequency distributions are used in the analysis
and processing of nonstationary signals. The Wigner-
Ville distribution (WVD) is a fundamental time-freq-
uency distribution uniquely satisfying many desirable
mathematical properties. The realisation of this distri-
bution for hardware or software platforms requires a
discrete version. Historically the majority of the work
on deriving discrete versions of the WVD has focused
on creating alias-free distributions, often resulting in a
loss of some desirable properties. Here a new discrete
time and frequency WVD will be presented for nonpe-
riodic signals and will be examined both in terms of its
properties and aliasing. In particular unitarity, an as-
sumed property for optimum time-frequency detection
and signal estimation, and invertibility, a useful prop-
erty especially for time-frequency filtering, will be ex-
amined. An efficient implementation of the distribu-
tion using standard real-valued fast Fourier transforms
will also be presented.

1. INTRODUCTION

Time-frequency (TF) signal analysis and processing
is concerned with the study of nonstationary signals
or signals with time-varying frequency content. Most
real life signals, e.g. audio, video, biomedical etc.,
are nonstationary in nature and require nonstationary
analysis for proper evaluation. Time-frequency distri-
butions (TFDs) jointly describe the TF energy content
of the signal. A particular class of TFDs, namely quad-
ratic TFDs, have proven very useful in the analysis of
nonstationary signals [1]. The Wigner-Ville distribu-
tion (WVD) uniquely satisfies most of the desirable
properties of quadratic TFDs and is the basis for all
the members of this class. The WVD is defined for a
signal z(t) as [1]
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where z(t) is the analytic associative of z(t). The
Wigner distribution is simply defined when the real
signal z(t) is used instead of the analytic one z(t).

An important part of TF analysis and processing
is signal detection and/or estimation. A basic prop-
erty a quadratic TFD needs to satisfy to be optimal in
the context of TF detection is unitarity [2]. This is
mathematically expressed for the case of the WVD by
Moyal’s formula:
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where x(t) and y(t) are analytical signals. Another
useful property of quadratic TFDs is invertibility, i.e.
the ability to obtain the original signal (up to a constant
phase factor) from the TFD. This is expressed for the
case of the WVD as
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The advantage of such a property should be obvious,
particularly if time-frequency filtering is required.

This communication is concerned with the forma-
tion of the WVD in discrete form required for imple-
mentation on arbitrary hardware/software platforms.
An ideal discrete WVD (DWVD) should closely re-
semble the continuous WVD and satisfy all its proper-
ties. A DWVD is proposed which aims to approximate
this ideal DWVD and is examined in terms of alias-
ing and its ability to satisfy desirable quadratic TFDs
properties, in particular unitarity and invertibility as
described in Eq. (1) and Eq. (2). The proposed dis-
tribution will be defined for nonperiodic bandlimited
signals with finite time support. To the authors knowl-
edge it is the first DWVD to satisfy unitarity whilst
remaining alias free for this particular class of signals.

Finally an efficient implementation of the distribu-
tion will be given using standard fast Fourier transform
(FFT) routines resulting in O(N? log, N) real multi-
plications for the 2N x N distribution.



2. DISCRETE TIME AND FREQUENCY
WIGNER-VILLE DISTRIBUTIONS

Claasen and Mecklenbriuker introduced the discrete-
time Wigner distribution as [3]
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where finite signal 2(t) is sampled at sample rate f;.
Aliasing is avoided when z[n] is analytic or when f;
is twice the normal Nyquist rate. The discrete-time
discrete-frequency WD, henceforth referred to as the
DWD (or DWVD if the analytic signal is used), is ob-
tained by sampling in the frequency domain. The vast
majority of the work in this area has been concerned
with creating alias free distributions. A good review
of various DWDs and their relationship to aliasing is
described in [4].

A problem with the DWD represented in Eq. (4)
is that the distribution does not have a proper discrete
quadratic signal representation, i.e. some form includ-
ing the terms x[a]z*[b], where 0 < a,b < N — 1.
In the above representation, x[a]z*[b] exists only for
a, b both even or a, b both odd and not a even b odd
(and visa-versa). This leads to an immediate problem
with the distribution satisfying the unitarity and invert-
ibility property expressed for the continuous case in
Eq. (2) and Eq. (3). As unitarity is an assumed prop-
erty for optimum time-frequency detection, it has been
empirically shown, as expected, that detectors using
DWDs not satisfying this property exhibit serious per-
formance degradation [5]. Therefore distributions sat-
isfying this property will now be examined.

Chassande-Mottin and Pai [6] recently introduced
a DWVD with the explicit reason of satisfying the uni-
tarity property. This distribution for a signal z(t) is
described as
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where 2[2n] = Z[2n+1] = z[n],¥n € {0,1,...,N —
1}, thus resulting in a N x 2N grid. This distribution
has reduced aliasing though is not an alias-free dis-
tribution. The DWD for periodic discrete time-domain
signals were considered by O’Neill ez al. [7] and Rich-
man et al. [8]. Independently they defined a DWD
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where (a)y = a mod N. The distribution only ex-
ists when NN is odd and where ¢ = % Itis described

on a N x N sample grid. Although this is an alias-
free distribution, due the quadratic nature and periodic
assumptions [7] of the DWD artifacts are present in
the distribution. Therefore this distribution does not
closely represent the continuous version. An alias free
distribution will be proposed that closely resembles its
continuous counterpart whilst satisfying both unitarity
and invertibility properties.

2.1. Proposed DWVD

Peyrin and Prost [9] introduced a DWVD assuming
that the discrete signal is periodic, represented as
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To avoid aliasing either the analytic associative of z[n]
is used or z[n] is oversampled by at least a factor of
two. The distribution contains an interpolation in both
the discrete time and frequency domains and is repre-
sented on a 2N x 2N sample grid.

The proposed distribution is based on the Peyrin
and Prost distribution with two simple modifications.
One is that the analytic signal is always used, thus
defining a DWVD, and the other is that the signal is
assumed to be nonperiodic. This distribution can be
expressed as a function of a time-lag domain kernel as
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forl; = max{0,n—(N—1)}andly = min{n, N—1}.
It can also be defined as a function of a frequency-
doppler domain kernel as
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where Z [k] is the discrete frequency domain represen-
tation of z[n] with f = kfs/2N,for0 < k < 2N —1,
i.e. twice the usual frequency domain sampling rate.
The distribution is represented on a 2N x N sam-
ple grid. Henceforth the sampling information dis-
played in the argument of the DWVD function will be
dropped for the simpler notation of W [n k].

An important feature of the proposed distribution
is that it can be expressed in quadratic form, as
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where the Kronecker delta function §[n] is defined as
d[n] =1 forn = 0and §[n] = 0 forn # 0.

To illustrate the differences between different dis-
tributions a simple example can provide some insight.
The four previously discussed distributions, namely
the Chassande-Mottin and Pai (WZ(C)) , Richman et
al. and O’Neill (W )) Peyrin and Prost (W( )) and
modified Peyrin and Prost (Wz ) are all tested with
an analytic linear frequency modulated signal of length
N = 128 samples (except for WZ(R) where N = 127)
and displayed in Fig. 1. Both WZ(R) and Wz(P) suf-
fer from artifacts (also known as cross terms [1]) due
to the assumed periodicity of the signal and quadratic
nature of the distribution. WZ(R) also contains similar
artifacts due to the assumed periodicity in the discrete
frequency domain. WZ(C) more closely represents the
expected distribution, however an artifact (aliasing [6])
is present in the negative spectrum. W,,EM) however is
free from artifacts arising from both aliasing and pe-
riodic effects. Implementations of W(P) and W(M)
from their respective definitions in Eq. (5) and Eq. (6)
contain only positive spectral components as illustrated
in Fig. 1.
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Fig. 1. DWVDs for (a) W', (b) W™, (¢) W' and
(d) WM distributions of a linear EM signal where the
frequency law linearly increases from 0.1Hz to 0.4Hz.
Two contour levels are displayed with level E, /4 for
black and —F /4 for grey, where E, represents the
signal’s energy.

3. PROPERTIES OF PROPOSED DWVD

The proposed distribution will now be examined in
terms of some of its properties, namely the time and
frequency marginals, unitarity and invertibility. The
inclusion of the time and frequency marginal prop-
erties relates the distribution to the notion of a time-
frequency energy distribution, which its continuous co-
unterpart adheres to. Unitarity and invertibility are in-

cluded here due to their importance in signal detection
and/or estimation and time-frequency filtering, as pre-
viously discussed.

1) Time Marginal: The summation of the distribu-
tion over k yields the instantaneous power of the signal
at even time samples in the distribution:
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2) Frequency Marginal: The summation of the dis-

tribution over n yields the energy spectrum of the sig-
nal at even frequency samples in the distribution:
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3) Unitarity or Moyal’s Formula: Moyal’s form-
ula, described in Eq. (2), is preserved by the proposed
discrete distribution for two analytic signals z[n] and

y[n] as
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4) Invertibility: The ability to extract the time do-
main signal from the distribution, up to a constant ph-
ase factor, is called the invertibility property and the
proposed distribution satisfies this property as
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4. EFFICIENT IMPLEMENTATION OF DWVD

Peyrin and Prost provided an implementation of their
distribution based on independent computation of odd
and even time slices [9] of Eq. (5) using FFTs. This

representation can be simply rewritten for the proposed
distribution as
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with the kernels defined as K [n, m] = z[n+m]z*[n—
m] and Ks[n, m| = z[n+m]z*[n —m+1]. The order
of computational complexity of the DWVD is domi-
nated by the number and type of FFTs required. An
efficient implementation will be presented here to re-
duce this computational burden.

4.1. DWVD for Even Time Samples

The half of the DWVD containing the even time sam-
ples is equivalent to the DWVD version of Eq. (4)
spectrally sampled at f = kf;/2N. Boashash and
Black [10] provided an efficient implementation using
a complex FFT algorithm by taking advantage of the
Hermitian nature of the time-lag kernel as K3 [n, —m)|
= K{[n, m]. Therefore the discrete Fourier transform
(DFT) produces a purely real output and two time sli-
ces can be implemented in one complex DFT. This im-
plementation therefore requires N/2x complex DFTs
of length N.

A more efficient method would be to use a FFT
routine specifically designed to take advantage of the
conjugate symmetry of the kernel, as the ‘packing’ of
two time-slices into one FFT requires some computa-
tional overhead. Chan and Ho suggest [11] using an
inverse real-valued FFT algorithm, as the output of a
real DFT transform results in a conjugate symmetrical
sequence. This appears to the most efficient method
as a real FFT requires half the multiplications and less
than half the additions of its complex counterpart [12].

Although complex and (forward) real-valued FFT
routines are readily available in signal processing tools
such MATLAB™ and OCTAVE, the same is not true
for the inverse real-valued FFT routines. With a small
overhead (2N real additions using a DFT of length
N), a real-valued FFT routine can be utilised by us-
ing some properties of the DFT [13]; namely that an
even real input produces a purely real output and an
odd real input produces a purely imaginary output. A
new real input can be formed for the conjugate sym-
metrical sequence k[n] by expressing

uln] = R{k[nl} + S{k[n]} (10)

where R{k[n]} is even and I{k[n]} is odd (R and &
represent the real and imaginary parts respectively).
Therefore the DFT of k[n], labelled K[k], can be cal-
culated using

KK = RUK} - S{UK}  aD



with U [k] representing the DFT of the real valued fun-
ction u[n]. This method results in N x real DFTs of
length N and is preferable to Boashash-Black method
as the overall computational load is smaller.

4.2. DWVD for Odd Time Samples

The conjugate symmetry of the kernel in Eq. (8) is un-
fortunately not present in Eq. (9). However a method
is presented that again halves the number of required
FFTs and also reduces the total number of multiplica-
tions. Letting /("/Nk = A, + By Eq. (9) can be
rewritten, for Ay # 0, as

2
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as W) [2n + 1,k] € R. This expression replaces
the N2 complex multiplications by N? real multipli-
cations. Also as only the real part of the right hand
side of the above expression is needed the kernel can
be replaced by Ky[n, m] as
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where the new kernel is formed by forcing conjugate

symmetry on Ks[n,m], i.e.
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Thus Eq. (9) can be rewritten as
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for Ay, # 0 which can be implemented with real FFTs
using the method described for Eq. (8).

4.3. Special Case for Odd Time Samples

The special case when Ay, = 0 arises for k = N/2 and

(M) [2n 4+ 1, N/2] must be calculated as Eq. (12)
does not exist. Using a decimation-in-frequency ap-
proach [13] to the odd values of n and substituting
k = N/2 into Eq. (7) results in
o—i%n N-1

ol (m/N)u

u=0
(K yu] — K 5[u+ N])ed Gm/Nun - (14)
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with K ;[u] = Z[u] Z*[(N—u)n] for0 < u < 2N 1.
As certain symmetries exist in the kernel K ;[u], in
particular K 4[N + u] = K%[2N — u] and K [u
N/2| = K}[N/Z —u] for0 < u < N/2— 1, the total
kernel K 5 = &/("/N)v (K ,[u] — K ;[u + N1J) is con-
jugate anti-symmetrical. The inverse DFT (IDFT) of
this sequence results in a purely imaginary output [13]
and by summing the real and imaginary parts of K 7]
to create a real input, as in Eq. (10), the IDFT output
can be obtained by summing the output, as opposed
to the subtraction in Eq. (11), coupled with a simple
multiplication by j (with j = /—1). This results in
a real IDFT, however a real DFT is desired to take ad-
vantage of the real FFT algorithms. The IDFT can be
represented as a DFT by using the duality property of
DFTs [13] which requires a multiplication by /N and a
reverse of the indices of the output sequence.

4.4. Computational Cost

The computational cost in terms of real multiplications
and real additions, denoted M, and A, respectively,
for the proposed DWVD will be accessed. It is as-
sumed that one complex multiplication requires M, =
4 and A, = 2. It is also assumed that the real FFT
routine used is a split-radix type [12] requiring M, =
N/2logy N —3N/2 + 2 and A, = 3N/2log, N —
5N/2 + 2 for real signal of length N.

For even time samples of n Eq. (8) requires the
computation of Kj[n,m] from z[n] with 0 < n <
N —1land —N/2+1 <m < N/2 — 1. This requires
M, = N? and A, = N?/2 by taking advantage of
the symmetry Ki[n,—m] = K{[n,m] and using the
identity K[n,0] = |z[n]|?>. Nx real FFTs of length
N are required with the overhead involved equal to
A, = (3/2)N? — N.

For the odd n case the kernel K1[n,m], defined
within0 <n < N—2and —N/2+1 <m < N/2-1,
represented in Eq. (13) can be formed from z[n] with
M, = N? + 4N —2and A, = N? + 2N — 3. This
is achieved by exploiting the symmetry in the kernel
Ki[n,m], as Ki[n,—m| = Kf[n,m + 1] for 1 <
m < N/2 — 1. The formation of (A, + B?/Ay) for
0 < k < N — 1 and multiplication by the output of the
DFT requires M, = N2+ N —2and A, = N — 1.
(N — 1) x real FFTs of length N are required with the
overhead involved equal to A, = (3/2)N? — N — 2.

Also for the odd n case WZEM) [2n + 1, k] ‘k N2>
expressed in Eq. (14), for0 <n < N -2 needs to cal-
culated. The kernel K, 5[] can be formed from Z[u]
with M, = 8N + 4 and A, = 6N + 2, exploiting
the symmetries of kernel K ; discussed in Section 4.3.
1x real FFT of length N is used requiring overhead of
A, =2N. Also M, = N is required for the multipli-
cation of the complex exponential in front of the right
hand side of Eq. (14).

For completeness the formation of Z[k] from z[n]
can be considered, which exists for 0 < k£ < 2N —



1. Assuming that Z[k] is known (as this is required
to form the analytic signal z[n] [1]) this represents
Z[2k]. Therefore only the frequency domain inter-
preted samples Z[2k + 1] need be computed. Apply-
ing a decimation-in-frequency approach [13] this can
be calculated as

N—1
Z)2k+1] = Z e*j(ﬂ'/N)nZ[n]efj(%r/N)nk.
n=0

Thus this requires M,, = 4N and A, = 2N plus 1x
complex FFT routine.

The total computations can be added for both even
and odd n which results in the following computa-
tional load:

M, = N%logy N + N(19 + log, N) + 4

1
A, = N?(3logy N — 5) + N (124 3logy N).

Thus the order of complexity for WM [n, k] result-
ing in a 2N x N grid is M,, = O(N?log, N) and
A, = O(3N?log, N). This is a significant reduction
on the original DWVD W{") [n, k] method by Peyrin
and Prost as they suggested a method resulting in M,
= O(8N?%log,2N) and A, = O(10N?log, 2N) [9].

5. CONCLUSION

An alias-free discrete time and frequency Wigner-Ville
distribution for nonperiodic signals has been proposed.
This distribution, a modified version of the Peyrin and
Prost distribution, has many advantages over other D-
WVDs. Firstly it satisfies the unitarity property (or
Moyal’s formula) making it a suitable distribution for
use in time-frequency detection. To-date no other alias-
free DWVD satisfies this property for nonperiodic sig-
nals. Secondly it satisfies the invertibility property,
thus the signal can be easily completely recovered (up
to a constant phase factor) from the distribution. This
is a particularly useful property for time-frequency fil-
tering.

An efficient implementation of the proposed distri-
bution is also presented using only standard real FFT
routines. The implementation requires O(N? log, V)
and O(3N?log, N) real multiplications and real ad-
ditions respectively for signal length N. This can be
compared with the implementation suggested by Pey-
rin and Prost which results in O(8N?log, 2N) real
multiplications and O(10N?2 log, 2N) real additions.
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