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Abstract: 
 

  The thermal decomposition of hydrotalcites with chromate, molybdate and sulphate in the 

interlayer has been studied using thermogravimetric analysis coupled to a mass spectrometer measuring 

the gas evolution.  X-ray diffraction shows the hydrotalcites have a d(003) spacing of 7.98 Å with very 

small differences in the d-spacing between the three hydrotalcites. XRD was also used to determine the 

products of the thermal decomposition. For the sulphate-hydrotalcite decomposition the products were 

MgO and a spinel MgAl2O4, for the chromate interlayered hydrotalcite MgO, Cr2O3 and spinel. For the 

molybdate interlayered hydrotalcite the products were MgO, spinel and MgMoO4.  EDX analyses 

enabled the formula of the hydrotalcites to be determined. Two processes are observed in the thermal 

decomposition namely dehydration and dehydroxylation and for the case of the sulphate interlayered 

hydrotalcite a third process is the loss of sulphate.  Both the dehydration and dehydroxylation take 

place in three steps each for each of the hydrotalcites.  
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Introduction 

 

 Hydrotalcites or layered double hydroxides (LDHs) are fundamentally 

anionic clays, and are less well-known than cationic clays like smectites. The 

structure of hydrotalcite can be derived from a brucite structure (Mg(OH)2) in which 

e.g. Al3+ or Fe3+ (pyroaurite-sjögrenite) substitutes a part of the Mg2+. Further 

mixtures of these mineral phases with multiple anions in the interlayer are observed. 

When LDH,s are synthesized any appropriate anion can be placed in the interlayer. 

This substitution creates a positive layer charge on the hydroxide layers, which is 

compensated by interlayer anions or anionic complexes [1, 2].  The hydrotalcite may 

be considered as a gigantic cation which is counterbalanced by anions in the 

interlayer. In hydrotalcites a broad range of compositions are possible of the type 

[M2+
1-xM3+

x(OH)2][An-]x/n.yH2O, where M2+ and M3+ are the di- and trivalent cations 

in the octahedral positions within the hydroxide layers with x normally between 0.17 

and 0.33. An- is an exchangeable interlayer anion [3].  In the hydrotalcites reevesite 

and pyroaurite, the divalent cations are Ni2+ and Mg2+ respectively with the trivalent 

cation being Fe3+.  In these cases the carbonate anion is the major interlayer counter 

anion. Of course when synthesizing hydrotalcites any anion may be used.  Normally 

the hydrotalcite structure based upon takovite (Ni,Al) and hydrotalcite (Mg,Al) has 

basal spacings of ~8.0 Å where the interlayer anion is carbonate.   

 

 Thermal analysis using thermogravimetric techniques (TG) enables the 

mass loss steps, the temperature of the mass loss steps and the mechanism for the 

mass loss to be determined.  Thermoanalytical methods provide a measure of the 

thermal stability of the hydrotalcite.  

 

The reason for the potential application of hydrotalcites as catalysts rests with 

the ability to make mixed metal oxides at the atomic level, rather than at a particle 

level. One would expect that the potential application of hydrotalcites as catalysts will 

rest on reactions occurring on their surfaces. The significance of the formation of the 

mixed metal oxides is their importance as a transition material in the synthesis of 

catalysts. In this work we report the thermogravimetric analysis of hydrotalcite with 

sulphate, chromate or molybdate in the interlayer.   
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Experimental 

 

Synthesis of hydrotalcite compounds:  

 

 A mixed solution of aluminium and magnesium nitrates ([Al3+] = 0.25M and 

[Mg2+] = 0.75M; 1M = 1mol/dm3) and a mixed solution of sodium hydroxide ([OH-] 

= 2M) and the desired anion, at the appropriate concentration, were placed in two 

separate vessels and purged with nitrogen for 20 minutes (all compounds were 

dissolved in freshly decarbonated water). The cationic solution was added to the 

anions via a peristaltic pump at 40mL/min and the pH maintained above 9. The 

mixture was then aged at 75°C for 18 hours under a N2 atmosphere. The resulting 

precipitate was then filtered thoroughly, with room temperature decarbonated water to 

remove nitrates and left to dry in a vacuum desiccator for several days.  In this way 

hydrotalcites with different anions in the interlayer were synthesised.  

 The phase composition was checked by X-ray diffraction and the chemical 

composition by EDXA analyses. 

 

X-ray diffraction 

 

 X-Ray diffraction patterns were collected using a Philips X'pert wide angle X-

Ray diffractometer, operating in step scan mode, with Cu Kα radiation (1.54052 Å). 

Patterns were collected in the range 3 to 90° 2θ with a step size of 0.02° and a rate of 

30s per step. Samples were prepared as a finely pressed powder into aluminium 

sample holders. The Profile Fitting option of the software uses a model that employs 

twelve intrinsic parameters to describe the profile, the instrumental aberration and 

wavelength dependent contributions to the profile. 

 

SEM and X-ray microanalysis 

 

Hydrotalcite samples were coated with a thin layer of evaporated carbon and 

secondary electron images were obtained using an FEI Quanta 200 scanning electron 

microscope (SEM). For X-ray microanalysis (EDX), three samples were embedded in 
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Araldite resin and polished with diamond paste on Lamplan 450 polishing cloth using 

water as a lubricant. The samples were coated with a thin layer of evaporated carbon 

for conduction and examined in a JEOL 840A analytical SEM at 25kV accelerating 

voltage. Preliminary analyses of the hydrotalcite samples were carried out on the FEI 

Quanta SEM using an EDAX microanalyser, and microanalysis of the clusters of fine 

crystals was carried out using a full standards quantitative procedure on the JEOL 840 

SEM using a Moran Scientific microanalysis system. Chromite was used as a standard 

for Cr, molybdate for Mo, anhydrite for S. Almandine garnet and pyrope garnet were 

also used in the calibration pf the EDX analyses.   Oxygen was not measured directly 

but was calculated using assumed stoichiometries to the other elements analysed. 

 

Thermal Analysis 

 

 Thermal decompositions of the hydrotalcites were carried out in a TA® 

Instruments incorporated high-resolution thermogravimetric analyzer (series Q500) in 

a flowing nitrogen atmosphere (80 cm3/min). Approximately 50mg of sample was 

heated in an open platinum crucible at a rate of 2.0 °C/min up to 1000°C. The TGA 

instrument was coupled to a Balzers (Pfeiffer) mass spectrometer for gas analysis. 

The following gases were analyzed: CO, CO2, SO2, SO3, and H2O. Mass/charge 

ratios are measured for example O2 is 32/1 and 32/2. 

 

Band component analysis of the DTG curves was undertaken using the Jandel 

‘Peakfit’ software package, which enabled the type of fitting function to be selected 

and allows specific parameters to be fixed or varied accordingly. Band fitting was 

done using a Gauss-Lorentz cross-product function with the minimum number of 

component bands used for the fitting process. The Gauss-Lorentz ratio was maintained 

at values greater than 0.7 and fitting was undertaken until reproducible results were 

obtained with squared correlations of r2 greater than 0.995. 

 

 

Results and discussion 

 

X-ray diffraction 
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 The X-ray diffraction patterns of the hydrotalcite of formula 

(Mg6Al2(OH)16(XO4).4H2O) where X is S, Cr or Mo is shown in Figure 1.  The figure 

clearly shows the X-ray pattern for hydrotalcite with no peaks due to other phases. 

The d(003) spacing for the sulphate, chromate and molybdate interlayered 

hydrotalcites are 7.99, 7.98 and 7.97 Å respectively. Such values are close to the d-

spacing values reported for the natural hydrotalcite with sulphate in the interlayer [4].  

 

 The XRD of the products of the thermal decomposition of the chromate 

interlayered hydrotalcite shows that MgO (JCPD file 45-0946), Cr2O3 (01-1294) and 

spinel (75-1798) are formed (Figure 2). The products of the thermal decomposition of 

the molybdate-hydrotalcite were MgO, MgMoO4 (21-0961) and MgAl2O4.  The 

products of the sulphate-hydrotalcite were a mixture of the oxides of Mg and Al. 

These types of products are in agreement with published data [5]. 

 

 

 

 

EDX analyses 

 

 The EDX analyses are illustrated by Figures 3a, 3b and 3c, being the analyses 

for the hydrotalcite interlayered with chromate, molybdate and sulphate. The results 

of nine analyses are reported in Table 1.  In all three analyses the ratio of Mg to Al is 

slightly less than the theoretical value of 3:1. For the chromate interlayered 

hydrotalcite the value is 2.771, for the molybdate interlayered hydrotalcite the value is 

2.89 and for the sulphate interlayered hydrotalcite the value is 2.75.  The surface of 

the brucite structure should have no charge per Mg atom. When a trivalent anion is 

substituted for the Mg such as Al, a charge of 1 is introduced. For two Al atoms the 

charge is 2. Thus this positive charge will be counterbalanced by the anions chromate, 

molybdate or sulphate. The ratio of Al to anion is theoretically 2:1. For the chromate 

interlayered hydrotalcite the ratio of Al:Cr is 6.20, for the molybdate interlayered 

hydrotalcite the value is 4.70 and for the sulphate interlayered hydrotalcite the value is 

5.06.  Thus the ratio of the moles of the anions is low compared with the theoretical 

value. The EDX analyses clearly show no impurities. No C for carbonate or N for 
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nitrate is present within the limits of the experiment. Thus it is concluded that the 

balance of the negative charge must be due to hydroxyl ions in the interlayer. 

Vibrational spectroscopy supports this conclusion as no carbonate or nitrate bands 

were found in the Raman spectra of the hydrotalcite.  Thus the formula of the 

synthetic hydrotalcites interlayered with chromate may be given by 

Mg6Al2(OH)16(CrO4,OH).4H2O and similarly for the hydrotalcite interlayered with 

molybdate and sulphate. 

 

Thermogravimetry and Mass spectrometric analysis of the chromate-

hydrotalcite 

 

 High resolution thermogravimetry can measure to six decimals of mass 

enabling subtle mass loss steps to be obtained.  This enables changes in 

stoichiometries to be made.  Phase changes would need to be identified using XRD. 

When the TG is converted to a DTG curve then additional information often 

differentiating between closely overlapping mass loss steps can be obtained.  The use 

of evolved gas mass spectrometry when coupled to the TG allows definitive 

identification of the evolved gases. Normally the DTG curve matches the evolved gas 

mass spectrum curve. Such techniques have been used to study quite complex 

mineralogical systems [6-10].   

 

 The thermogravimetric analysis of hydrotalcite with chromate as in the 

counterbalancing ion is shown in Figure 4.  The ion current graphs reporting the mass 

of evolved gases is shown in Figure 5.  Five mass loss steps are observed at 99, 192, 

354, 427 and 452 °C which correspond to percentage mass losses of 7.4, 4.8, 10.1, 

10.4 and 3.8.  An additional mass loss of 2.6 % occurs over a temperature range 

centred on 498 °C.  The ion current curves for masses 18, 17 and 16 show that water 

is evolved at around 109, 191, 349 and 446 °C.  This means that water and/or OH 

units are being lost at these temperatures. The mass loss of 44 (CO2) proves that some 

carbonate is present which decomposes to CO2 at 354 and 414 °C.  Evolved oxygen is 

observed at 463, 490 and 618 °C but appears to be lost continuously over an extended 

temperature range. 
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 The first two mass loss steps are attributed to the removal of water from the 

hydrotalcite interlayer. The mass loss steps at 354, 427 and 452 °C are attributed to 

the dehydroxylation of the chromate interlayered hydrotalcite. The mass loss changes 

at 498 and the long range temperature decrease in mass is assigned to a loss of 

oxygen.  The theoretical mass loss based upon the formula 

Mg6Al2(OH)16(CrO4).4H2O for the loss of water is 10.9 %, and for the OH units is 

21.8 %. The experimental mass loss for water if the first two steps are assumed to be 

the mass losses due to dehydration, 12.2 %. This value is slightly higher than the 

theoretical value and may be due to adsorbed water. Therefore the compound may be 

hydrated with more than four water units in the formula. The DTG profile for 

temperature range from 240 to 440 °C shows three dehydroxylation steps. The 

relative areas of the three DTG peaks are 10.2, 10.47 and 4.55 % which is 

approximately a ratio of 10, 10 to 5. Thus the ratio of moles of OH units lost in these 

three steps is 2:2:1.   

  

Mechanism for the decomposition of hydrotalcite with chromate in the interlayer 

 

The following steps describe the thermal decomposition of the chromate hydrotalcite. 

Step 1 at 99 °C 

This step includes the loss of adsorbed water. 

Mg6Al2(OH)16(CrO4).4H2O →Mg6Al2(OH)16(CrO4).2H2O + 2 H2O 

This step represents the first dehydration step and shows two moles of water are lost 

at this temperature. 

 

Step 2 at 192 °C 

Mg6Al2(OH)16(CrO4).2H2O →Mg6Al2(OH)16(CrO4) + 2 H2O 

This step represents the second dehydration step and shows two moles of water are 

lost at this temperature. 

 

Step 3 at 354 °C 

Mg6Al2(OH)16(CrO4) →Mg6Al2O3(OH)10(CrO4) + 3H2O 
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This step represents the first dehydroxylation step and 6 OH units are lost at this 

temperature. The oxygen is taken up by the cations present and is shown 

representatively as Al2O3 

 

Step 4 at 416 °C 

Mg6Al2O3(OH)10(CrO4) → Mg3(3MgO)Al2O3(OH)4(CrO4) + 3H2O 

This step represents the second dehydroxylation step and 6 OH units are lost at this 

temperature.  

 

Step 5 at 452 °C 

Mg3(3MgO)Al2O3(OH)4(CrO4) → (Mg5MgO)Al2O3(CrO4) + 2H2O 

This step represents the third dehydroxylation step and 4 OH units are lost at this 

temperature.  

 

Step 6 at 498 °C 

2[(Mg5MgO)Al2O3(CrO4)] → 10MgO + 2MgAl2O4 + Cr2O3 + 1.5O2 

This step shows that oxygen is lost and the final products of the thermal 

decomposition step are the oxides of Cr and Mg and a magnesium aluminate (spinel). 

 

Thermogravimetry and Mass spectrometric analysis of the molybdate-

hydrotalcite 

 

The TG and DTG of molybdate-hydrotalcite are shown in Figure 6 and the ion current 

curves of the evolved gases in Figure 7.  The TG analysis shows five mass loss steps 

at 94, 189, 415, 433 and 481 °C with mass losses of 8.3, 7.0, 12.4, 9.1 and 3.6 %.  The 

ion current curves show that water is evolved in each of these steps except the final 

step. The MS=44 ion current curve shows that some CO2 is lost indicating the 

presence of some carbonate in the interlayer as well as the molybdate ion. Raman 

spectroscopy shows that the amount of carbonate is at very low concentrations. This 

simply shows the difficulty of keeping CO2 out of the preparation route for the 

synthesis of the molybdate-hydrotalcite.  The total mass loss of the thermal 

decomposition is 40.3 %. From the mass of the final products it is calculated that 



 9

there were 7 moles of water in the starting material.  Thus the molybdate interlayered 

hydrotalcite is similar to a hydrohonnesite in formulation.  

 

 

 

Mechanism for the decomposition of hydrotalcite with molybdate in the 

interlayer 

 

The following steps describe the thermal decomposition of the molybdate 

hydrotalcite. 

Step 1 at 94  °C 

This step includes the loss of adsorbed water. 

Mg6Al2(OH)16(MoO4)·4H2O →Mg6Al2(OH)16(MoO4)·H2O + 3 H2O 

This step represents the first dehydration step and shows three moles of water are lost 

at this temperature. 

 

Step 2 at 189 °C 

Mg6Al2(OH)16(MoO4)·H2O →Mg6Al2(OH)16(MoO4) +  H2O 

This step represents the second dehydration step and shows one mole of water are lost 

at this temperature. 

 

Step 3 at 404 °C 

Mg6Al2(OH)16(MoO4) →Mg6Al2O4.5(OH)7(MoO4) + 4.5H2O 

The DTG curve for the 330 to 450 °C may be curve resolved with two peaks at 404 

and 433 °C with relative areas of 12.0 and 9.5 %. If these mass loss steps are ascribed 

to the loss of the OH units then it is suggested that 9 OH units are lost at 404 °C and 7 

at 433 °C. This step at 404 °C represents the first dehydroxylation step and 9 OH units 

are lost at this temperature. The oxygen is taken up by the cations present and is 

shown representatively as Al2O3 

 

Step 4 at 433 °C 

Mg6Al2O4.5(OH)7(MoO4) →Mg6Al2O8(MoO4) + 3.5H2O 
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This step represents the second dehydroxylation step and 7 OH units are lost at this 

temperature.  

 

Step 5 at 481 °C 

Mg6Al2O8(MoO4) → 4MgO + MgMoO4 + MgAl2O4 + O2 

This step shows the final thermal decomposition step. 

 

 

Thermogravimetry and Mass spectrometric analysis of the sulphate -hydrotalcite 

 

 The TG and DTG curves for sulphate-hydrotalcite are shown in Figure 8 and 

the ion current curves for the gas evolution in Figure 9.  Three mass loss steps are 

observed at 56, 110 and 198 °C which are attributed to dehydration. The total mass 

loss for these three steps is 13.9 %. The theoretical mass loss based on 4 water units in 

the structure is 11.12 % which is in agreement with the experimental value. This value 

is slightly larger as it includes some adsorbed water. Three mass loss steps are 

observed at 363, 437 and 476 °C with mass loss steps of 5.2, 15.4 and 4.6 %. The first 

two steps are assigned to dehydroxylation and the last step to a loss of oxygen. The 

theoretical mass loss for 16 OH units is 22.57 % which is slightly higher than the 

experimental value of 20.6 %. It is noted some oxygen is lost at 484 °C which would 

increase the experimental mass loss. A higher mass loss step is observed at 928 °C 

which is accounted for by the loss of sulphate. The theoretical mass loss of sulphate is 

10%. Trace amounts of carbonate in the interlayer may account for this lower than 

expected value. This would increase the mass loss over the 450 to 500 °C and 

decrease the mass loss at 928 °C.  It is very difficult to synthesise hydrotalcites with 

no carbonate in the interlayer [11]. 

 

 

Mechanism for the decomposition of hydrotalcite with sulphate in the interlayer 

 

The following steps describe the thermal decomposition of the sulphate interlayered 

hydrotalcite. 

Step 1 at 110 °C 
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This step includes the loss of adsorbed water. 

Mg6Al2(OH)16(SO4).4H2O →Mg6Al2(OH)16(SO4).H2O + 3 H2O 

This step represents the first dehydration step and shows three moles of water are lost 

at this temperature. The relative areas of the DTG profile at 110 and 198 °C are 10.5 

to 3.03 %. This means the loss of water at 110 °C is 3 moles with a further loss of 

water at 198 °C of one mole. 

 

Step 2 at 198 °C 

Mg6Al2(OH)16(SO4).H2O →Mg6Al2(OH)16(SO4) +  H2O 

This step represents the second dehydration step and shows one mole of water is lost 

at this temperature. 

 

Step 3 at 363 °C 

Mg6Al2(OH)16(SO4) →Mg6Al2O2(OH)12(SO4) + 2H2O 

This step represents the first dehydroxylation step and 4 OH units are lost at this 

temperature. The oxygen is taken up by the cations present and is shown 

representatively as Al2O3. 

 

Step 4 at 437 °C 

Mg6Al2O3(OH)12(SO4) → (MgO)6Al2O3(SO4) + 6H2O 

This step represents the second dehydroxylation step and 12 OH units are lost at this 

temperature.  

 

Step 5 at 498 °C 

(6MgO)Al2O3(SO4) → Mg6Al2SO11 + O2 

Oxygen is lost at this step. 

 

Step 5 at 928 °C 

Mg6Al2SO11 → 5 MgO + MgAl2O4 + SO2 
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This step shows that sulphur dioxide is lost and the final products of the thermal 

decomposition step are the oxide of Mg and a magnesium aluminate (spinel). 

The upper limit of the TG experiment is 1000 °C and it is possible that some sulphate 

is retained to a higher temperature. Thus the expected mass loss of 10 % becomes in 

the experiment 5.2 %. 

 

Conclusions 

 

 The thermal decomposition of hydrotalcites based upon a Mg/Al ratio of 3/1 

with chromate, sulphate and molybdate in the interlayer has been studied using 

thermal analysis techniques complimented with X-ray diffraction. The products of the 

thermal decomposition depend upon the particular interlayer anion. Two processes are 

observed in the thermal decomposition firstly dehydration and secondly 

dehydroxylation.  Each of these processes takes place in several steps.  Mechanisms 

were proposed for each of the steps in the thermal decomposition.   
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  Molybdate 

  Scan 1 Scan 2 Scan 3 Average 

Element 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% Mole % 

Mg 22.32 17.64 22.87 18.2 22.58 17.71 17.85 

Al 8.62 6.14 8.7 6.24 8.66 6.12 6.17 

O 62.32 74.87 61.29 74.13 62.95 75.01 74.67 

Mo 6.75 1.35 7.14 1.44 5.81 1.15 1.31 

                

  Sulphate 

  Scan 1 Scan 2 Scan 3 Average 

Element 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% Mole % 

Mg 24.49 18.68 24.83 18.9 23.33 17.63 18.40 

Al 9.79 6.73 10.09 6.92 9.41 6.41 6.69 

O 62.99 73.01 63.15 73.06 65.02 74.68 73.58 

S 2.72 1.57 1.92 1.11 2.24 1.29 1.32 

                

  Chromate 

  Scan 1 Scan 2 Scan 3 Average 

Element 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% 
Weight 

% 
Mole 

% Mole % 

Mg 23.65 18.01 23.9 18.32 24.98 19.38 18.57 

Al 9.38 6.43 9.6 6.63 10.09 7.05 6.70 

O 64.58 74.71 63.52 73.98 61.28 72.25 73.65 

Cr 2.38 0.85 2.98 1.07 3.65 1.32 1.08 

 

Table 1 EDX analyses of the synthetic hydrotalcites interlayered with chromate, 

molybdate and sulphate 

 

 

 

 

 

 



 15

 

 

List of Figures 

 

Figure 1 XRD patterns of the hydrotalcite interlayered with sulphate, molybdate or 

chromate 

 

Figure 2 XRD patterns of the thermal decomposition products of the hydrotalcite 

interlayered with chromate, molybdate and sulphate together with the patterns 

of the reference materials. 

 

Figure 3 EDX analyses of the hydrotalcite interlayered with (a) chromate, (b) 

molybdate and (c) sulphate. 

 

Figure 4 TG and DTG patterns of chromate interlayered hydrotalcite 

 

Figure 5 Thermal evolved gas analysis (ion current curves) of chromate interlayered 

hydrotalcite for selected gases 

 

Figure 6 TG and DTG patterns of molybdate interlayered hydrotalcite 

 

Figure 7 Thermal evolved gas analysis (ion current curves) of molybdate interlayered 

hydrotalcite for selected gases 

 

Figure 8 TG and DTG patterns of sulphate interlayered hydrotalcite 

 

Figure 9 Thermal evolved gas analysis (ion current curves) of sulphate interlayered 

hydrotalcite for selected gases 

 

 

 

 

List of Tables 

 



 16

Table 1 EDX analyses of the synthetic hydrotalcites interlayered with chromate, 
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Figure 4 TG and DTG of hydrotalcite with chromate anions in the interlayer. 
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Figure 5 
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Figure 6  molybdate 
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Figure 7 
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Figure 8 sulphate 
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Figure 9 sulphate 

 


