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Abstract 

The thermal curing behaviour of tetraglycidyl-4,4’-diaminodiphenylmethane 

(TGDDM) and a co-anhydride mixture consisting of maleic anhydride (MA) and 

hexahydrophthalic anhydride (HHPA) was studied from 55oC to 100oC by real-time FT-

Raman spectroscopy. The quantitative changes in concentrations of anhydride, epoxy, 

and new-formed ester were measured and empirical reaction rate curves were 

constructed reflecting the kinetics of the curing process. After an induction period a 

simple kinetic scheme that is first order in both epoxy and anhydride monomer 
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consumption described the reaction profile until the reaction was influenced by chemo-

rheological changes due to vitrification transition. 

FT-Raman analysis revealed that curing propagation mainly occurs by 

polyesterification between epoxide and anhydride. Possible side reactions including the 

homopolymerization of MA are considered. The main side reaction is decarboxylation of  

MA that may produce some autocatalysis, but this is a minor contribution to the kinetics 

of cure. No conclusive evidence has been found for homopolymerization of MA or 

initiation of the curing reaction by the reaction product of TGDDM and MA, compared to 

the polyesterification.  
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1. Introduction 

Pierre Castan synthesized epoxy resins for the first time in the early 1940’s. Many 

applications have been emerged and numerous epoxy monomers and hardener 

formulations have been developed since the first synthetic epoxy was produced. 

Nowadays, epoxy resins are intensively used in various technical applications such as 

coatings, composite matrices, potting compounds, or structural adhesives [1, 2].  

To meet the relatively high thermal resistance criteria, especially for demanding 

aeronautical applications, aromatic amine-cured aminoglycidyl resins were developed 

[3]. Consequently, the curing behaviour and kinetics of such systems has been 

extensively studied by many different analytical methods such as DSC [4], gel 

permeation chromatography (GPC) [5], nuclear magnetic resonance (NMR) [6], and 

vibrational spectroscopy [7, 8] yielding a deep understanding of the reaction 

mechanisms involved. However, information on the curing behaviour of multifunctional 

aminoglycidyl resins in the presence of carboxylic acid anhydrides are rather limited, 

even when anhydride cured formulations show improved properties than amine cured 



  

resins, e.g. less toxicity, higher glass transition temperatures, reduced water absorption, 

lower reaction exothermy and smaller shrinkage [1, 2, 9].  

On the other hand the non-catalyzed anhydride-epoxy curing reaction is less 

reactive and hence demands a high reaction temperature (≥ 120°C) to initiate the curing 

reaction [10-12]. Using IR-analysis Steinmann [13] has proven that a non-catalyzed (acid 

or base) mixture of pure epoxy diglycidyl ether of bisphenol-A (DGEBA) with pure 

hexahydrophthalic anhydride (HHPA) does not react during a period of 24 hours at 

100°C. This fact demonstrates the enormous disadvantage of anhydride-cured systems, 

which usually take long time intervals at high temperatures resulting in very expensive 

processing and handling steps. 

Recently [14], an approach was shown that different non-catalyzed aminoglycidyl 

resins formulations have been cured with a co-anhydride mixture at relatively low curing 

temperatures, but still yielding high temperature properties (Tg > 200°C). However, all 

reported systems showed a major drawback – the presence of unreacted anhydride 

residues of the high melting pyromellitic dianhydride (PMDA) resulted in an 

inhomogeneous network structure [15]. To avoid the presence of partially undissolved 

hardener in these systems, we have cured a commercially available N,N,N’,N’-

tetraglycidyl-4,4’-diaminodiphenylmethane (TGDDM) with a low melting hardener 

mixture consisting of maleic anhydride (MA) and hexahydrophthalic anhydride (HHPA) 

[16]. This hardener combination not only results in a liquid eutectic mixture at room 

temperature but it can also be cured at ambient temperatures. However, the reaction 

mechanism has not been studied in detail. 

The objective of this paper was to study the low temperature curing behaviour of 

the same epoxy/co-anhydride mixture by means of vibrational FT-Raman spectroscopy 

under isothermal conditions. As a complementary technique to mid infrared 

spectroscopy, FT-Raman is able to provide fundamental vibrational information. Based 

on the different selection rules of these two spectroscopic techniques, polar bonds tend 

to yield strong IR and weak Raman bands, whereas non-polar groups give rise to strong 



  

Raman and weak IR bands. FT-Raman also allows one to monitor the curing reaction 

over the complete conversion range, although the material undergoes several state 

transitions during curing, i.e. gelation and vitrification. These transitions have only a 

limited influence on the vibrational spectrum. The quantitative aspects of FT-Raman 

spectroscopy permit quasi real time in situ studies of the crosslinking reaction and the 

direct calculation of the concentration profiles of various reactive species. Further 

advantages compared to mid-IR are the lack of interferences from water vapor and 

glass, which is very convenient because glass sample containers can be used during 

experiments. Kinetic analysis from the conversion of the functional groups and the 

obtained empirical rate curves are discussed in the light of proposed reaction 

mechanisms for the uncommon cure behaviour of the uncatalyzed TGDDM/MA/HHPA-

system.  

 

2. Experimental 

2.1. Materials 

The epoxy resin used was a commercial AralditeMY721, mainly based on 

N,N,N’,N’-tetraglycidyl-4,4’-diaminodiphenylmethane (TGDDM), supplied by Vantico, 

Switzerland. A combination of two hardeners was used, maleic anhydride (MA) and 

hexahydrophthalic anhydride (HHPA), to cure the TGDDM monomer. Both anhydrides 

were supplied by Fluka, and utilized without further purification. The chemical structure 

of the used materials is shown in Fig. 1. The mixing ratio was 100/48/32 

(TGDDM/MA/HHPA) by weight, reflecting a stoichiometric anhydride to epoxy ratio, r, of 

0.8. 

The epoxy monomer was preheated to 65°C to reduce the viscosity of the MY721-resin, 

before the premixed hardener-mixture was added and dissolved with an Ultraturrax-high 

shear mixer at 13.500 rpm for 5 minutes to obtain a homogeneous mixture. To prevent a 

temperature rise and any further reaction during mixing, all samples were cooled during 



  

the mixing process in ice water. Afterwards, the mixture was degassed for 3 minutes at 

pressures below 10 mbar and stored in liquid nitrogen to prevent further curing. 

 

2.2. FT-Raman Spectroscopy 

All spectroscopic experiments were carried out on a Perkin-Elmer System 2000 NIR FT-

Raman spectrometer, equipped with a diode pumped Nd-YAG laser (λ=1064nm) as an 

excitation source and a room temperature InGaAs photoelectric detector. The 

backscattered radiation was collected at 180° to the excitation. Typical spectra were 

recorded in a range of 200 to 3800 cm-1 at a laser power of 320 mW. Every 4 minutes a 

spectrum was collected consisting of 32 co-added scans with spectral resolution of 8 cm-

1. The premixed epoxy mixture (4±0.2 g) was filled in a NMR sample tube and placed in 

the preheated heating block under isothermal conditions at 55, 65, 75, and 100°C, 

respectively. The steady state temperature was controlled with an accuracy of ±0.2°C. 

Spectra were recorded from the moment the tube was introduced in the heating block. 

To reach the ultimate conversion some samples were also post-cured at 150°C for 1 

hour. 

 

2.3. Gas Chromatography 

A two column micro gas chromatograph (MTI M200H) equipped with a 8m 

Poraplot Q and a 10m molecular sieve (5 Å) column was used to separate the trapped 

gaseous byproducts during an isothermal curing reaction at 65°C. Helium was used as a 

carrier gas with a flow rate of 10 ml/min. Continuous data acquisition was carried out 

every 3 minutes until the samples reached the point of gelation. 

 

3. Results and Discussion 

3.1. Thermal Cure Reactions 



  

The epoxy group is characterized by its reactivity towards nucleophilic and electrophilic 

species and thus it is reactive to a wide range of reagents. The formation of polyester for 

the non-catalyzed reaction of epoxy monomers  and cyclic carboxylic acid anhydrides 

has been intensively studies during the last years. The generally accepted stepwise 

reaction mechanism is schematically shown in Fig. 2(a) [17-22]. In the early stage of 

cure, the reaction mechanism involves the presence of hydroxyl groups, which act as an 

initiator for the reaction. The hydroxyl groups are present as a substituent on a fraction 

of the epoxy molecules that have oligomerised on synthesis. An attack of hydroxyl 

groups on the anhydride molecules results in a monoester having a free carboxyl group 

(reaction 1). This free carboxyl group (monoester) then reacts with the epoxide to yield a 

diester and a new secondary hydroxyl group (reaction 2) thus perpetuating cure 

(reaction 3). The evidence that the quantities of mono– and diester produced are equal 

to the amount of consumed anhydride confirmed these reactions. It has also been 

reported that, at least up to vitrification, there is no significant difference in the 

consumption of epoxy and anhydride groups [23]. The observation that the number of 

epoxy groups at higher conversions decreases faster than the increase in the diester 

groups can be attributed to the etherification reaction. This reaction occurs between the 

epoxy and hydroxyl groups under the catalytic influence of anhydride or carboxyl groups 

(reaction 4), which constitutes a significant side reaction. However, the direct 

polyetherification is considered of little significance here, since the curing temperatures 

are below 180°C for TGDDM system [8]. 

 

An essentially different mechanism occurs when strong Lewis bases, e.g. tertiary amine, 

imidazoles or ammonium salts, are used to catalyze the polymerization. In case of 

technical monomers, the curing reaction might be described as shown in Figure 2(b), 

although the reaction mechanism has been subject of considerable controversy in the 

past [13, 38-46]. It is proposed that the tertiary amine reacts with the epoxy monomer 

and forms a zwitterion that contains a quaternary nitrogen atom and an alkoxide as 



  

shown in Figure 2(b), reaction (5). The alkoxide rapidly reacts further with an anhydride 

group leading to a carboxylate anion as shown by reaction (6). This carboxylate anion 

may be considered as active center for the chainwise alternating co-polymerization.  

Propagation occurs through the reaction of the generated carboxylate with an epoxy 

group and the accompanied formation of new alkoxide anion, reaction (7),  

This, in turn, reacts at a very fast rate with an anhydride group regenerating the 

carboxylate anion, cf. Figure 2(b), reaction (8).  

There is still no definite validation regarding the termination step and whether the initiator 

remains chemically attached during the whole course of the reaction. Some authors 

describe an irreversible bonding of the initiator [43] but there is disagreement on this 

point [13, 44]. 

 

3.2. Functional group analysis 

The spectra of the unreacted MY721 epoxy monomer as well as the two carboxylic 

acid anhydrides can be seen in Fig. 3. Detailed peak assignments of the main 

absorption bands are listed in Table 1. The band assignments were made according to 

standard spectroscopy literature [24-26] and by considering results of previous Raman 

studies [27, 28]. In the spectrum of MY721 three of the bands attributable to the epoxy 

ring are easily observed. These are located at 3072 cm-1 [νas (CH2) and 3001 cm-1 

[νs(CH2)] due to C-H groups of the epoxy ring and at 1260cm-1 [breathing of the epoxide 

ring]. The bands at 907 cm-1 [νas ,epoxide ring deformation], and 866 cm-1 [νs ,epoxide 

ring deformation] are much weaker and overlap with anhydride bands. In the spectra of 

the crystalline anhydrides the bands of major interest are those due to the vibrations of 

cyclic anhydride groups, such as the intense symmetric and antisymmetric stretch of the 

carbonyls at 1840 and 1780cm-1, respectively. This is because the anhydride group is 

the reactive center and the bands would be expected to decrease during curing with the 

epoxy.  



  

FT-Raman spectroscopy was performed during real-time monitoring of the curing 

process. It was assumed, and later confirmed by the experiments, that the aromatic 

hydrocarbon groups, corresponding to the characteristic vibration at 1615cm-1 [aromatic 

quadrant stretch], are not involved in the curing reaction and hence the peak area does 

not change over the entire curing period. Therefore, the invariant peak at 1615 cm-1 was 

used for all spectra as an internal normalization standard [27, 28]. 

From the recorded intensity data, the fractional consumption of functional 

groups,α, can be calculated by equation 1: 
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eq. 1 

where Io, It, are the relative intensities of reactive species at time zero, and after a 

certain time interval, t, of the cure cycle. Due to the epoxy excess (r<1), the 

concentration curves of epoxy and anhydride groups can be directly compared only if we 

consider the absolute conversion. In terms of spectroscopic parameters, the absolute 

conversion is given by C0α(t), where C0 refers to the initial concentration of the reactive 

species. 

Curing data obtained after different reaction times and reaction temperatures are 

shown for the MY721/MA/HHPA-system with a molar anhydride to epoxy ratio, r=0.8, at 

65°C in Fig. 4 and Fig. 5. Interferences from thermal emission bands or fluorescence, as 

reported by Walton and Williams [28], were not obtained. Subsequently, the spectral 

changes were monitored quantitatively and detailed results are discussed in the 

following paragraphs. 

 

Anhydrides: 

The peaks from the mixture at 3111, 1850, 1780, 1060, 868, and 636cm-1, 

respectively, can be assigned to the two anhydrides. Peaks corresponding to the 

individual MA and HHPA components are not reliable due to peak overlap with the 

epoxy monomer. Hence, although a clear band due to MA is seen at 3111 cm-1, in the 



  

presence of the epoxy, the respective functional groups consumption of the two 

anhydrides, hexahydrophthalic anhydride and maleic anhydride, cannot be further 

differentiated by FT-Raman spectroscopy. However, it can be expected that both 

anhydrides compete for the reaction with epoxy groups as shown in Fig. 6, even when 

the two anhydrides show similar overall reactivity as reported in [16] for the same 

system. 

All anhydride functional group peak intensities decrease progressively throughout 

the entire cure. The total conversion of the functional anhydride groups can be gained 

using the typical anhydride ring vibrations at 1850 and 1780cm-1 [νs (C=O) and νas 

(C=O)], and 1060cm-1 [νas (C-O-C)], respectively. In this study the reaction of anhydrides 

was followed by means of the 1850cm-1 [νs (C=O) of the anhydride ring] as proposed in 

the past [29] and the results are illustrated in Fig. 6(a). To convert peak areas for the 

evolution of anhydride concentration, [Anh], as shown in Fig. 6(b), the initial anhydride 

concentration of 3.89 mol/kg was considered. It can be seen that the anhydride peaks 

have not fully extinguished at lower curing temperatures and hence the anhydride 

concentration curve stabilized on a quasi-stationary plateau after a certain time period. 

This observation can be explained by the fact that the anhydride consumption is limited 

due to a physical liquid-to-solid transformation of the material. From this point, the 

reaction becomes diffusion controlled and a significant decrease of the reaction rate is 

observed; see Fig. 6(b). To reach a complete conversion of the reactive groups 

isothermal curing temperature above 75°C or extended post curing steps are necessary. 

 

Epoxide: 

A typical decrease of peak intensities corresponding to the epoxy group consumption at 

3072, 3008 and 1260 cm-1 can be observed during the entire curing reaction. The 

epoxide ring breathing vibration at 1260cm-1 is well-resolved and essentially Lorentzian 

shape, as seen in Fig. 7(a). Hence this was utilized to monitor the epoxy conversion as 



  

proposed previously [27, 30]. To enable peak height measurements a baseline 

correction was performed and an initial epoxide concentration of 4.72 mol/kg was 

considered to create the epoxide group concentration profile. A plot of the epoxide group 

concentration, [EP], over time for different temperatures is given in Fig. 7(b). A sigmoidal 

curve with a slower initial rate of consumption followed by a steady rate before a 

decrease at longer time, is obtained for all curing temperatures. This is more obvious at 

the lower cure temperatures (1) and (2) in Figure 7(b). It can be seen that at curing 

temperatures below 100°C the crosslinking reaction is quenched by a liquid to solid 

transition before it can reach the 100% conversion. This behaviour is consistent with the 

observed anhydride consumption behaviour. At an isothermal curing temperature of 

55°C almost 68% of epoxy groups were converted, while during a curing at 75°C, 76% of 

epoxide groups were converted. However, it can be expected that the polyesterification 

reaction will continue also into the glassy state, but at a significantly decreased reaction 

rate. 

 

Ester groups: 

The relative increase of bands due to ester group formation upon cure can be 

observed at 2963cm-1 [νas (CH2) adjacent to the ester group], and 1734 cm-1 [ν (C=O) 

aliphatic ester]. The latter total aliphatic ester peak contains both monoester and diester 

contributions and was used to determine the extent of curing reaction according to eq. 2 

as: 
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eq. 2 

where β is the extent of the esterification reaction, It, the Raman intensity at time, t, 

and I0 corresponds to the intensity at t=0, and I∞ is the intensity at time of curing 



  

completion, t=∞. It was assumed that the ultimate conversion (t=∞) of reactive groups 

was reached after a postcuring-step at 150°C for 1 hour.  

The total formation of aliphatic ester groups during the curing reaction at different 

temperatures is given in Fig. 8. An extended delay before start of the ester formation as 

reported by Stevens [21, 22] was not observed. Besides, it can be seen that ester 

formation approaches a limiting value at long curing times, which is an agreement with 

the anhydride and epoxy consumption behaviour.  

 

Side reactions: 

The disappearance of the characteristic C=C vibrations from maleic anhydride at 

3111cm-1 [ν (=C-H)], 1590cm-1[ν (C=C)], and 636cm-1 [γ (=CH-H)] is clearly visible in Fig. 

5. Detail of the region from 1670 cm-1 to 1570 cm-1 is shown in Fig. 9(a) and the 

decrease in the C=C band intensity of MA at 1590 cm-1 and an increase in a broad band 

that first appears as a shoulder around 1640 cm-1 are shown in Fig. 9(b) and 9(c) 

respectively. This could suggest that the unsaturation of maleic anhydride is being 

consumed at low temperatures. If so, then it could provide evidence for the reaction of 

maleic anhydride by anionic initiated homopolymerization through charge-transfer 

reactive intermediates zwitterions as reported by Zweifel et al. [31] and Ricca et al. [32] 

and depicted in Fig. 10 (step 1). Maleic anhydride is difficult to homo-polymerize by a 

conventional free radical or anionic initiator, but it can be initiated by nitrogen bases to 

yield poly(maleic anhydride). The monomer is an excellent organic electron acceptor and 

hence it forms zwitterions with a suitable base. In the investigated system the zwitterions 

could, in principle, be directly formed in the presence of nitrogen bases (TGDDM 

monomer) at room temperature and appear to be the true initiator for poly(maleic 

anhydride) as shown in Fig. 10 (step 2). An indication for the zwitterions formation is 

given by the immediate color change of the mixture, from light yellow to dark red, as 

soon as maleic anhydride was added. This amine activated color change of maleic 

anhydride has been observed earlier for maleic functional copolymers [33, 34] and was 



  

related to the formation of zwitterion intermediates. However, a more detailed analysis of 

this spectral region suggests that the changes may be linked to the primary esterification 

reaction and result from changes to conjugation following ring opening of MA. The 

evidence for this may be seen from an analysis of the extended spectral region shown in 

Fig. 11(a). This is evidenced by the isosbestic point in the spectrum at 1760 cm-1 that 

supports the smooth conversion of anhydride (1780 cm-1) to ester (1734cm-1) that 

parallels the changes in the MA band at 1590 cm-1 and the growth of the broad band 

near 1640 cm-1. This is shown in Fig. 11(b) in which the intensities of the four bands are 

plotted during cure. They appear to all follow the same kinetic relationship so that the 

change in the band at 1590 cm-1 is most probably a result of the ring opening reaction of 

the MA producing a change in the conjugation of the C=C rather than its actual 

consumption. The broadening of the band at around 1640 cm-1 most probably reflects 

the range of environments that the C=C encounters after ring opening as cure takes 

place. 

Evidence for a chemical side reaction, the spontaneous decarboxylation of MA 

accompanied by water release, is given by carbon dioxide and water formation as 

determined by in situ gas chromatography, see Fig. 12. This observation is in agreement 

with previous studies [32, 35], although the exact mechanism remains unclear. The 

observed CO2 generation can be related to the decarboxylation of maleic anhydride 

initiated by the presence of the tertiary amine structure of MY721, since no CO2 was 

detectable when utilizing HHPA as sole curing agent.  

The absence of a broad band at 1080cm-1 [ν (C-O)] shows that no ether groups 

were formed, even at curing temperatures up to 150°C, supporting the statement that 

polyetherification, as illustrated in Fig. 2 (step 4), is effectively suppressed. This is in 

accordance with earlier results obtained by Tanaka and Kakiuchi [23], Fischer [36], and 

Luston et al. [37]. Additionally, we were unable to observe changes of the peak position 

and intensity at 1615cm-1 [aromatic quadrant stretch] of FT-Raman spectra that supports 



  

the hypothesis that a “back-biting” cyclization of chlorohydrin impurities in MY721 at 

higher curing temperatures as reported by St. John et al. [27, 31] does not occur. 

 

3.3. Rate curves and kinetic analysis 

Empirical rate curves were generated for the different reaction species by applying a 

weighted smoothing function using a minimum number of iterations to obtain a curve. 

This procedure ensured that the instantaneous reaction rates obtained from the 

concentration profiles were not affected by single data point scattering.  

To study this epoxy/anhydride reaction the empirical rate curves were calculated by 

taking the first derivative of the epoxy concentration versus time data (Fig. 6) as shown 

in Fig. 13(a). The obtained rate curves have a pronounced maximum which, in the 

reaction scheme, may represent the development of the steady state concentration of 

the reactive intermediates. This behaviour is more pronounced at lower isothermal 

curing temperatures. Assuming a non-catalyzed mechanism this induction period is 

reflecting the generation of intermediate COOH and OH-groups. While, considering a 

catalyzed reaction mechanism the presence of an induction period can be attributed to a 

rather slow initiation step when polymerizing at low temperatures. 

An alternative explanation for the maximum in the rate curve, Fig. 13 (a), is that it 

indicates the reaction is autocatalytic in nature. Autocatalysis is observed when the 

tertiary amine structure of the TGDDM-monomer acts as catalyst in epoxy /anhydride 

curing reaction. A further possible source of any autocatalytic contribution could be 

reaction products between MA and the aminoglycidyl monomer, as discussed before, 

and schematically shown in Fig. 10. These reaction products, especially the proposed 

formation of carboxylate anions, could act as an additional initiator in the curing reaction.  

Despite, the catalyzed reaction mechanism has obviously an autocatalytic nature; 

isothermal kinetic runs have been analyzed with an excellent agreement by first-order 

kinetics, particularly under isothermal curing conditions [42]. To account for this 



  

observation, Riccardi and co-workers [45] developed and experimentally validated a 

mechanistic model that predicts a chainwise polymerization proceeding by an anionic 

mechanism (epoxy/anhydride/tertiary amine) an induction period followed by first-order 

kinetics when using low isothermal cure conditions. Therefore, it was considered here 

that it is not necessary to invoke autocatalysis in order to explain the observed 

concentration profiles obtained from spectral data. 

The measured data for the consumption of the epoxy groups are shown in a linearized 

first-order kinetic plot in Fig. 13(b). It can be seen that the reaction obeys first order 

behaviour [(1-α)1)]. For an extent of conversion of around 70%, a significant drop in the 

experimental reaction rate is observed due to diffusional restrictions indicating the 

change of the reaction mechanism from kinetic to diffusional control. Therefore, the 

apparent first-order rate constants were calculated as a function of temperature from the 

initial slopes and are listed in Table 2.  

Assuming the Arrhenius dependency of the rate constant on temperature, as depicted in 

Fig. 13 (c), an activation energy of 71.01kJ/mol and a frequency factor of 19.85 min-1 

was calculated, respectively. This obtained activation energy is in excellent agreement 

with other studies where the activation energy for base catalyzed anhydride/epoxy 

curing reactions is reported in the range of 70-75 kJ/mole [42, 46]. 

3.4. Cure mechanisms 

The overall curing pattern clearly indicates that the network mainly consists of 

ester linkages built by polyesterification. The observed reaction rates for the studied 

curing temperatures are significantly higher than values reported for the non-catalyzed 

curing reaction [13]. This observation provides an indication that the thermal cure of the 

investigated TGDDM/MA/HHPA-system is probably catalyzed by the tertiary amine 

structure of the TGDDM-monomer used. Hence, the curing reaction favors an anionic 

alternating chain-polymerization as shown in Figure 2(b). However, the experimentally 

obtained FT-Raman data cannot be unambiguously used to clearly differentiate between 



  

a non-catalyzed and a catalyzed mechanism, because the expected new vibrational 

bands are overlapped with conjugated species from the MA (cf. 3.2). By plotting the 

empirical data in an epoxy-anhydride conversion-conversion diagram, it is possible to 

establish the stoichiometry of the reaction and to detect possible changes of the 

mechanism with conversion. A plot of this type is shown in Fig. 14 for the investigated 

system cured at 65°C. It can be seen that all data points can be exactly accommodated 

on a single master curve. In particular, over the complete isothermal low temperature 

curing, the data fit to an iso-conversion line with a slope equal to one. This indicates a 

mechanism whereby, in the presence of sufficient concentration of hardener, a single 

epoxy group reacts with one anhydride group in an alternating co-polyesterification. 

However, from the data presented here it is not possible to distinguish between the two 

anhydrides, hence it is not known if both anhydrides were consumed at an equal rate. 

Moreover, the good fit to the iso-conversion line indicates that the dominance of 

polyesterification excludes the potential polyetherification side reaction, e.g. 

homopolymerization, in the investigated temperature range. However, the curing 

proceeds not only by the polyesterification reaction between anhydride and epoxy. 

Especially at higher curing temperatures a significant amount of TGDDM (tertiary amine) 

initiated homopolymerization of maleic anhydride has been identified. 



  

4. Conclusions 

FT-Raman spectroscopy has been used to monitor the anhydride/epoxy curing reaction. 

Fluorescence and thermal emission does not cause a problem in the spectra and 

satisfactory signal to noise ratios were obtained. Quantitative concentrations of epoxy, 

anhydride and ester groups have been measured during the cure of TGDDM/MA/HHPA 

at temperatures between 55°C to 120°C using FT-Raman spectra. Conversion data of 

the functional groups were determined and used to evaluate the reaction mechanisms. It 

was shown that the investigated anhydride-cured epoxy system reacts mainly by 

polyesterification . Calculated rate curves clearly indicate a first-order curing reaction. 

Analysis of the FT-Raman spectra showed that the total anhydride and epoxy 

consumption, as well as the ester formation follows first order kinetics up to the point 

where the reaction becomes diffusion controlled (α ~70%) with an Arrhenius 

dependency of the rate coefficient on temperature. The calculated reaction rates for the 

anhydride and epoxy monomer consumption provides some indication that the curing 

reaction is probably base catalyzed by the tertiary amine structure of the TGDDM-

molecule.  

Evidence has been found by gas chromatography for decarboxylation and the release of 

water. The formation of these reaction products could contribute to an autocatalytic 

curing reaction but the kinetic analysis does not indicate autocatalysis is significant 

under the conditions of low-temperature cure. 
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Figures and Tables 
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Fig. 1. Chemical structures of the materials used 
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Fig. 2. Schematic cure mechanism  of (a) uncatalyzed epoxy/anhydride addition reaction 
(reactions (1) to (3)). Reaction (4) occurs at higher temperatures and is catalyzed by anhydride or 
carboxyl groups.The hydroxyl group is present in the epoxy monomer.  
(b) base catalyzed epoxy/anhydride reaction (reaction (5) to (8) 
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Fig. 3. FT-Raman spectra of unreacted anhydride hardeners (a) hexahydrophthalic anhydride; (b) 
maleic anhydride and epoxy monomer (c) AralditeMY721 



  

 
Table 1: Raman spectral peak assignments of (a) carboxylic acid anhydrides and (b) epoxy 

monomer [21-29] 

a) 

Peak [cm-1] Assignment 
3060, 3180 ν =C-H; often multiplet 
3000-2840 ν C-H aliphatic, often multiplet 
1850 νs C=O 
1780 νas C=O 
1590 ν C=C (cis-configuration) 
1449 δ CH2 
1270 δ C-H 
1170-1250 ν C-O of an anhydride 
1055-1060 νas C-O-C  
868 νC-C-O-C-C + γ C-H in case of alkene 
780 γ CH2 
760 δ =CH 
636 γ C=C (cis-configuration) 

b) 

Peak [cm-1] Assignment 
3072 νas C-H of epoxide. 
3001 νs C-H of epoxide  
2940-2915 νas C-H in CH2 
2840 νs C-H in CH2 
1614 Quadrant stretching of benzene ring 
1470 δCH2 (scissoring) + δas CH3 
1382 δsCH3 
1260 ν breathing of the epoxide ring  
1190 δ aromatic C-H (in plane) 
1012 δ aromatic C-H 
907 νas def of the oxirane ring 
846 νs def CH2 of oxirane ring  
799 mono substituted benzene 
750 CH2 skeletal 
640 p-sub benzene ring (mono substituted 

benzene) 
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Fig. 4. FT-Raman spectra of MY721/MA/HHPA at various extents of cure at 65°C and after 1 
hour postcuring at 120°C. 
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Fig. 5. Difference of FT-Raman spectra obtained by spectrum “after 1hour at 120°C” minus 
spectrum “uncured” directly after mixing of the MY721/MA/HHPA system. Changes in peaks 
marked with a symbol are discussed in the text.  
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Fig. 6. (a) FT-Raman spectra of anhydride peak [1850cm-1] at (1) 0, (2) 30, (3) 60, (4) 120 min of 
cure at 75°C. (b) Plot of anhydride group concentration versus cure time at (1) 55°C, (2) 65°C, (3) 
75°C, (4) 100°C 
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Fig. 7. (a) FT-Raman spectra of epoxy peak [1260cm-1] at (1) 0, (2) 30, (3) 60, (4) 120 min of 
cure at 75°C. (b) Plot of epoxy group concentration versus cure time at (1) 55°C, (2) 65°C, (3) 
75°C, (4) 100°C. 
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Fig. 8. (a) FT-Raman spectra of aliphatic ester peak [1734 cm-1] at (1) 0, (2) 30, (3) 60, (4) 120 
min of cure at 75°C; (b) plot of extent of ester group reaction versus cure time at (1) 55°C, (2) 
65°C, (3) 75°C, (4) 100°C 



  

 

Fig. 9(a) FT-Raman spectra at (1) 0, (2) 30, (3) 60, (4) 120 min of cure at 75°C. 
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Fig. 9.(b) Plot of change in band intensity at 1590 cm-1expressed as [C=C] in MA.   
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Fig. 9. (c) Newly formed 1640 cm-1peak intensity versus cure time as a function of isothermal 
curing temperature: (1) 55°C, (2) 65°C, (3) 75°C 
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Fig. 10. Proposed reaction mechanisms of maleic anhydride in the presence of tertiary amine 
according to Zweifel et al. [31] 



  

 

Fig 11(a) Expanded region of FT-Raman spectrum during the cure of TGDDM with 
MA/HHPA at 75oC showing isosbestic point at 1760 cm-1. 
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Fig 11(b) Plot of band areas from Fig 11(a) indicating the similarity in the rates of 
disappearance of the bands at 1850, 1590 and 1260 cm-1 and the rate of appearance of 
the bands at 1640 and 1730 cm-1. 
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Fig. 12: Released carbon dioxide (■, □) and water (●, ○) as determined by in situ gas 
chromatography (GC) during isothermal cure at 65°C. Open symbols reflect the 
MY721/MA/HHPA-system and closed symbols denote the MY721/HHPA-system  

 

 

 

 

Table 2: First order rate constants and time of deviation as function of curing 
temperature for the investigated MY721/MA/HHPA-system as measured by FT-Raman.  

Temperature Anhydride 
(k*

1)  
Epoxide  
(k*

2) 
tdeviation  
[sec] 

55°C 3.5e-5 2.9e-5 27360  
65°C 5.7e-5 4.5e-5 15120 
75°C 26.1e-5 19e-5 5880 
100°C 3.5e-3 2.7e-3 1260 
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Fig.13. (a) Plot of the empirical epoxide reaction rate –d[EP]/dt as function of curing time;(b) first 
order kinetic regression plot of epoxide reaction, for 55°C (Μ), 65°C(8), 75°C (+) as measured by 
FT-Raman; (c) Arrhenius plot of the time to deviation  

 

Fig. 14. Absolute conversion of epoxy groups versus absolute conversion of anhydride groups 
obtained from FT-Raman experiments at 65°C. Molar anhydride to epoxy ratio, r=0.8 
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