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Dynamics in a kinetic model of oriented particles
with phase transition

Amic Frouvelle* Jian-Guo Liuf

Abstract

Motivated by a phenomenon of phase transition in a model of alignment
of self-propelled particles, we obtain a kinetic mean-field equation which is
nothing else than the Smoluchowski equation on the sphere with dipolar po-
tential.

In a self-contained article, using only basic tools, we analyze the dynamics
of this equation in any dimension. We first prove global well-posedness of this
equation, starting with an initial condition in any Sobolev space. We then
compute all possible steady-states. There is a threshold for the noise parame-
ter: over this threshold, the only equilibrium is the uniform distribution, and
under this threshold, the other equilibria are the Fisher-von Mises distribu-
tions with arbitrary direction, and a concentration parameter determined by
the intensity of the noise.

For any initial condition, we give a rigorous prove of convergence of the
solution to a steady-state as time goes to infinity. In particular, when the noise
is under the threshold and with nonzero initial mean velocity, the solution
converges exponentially fast to a unique Fisher-von Mises distribution. We
also found a new conservation relation, which can be viewed as a convex
quadratic entropy when the noise is above the threshold. This provides a
uniform exponential rate of convergence to the uniform distribution. At the
threshold, we show algebraic decay to the uniform distribution.

Key words: Smoluchowski equation, nonlinear Fokker-Planck equation, dipolar
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1 Introduction

Phase transition and large time behavior of large interacting oriented /rod-like parti-
cle systems and their mean field limits have shown to be interesting in many physical
and biological complex systems. Examples are: paramagnetism to ferromagnetism
phase transition near Curie temperature, nematic phase transition in liquid crys-
tal or rod-shaped polymers, emerging of flocking dynamics near critical mass of
self-propelled particles, etc.

The dynamics on orientation for self-propelled particles proposed by Vicsek et
al [22] to describe, for instance, fish schooling or bird flocking, present such a behav-
ior in numerical simulations. As the density increases (or as the noise decreases) and
reaches a threshold one can observe strong correlations between the orientations of
particles. The model is discrete in time and particles move at constant speed follow-
ing their orientation. At each time step, the orientation of each particle is updated,
replaced by the mean orientation of its neighbors, plus a noise term.

A way to provide a time-continuous version of this dynamical system, which
allows to take a mean-field limit (and even a macroscopic limit), has been proposed
by Degond and Motsch [7]. Instead of replacing the orientation at the next time
step, they introduce a parameter playing the role of a rate of relaxation towards this
mean orientation. Unfortunately the mean-field limit of this model does not present
phase transition. In [I2], the first author of the present paper proved the robustness
of the behavior of this model when this rate of relaxation depends on a local density.
In particular, phase transition is still absent. However, when this parameter is set
to be proportional to the local momentum of the neighboring particles, we will see
that the model presents a phenomenon of phase transition, as the intensity of the
noise crosses a threshold. This phenomenon occurs on the orientation dynamics, so
we will only consider here the spatial homogeneous dynamics.

In a joint work [6] with Pierre Degond, we have formally derived macroscopic
limits for the inhomogeneous case. Using the results of the present paper, we have
obtained, in the hydrodynamic limit, that the phase transition appears now as the lo-
cal density crosses a threshold. Under this threshold the local equilibria are uniform
in orientation, and the corresponding macroscopic model is a nonlinear diffusion for
the density. Above this threshold, the system is locally ordered, and the evolution
of the local density and orientation is given by a non conservative first-order system,
which appears to be non-hyperbolic.

The particular model is described as follows: we have N oriented particles, de-
scribed by vectors wq, ...,wy belonging to S, the unit sphere of R”, and satisfying
the following system of coupled stochastic differential equations (which must be
understood in the Stratonovich sense), for k € [1, N]:

dwi = (Id — wy, ® w) Ji, dt + V27 (Id — wy, @ wy,) 0 B, (1)
1 N

The term (Id — wy, ® wy) denotes the projection on the hyperplane orthogonal to wy,
and constrains the norm of wy, to be constant. The terms B stand for N independent



standard Brownian motions on R”, and then the stochastic term (Id —w; @wy,) od BF

represents the contribution of a Brownian motion on the sphere S to the model. For

more details on how to define Brownian motion on a Riemannian manifold, see [13].
Without this stochastic term, equation (Il) can be written

Wy = Vw(w : Jk)|w:wk7

where V, is the tangential gradient on the sphere (see the beginning of Section 2]
for some useful formulas on the unit sphere). So the model can be understood as a
relaxation towards a unit vector in the direction of Jj, subjected to a Brownian mo-
tion on the sphere with intensity v/27. The only difference with the model proposed
in [7] (in the spatial homogeneous case) is that Jy is there replaced by v€)y, where €,
is the unit vector in the direction of Ji and the frequency of relaxation v is constant
(or dependent on the local density in [12]). One point to emphasize is that, in that
model, the interaction cannot be seen as a sum of binary interactions, contrary to
the model presented here. Here the mean momentum .J; does not depend on the
index k (but this is not true in the inhomogeneous case, where the mean is taken
among the neighboring particles).

To simplify notations, we work with the uniform measure of total mass 1 on the
sphere S. We denote by f¥ : R, x S — R, the probability density function (de-
pending on time) associated to the position of one particle. Then, as the number N
of particles tends to infinity, ¥ tends to a probability density function f satisfying

af = QUf), 3)
with
QUf) = Vo - ((1d — w @ w)J[f]f) + TALS, (4)
Jif] = / w () dw. (5)

In the model of [7], J[f] is just replaced in @) by v Q[f], where Q[f] is the unit
vector in the direction of J[f].

The first term of Q(f) can be formally derived using a direct computation with
the empirical distribution of particles. And the diffusion part comes from Ito’s
formula. In a recent work [2], a rigorous derivation of this mean-field limit has
been provided, even in the inhomogeneous case. This derivation is linked with the
so-called “propagation of chaos” property. We refer to [21] for an introduction to
this notion. The laboratory example given in this reference is the original model of
McKean [I8] which is a more general version of our system in R™ instead of S (in
that case, equation (3] is called McKean-Vlasov equation). The main point is to
adapt the theory in the framework of stochastic analysis on Riemannian manifolds.

Notice that equation (B]) can be written in the form

Of = V- (fVD) + A,
with
W(w,t) = —w- J(t) = /K(w,w) F(t,5) do.
S
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This equation is known as Smoluchowski equation (or nonlinear Fokker-Planck
equation) and was introduced by Doi [§ as gradient flow equation for the Onsager
free energy functional:

F(f) :T/f(.,m nf(owdo ! [ K@a)f(w f.o)deds.  (6)
s SxS
This functional was proposed by Onsager [19] to describe the equilibrium states
of suspensions of rod-like polymers. They are given by the critical points of this
functional.
Defining the chemical potential p as the first order variation of F(f) under the
constraint fs f=1 weget u=r7lnf+ ¥, and the Smoluchowski equation becomes

of =V -(fVp).

In the original work of Onsager, the kernel has the form K(w,w) = |w X @],
but there is another form, introduced later by Maier and Saupe [I7], which leads to
similar quantitative results: K(w,&) = —(w - @)% In our case, the potential given
by K(w,w) = —w - w is called the dipolar potential. This is a case where the arrow
of the orientational direction has to be taken in account.

One of the interesting behavior of the Smoluchowski equation is the phase tran-
sition bifurcation. This is indeed easy to see (here with the dipolar potential) from
the following linearization around the uniform distribution: if f is a probability
density function, solution of (@), we write f = 1+ g, so fS gdw = 0 and we can
get the equation for g. We multiply the equation by w and integrate, using the
formula [jw ® wdw = L1d (this is a matrix with trace one and commuting with
any rotation) and the tools in the beginning of Section PXIl We get the linearized
equation for g and J[g]:

g =71Aug+ (n—1)w- Jlg] +O(g?),

Sl = (- 1) (% - T) Jlg) + O(g”).

Therefore if we take the linear part of this system, we can solve the second
equation directly, and the first one becomes the heat equation with a known source
term. Finally, around the constant state, the linearized Smoluchowski equation is
stable if 7 > %, and unstable if 7 < % We expect to find another kind of equilibrium
in this regime. The work has initially been done in [I0] for the dimension n = 3, the
distribution obtained is called Fisher-von Mises distribution [23].

A lot of work has been done to study the equilibrium states for the Maier-Saupe
potential, and in particular to show the axial symmetry of these steady states. A
complete classification has been achieved for the two and three-dimensional cases
in [16] (see also [24], including the analysis of stability under a weak external shear
flow). The interesting behavior, besides the phase transition, is the hysteresis phe-
nomenon: before a first threshold, only one family of anisotropic equilibria is stable,
then in addition, the uniform equilibrium becomes stable, and after a second thresh-
old, the only equilibrium is the uniform distribution. In the case of a coupling
between the Maier-Saupe and the dipolar, it is shown in [I4,[I5,26] that the only
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stable equilibrium states are axially symmetric. To our knowledge, less work has
been done to study the dynamics of the Smoluchowski equation, in particular the
rate at which the solution converges to a steady-state.

The purpose of this paper is to give a rigorous proof of the phase transition in
any dimension for the dipolar potential, and study the large time dynamics and the
convergence rates towards equilibrium states.

In Section 2, we give some general results concerning equation (Bl). We provide
a self-contained proof for existence and uniqueness of a solution with initial nonneg-
ative condition in any Sobolev space. We show that the solution is instantaneously
positive and in any Sobolev space (and actually analytic in the space variable), and
we obtain uniform bounds in time for each Sobolev norm.

In Section [3, we use the Onsager free energy (decreasing in time) to analyze the
general behavior of the solution as time goes to infinity. We prove a kind of LaSalle
principle, implying that the solution converges, in the w-limit sense, to a given set
of equilibria. We determine all the steady states, and see that the value % is indeed
a threshold for the noise parameter 7. Over this threshold, the only equilibrium is
the uniform distribution. When 7 < %, two kinds of equilibria exist: the uniform
distribution, and a family of non-isotropic distributions (called Fischer-Von Mises
distributions), with a concentration parameter x depending on 7.

Finally, in Section [ we show that the solution converges strongly to a given
equilibrium. We first obtain a new conservation relation, which plays the role of an
entropy when 7 > %, and shows a global convergence to the uniform distribution
with rate proportional to 7 — % Then we prove that, in the supercritical case 7 < %,
the solution converges to a non-isotropic equilibrium if and only if the initial drift
velocity |J[fo]| is non-zero (if it is zero, the equation reduces to the heat equation,
and the solution converges exponentially fast to the uniform distribution). We prove
in that case that the convergence to this steady-state is exponential in time, and
we give the asymptotic rate of convergence. Finally, in the critical case 7 = %, we
show that the speed of convergence to the uniform distribution is algebraic (more
precisely the decay in any Sobolev norm is at least %)

2 General results

2.1 Preliminaries: some results on the unit sphere

This subsection consists essentially in a main lemma, allowing to perform some
estimates on the norm of integrals of the form fs gV,h, where h and g are real
functions with mean zero.

But let us start by some useful formulas.

For V' a constant vector in R", we have:

Vol -V)=(10d —-wew)V
Ve (d=—w@w)V)==-n-1)w-V,

where V,, (resp. V) stands for the tangential gradient (resp. the divergence) on
the unit sphere. When no confusion is possible, we will just use the notation V.



Then, taking the dot product with a given tangent vector field A or multiplying
by a regular function f and integrating by parts, we get

/S WV Aw)dw = — /S Alw)dw

/vafdw: (n—l)/swfdw.

We then introduce some notations. We denote by H*(S) the subspace composed
of mean zero functions of the Sobolev space H*(S). This is a Hilbert space, associ-
ated to the inner product (g, h)3,, = ((=A)°g, h), where A is the Laplace-Beltrami
operator on the sphere. This has also a sense for any s € R by spectral decomposition
of this operator. We will denote by || - || ;- the norm on this Hilbert space.

We then define the so-called conformal Laplacian A,_; on the sphere (see [I])
which plays a role in some Sobolev inequalities. This is a positive definite op-
erator (pseudodifferential operator of degree n — 1, mapping continuously H 5(S)
into H*~"+1(S), which is a differential operator when n is odd) given by

H (=A+j(n—3j—2) for n odd,

~ U§j§n;3

) car g "

N |=

H (=A+jn—j—2)) forn even.

0<j<B 2

Equivalently, it can be also defined by

A1 Yo=0l+1)...(0+n—2)Y, for any spherical harmonic Y; of degree ¢. (8)
Here is the main lemma.

Lemma 1. Estimates on the sphere, valid for any s € R.

1. If hoin H=**Y(S) and g in H*(S), the following integral is well defined and we
have

T (9)

] / gvzz\ <Clgl

where the constant C' depends only on s and n.

2. We have the following estimation, for any g € H*(S):

< Cllgl; (10)

Hs?

/SQV(—A)SQ

where the constant C' depends only on s and n.

n—3

3. We have the following identity, for any g € H™ "% :

[avAta =0 (11)



Let us make some remarks on these statements. The first one is just expressing
the fact that the gradient operator (or more precisely any of its component e -V for
a given unit vector e) is well defined as an operator sending H—**t1(S) continuously
into H—*(S) for any s.

The second one is actually a commutator estimate. It is equivalent to the fact
that for any given unit vector e, and for any g, h € H*™' we have

/ge V(=A)h + he - V(=A)g| < Tlg]
S

s
Defining the operator F' by

Fg=e-V(-A)’g— (-A)’V - ((Id — w ®@w)eg)

and integrating by parts, this inequality becomes | [ih Fg| < Cllgll g
other words, F' sends H*(S) continuously into H~*(S) for any s.

So since F' = [e - V,(=A)*] + (n — 1)(=A)%¢ - w, this second statement ([I0)
expresses that the commutator [V, (—A)*] is an operator of degree 2s.

With the same point of view, the last equality (1) gives an exact computation
of the commutator of the gradient and the inverse of conformal Laplacian.

This is just saying that [V,A 1] = —(n — 1)A',w, or, multiplying left and
right by A, _, that [V, A,_1] = (n — DwA,_1.

The proof of this lemma relies on some computations on spherical harmonics,
and is given in Appendix [A1l

2.2 Existence, uniqueness, positivity, regularity.

We present here a self-contained proof of well-posedness of the problem (B]), working
in any Sobolev space for the initial condition. Some analogous claims are given in [5],
without proof, starting for a continuous nonnegative function. They are based on
arguments of [3], stating that the Galerkin method based on spherical harmonics
converges (exponentially fast) to the unique solution. They are weaker with respect
to the initial conditions and the positivity, but stronger for the regularity of the
solution (analytic in space). As a remark we will give the same regularity results,
and prove it in Appendix [A.2

Definition 2.1. Weak solution, for some s € R.
For T >0, the function f € L*((0,T), H**X(S)) N H'((0,T), H*7'(S)) is said to
be a weak solution of @) if for almost all t € [0,T], we have for all h € H**(S)

<atf7 h> - _T<wa, vwh> + <fa J[f] ’ vwh>a (12)
where (-, ) is the usual duality product for distributions on the sphere S.

Since it is sometimes more convenient to work with mean zero functions (in order
to use the main lemma of the previous subsection), we reformulate this problem in
another framework. We set f = 1+ ¢ so that f is a weak solution if and only



if g € L*((0, T), H(S)) N H*((0,T), H*~(S)) with, for almost all ¢ € [0, 7], and
for all h € H=*T1(S),

(O, h) = =7(Vwg, Vuh) + (n = 1)J1g] - J[h] + (g, Jlg] - Vo). (13)

That makes sense to look for a weak solution with prescribed initial condition
in H*, since it always belongs to C([0,T], H*(S)), as stated by the following propo-
sition.

Proposition 2.1. If g € L*((0,7), H**1(S)) N Hl((O,T),HS_l(S)), then, up to
redefining it on a set of measure zero, it belongs to C([0,T], H*(S)), and we have

max [|u(t)|

T
[0,T7] A 0 el

where the constant C' depends only on T

254-1 + Hatu’ ?'{5—17

The proof in the case s = 0 is the same as in [9], Thm 3, §5.9.2. To do the
general case, we apply the result to (—A)2g.

Theorem 1. Given an initial probability measure fo in H*(S), there exists a unique
weak solution f of @) such that f(0) = fo. This solution is global in time. More-
over, f € C=((0,+00) x S), with f(t,w) > 0 for all positive t.

We also have the following instantaneous reqularity and uniform boundedness
estimates (for m € N, the constant C' depending only on T,m,s), for all t > 0:

2
Hs-

1
IO < (14 37 ) 160

The proof consists in several steps, which we will treat as propositions. We first
use a Galerkin method to prove existence on a small interval. We then show the
continuity with respect to initial conditions on this interval (and so the uniqueness).
Next, we prove the positivity of 1 + g for regular solutions. This gives us a better
estimate of J[g]. Repeating the procedure on the following small interval, and so
on, we can show that this extends to any ¢ > 0. Regularizing the initial condition
give then global existence in any case.

We finally obtain the instantaneous regularity and boundary estimates by de-
composing the solution between low and high modes.

For the proof of all propositions, we will denote by Cy, C4,... some positive
constants which depends only on s and 7. We will also fix one parameter K > 0
(which will be a bound on the norm of initial condition), and denote by My, M, ...
some positive constants which depends only on s and 7, and K.

Proposition 2.2. Ezistence: Galerkin method.

We set . .
T=—h(l14+——-—— 14
Cln(+1+202[()’ (14)

where the constant Cy and Cy will be defined later.
If |l goll g+ < K, then we have existence of a weak solution on [0, T] satisfying (I3),
uniformly bounded in L*((0,T), H*T(S)) N HY((0,T), H*=X(S)) by a constant M,.
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Proof. We denote by Py the space spanned by the first N (non-constant) eigen-
vectors of the Laplace-Beltrami operator. This is a finite dimensional vector space,
included in H P(S) for all p, and containing the functions of the form w — V - w (see
Appendix [AT] for more details).

Let g% € CY(I, Py) be the unique solution of the following Cauchy problem,
defined on a maximal interval I C Ry (“non-linear” ODE on a finite dimensional
space):

59" =Ty [rAug" = Vo ((1d —w @ w)J[gN](1 + ")),
g™ (0) = TIx(go),

where Ily is the orthogonal projection on Py. The first equation is equivalent to
the fact that for any h € Py, we have

%(gN, hy = =7(Vug", Vuh) + (n = 1)J[g"] - J[B] + (g™, JIg"] - Vuh).  (15)

The goal is to prove that [0,7] C I and that there exists an extracted sequence Ny
such that, as k — oo,

o g™ converges weakly in L2((0,T), H**'(S)) to a function g,
e 0,9™ converges weakly to d,g in L*((0,T), H(S)),
o J[g™] — J[g] uniformly.

We have that (—A)*¢"Y € Py, so we can take it for h, put it in ([H) and use the
second part of Lemma [ to get:

td,

- 2
thllg

s+ g™

H5+1

ColJg™]]lg" |
Cillg™|

He + (0= 1) J[g"]? (16)
% (L4 Collg™ [l 7o) (17)
Indeed, any component of w belongs to any H~*, then J (9] = (w, gV) is controlled

by any H*® norm of g".
Solving this inequality, we obtain for 0 <t < C7 ' In(1 + (Co||TTV (go)]| ;7.) 1),

‘ 1T (g0) |
H.s < —Ct N
e~ — Cy||TIN (go)|

NN

PRIl (18)

ol

lg

Then we have ||g™ (¢)| 5« < 2|lgol| 7+ for all ¢ in [0,T]. There is no finite-time blow
up in [0, 7], then the ODE (T3] has a solution on [0, 77, for any N € N.
Now we denote by My a bound for |J[g"]| on [0,T]. The inequality (I8]) gives

d
9™ e + 27l g™ n < (14 Mo)Csllg™ |17
Solving this inequality, we get for ¢ € [0, T

t
19V I3, + 27 / T

Frovr < llgoll et O, (19)



We then use the ODE (IH) to control the derivative of g. Taking h € H™5T(S), we
write hY = Il (h), and we get

(O™, h) = (Brg™, 1Y)
et IR e+ Callg™ [ 7

e + CallgN | e + Mol|g™ |

W gr-ser + Mol|g"]
i) |17

[

7llg™]|

< s
<

7llg"|

H*S#»l 9

and thus we obtain

109" |

Integrating in time, we get, together with the estimate (I9),

T
| 10
0

Then we can take M7 = KZe(FTMIOT max (771 7 + %), and we get

that ¢V is bounded by My in L2((0,T), H*(S)) N H'((0,T), H>(S)).

Now, we just need estimates for %J [g"V]. We can take h = w -V for any constant
vector V' in the ODE (IH) and use the tools given in the beginning of this section.
We finally get

2o <27%||g"]

Hsfl ~

12£1s+1 + 2(04 + M0)2H9N‘ %IS'

2 < [T+ 2(Ca+Mp)?

2., < SEsiner ] Hgo’ 2 (14+Mo)CsT

Hs

d
dt

n—1

Jlg"]

n

(1 - rn)J[g"] - / (1d - w®w)J[g"]g" dw,

< (Cs + MoCs)||gol (FMo)CsT

1
[s€?

Indeed, again, since any component of Id — w ® w is in H %, we can control the
term [ (Id — w ® w)g" dw by any H* norm of g, uniformly in N and in ¢ € [0, 7].

In summary if we suppose that gq is in HS(S), for some s € R, we have that ¢g"
is bounded in L2((0,T), H**1(S)) N H'((0,T), H*7*(S)), and that J[g"] and < J[g"]
are uniformly bounded in N and t € [0, T].

Then, using weak compactness and the Ascoli-Arzela theorem, we can find an
increasing sequence N, a function g € L*((0,T), H*T(S)) N H*((0,T), H*~(S)),
and a continuous function J : [0,7] — R™ such that, as k — oo,

e J[g"*] converges uniformly to J on [0, 7],
o g™ converges weakly to g in L2((0,T), H**'(S)) and in H'((0,T), H*~(S)).

The limit g is also bounded by M; in L*((0,T), H*t1(S)) N H'((0,T), H~(S)).

Then, since we have fOT Js e(t)w(g™ — g) dwdt — 0 for any smooth function ¢,
we get fOTgo(t)(J[g] — J)dt =0 and so J = J[g|.

For a fixed h € Py passing the weak limit in (IH) (for N, > M), we get for
almost every ¢ € [0, 7] that

Vh € Py, (0ig,h) = —7(V,g,Vuh) + (n—1)J[g] - J[h] + (g, J[g] - VL h).
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And this is valid for any M (except on a countable union of subsets of [0, 7] of
zero measure). By density (and using the first part of Lemma [Il), we have that g is
a weak solution of our problem.

Now for any h € H=**'(S), we have that (g"(t) — In(go), h) = [;(ig",h)
is controlled by M;v/t||h||;;-cs1, uniformly in N. So, passing the limit, we get
that g(t) — go in H—**1(S) as t — 0. But since we know that g € C([O,T], H:(S)),
by uniqueness, we get g(0) = go. O

Proposition 2.3. C’ontz’nuity with respect to the initial condition.
. Set T = ln(l + 20 o), as in (). Suppose we have two solutions g and g,
with |lg(0)]l < K and [3(0)]5. < K. ,
Then there exists a constant Mz such that g —g is bounded in L*((0,T), H*"(S))
and in H'((0,T), H*7'(S)) by Ms]|g(0) — g(0)]

e

This automatically gives uniqueness of a weak solution on (0,7") with initial
condition go.

Proof. Putting h = (=A)*g € H~**" in (I3), we do the same estimations as in the
previous proposition. We have the same estimate as ([IG)-(I7):

1d .
5 ool + Tl < ColTlglllgl%. + (n = 171 [g]) (20)
< Gillgl. (1 + Callgl ). 21)

So if we set T = C; ' In(1 + (1 +2C,K)™!), we can solve this inequality on [0, 77,
exactly as in (I8). These solutions are then uniformly bounded in L*((0,T), H**1(S))
and in H'((0,T), H*~'(S)) (by the constant M).

Taking u = g —g, and using ([I3]) gives an equation for u: for almost all t € [0, T,
for all h € H=5(S),

(Oyu, hy = —7(Vu, Vioh) + (n—1)J[u] - J[h] + (u, J[g] - V,h) + (g, J[u] - V,h). (22)
Now we take h = (—A)*u and use the first and second parts of Lemma [ to get

1d
2dt

(1+ M)Csllullfy. + Crllull s 1G]] oo (= A) ull
My (1 + (1G] o) el - (23)

Gronwall’s lemma gives then the following estimate:
T T
ol 7 [ Tl < ool exp (Mo [0 13150 )
0 0
2 eMz(T-i—MlZ).
Using (22), we get that u is bounded in L2((0,T), H'(S)) N H'((0,T), H*~\(S))
by a constant Mj times ||u(0)] O

—ull%, + Tlull %

NN

<

~

s
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Proposition 2.4. Positivity for regular solutions (mazimum principle). Suppose
that go is in H5(S), with s sufficiently large (according to the Sobolev embeddings,
so s > 22 s enough) so that the (unique) solution belongs to C°([0,T], C*(S)).
Here T is defined as in ([I4)), with K = ||go||;7:- We go back to the original formu-
lation f =1+ g. Then f is a classical solution of (B]).

If fo is nonnegative, then f is positive for any positive time, and more precisely
we have the following estimates, for allt € (0,T] and w € S (if fo is not equal to

the constant function 1):
6_("_1”5 A1l mSin fo< flt,w) < e("_l)f(f |LA] mSaX fo. (24)

Proof. Since the solution is in C°([0,T], C*(S)), we can do the reverse integration by
parts in the weak formulation (I2). We get that, as an element of L*((0,7"), H*~!(S)),
the function 0, f is equal (almost everywhere) to 7A,f — V,, - ((Id — w ® w)J[f]f),
which is an element of C°([0,7] x S). So up to redefining it on a set of measure
zero, the function f belongs to C*([0,T],C(S)) N C°([0,T], C?(S)), and satisfies the
partial differential equation.

Applying the chain rule and using the tools given in the beginning of this section,
we get another formulation of the PDE (3)):

Of =7A8uf = JIf]-Vuf +(n=1J[f]-w f. (25)

The next part of the proposition is just a classical strong maximum principle.
We only prove here the left part of the inequality, the other part is very similar,
once we have that f is positive. B

Suppose first that fy is positive. We denote by T > 0 the first time such that
the minimum on the unit sphere of f is zero (or T'=T' if f is always positive).

Then we have for ¢ € [0,T], that ,f > 7Af — J[f] - Vof — (n — D|J[f]|f. If
we write f = fe~ DI A we get

Of =100f — JIf] - Vof. (26)

Then the weak maximum principle (see [9], Thm 8, §7.1.4, which is also valid on the
sphere) gives us that the minimum of f on [0,7] x S is reached on {0} x S. That
means that we have a non-strict version of the left part of the inequality (24]):

vt e [0,T],Vw €S, f(w,t) > e~ (=1 Jo 1171l mSin fo- (27)

Consequently, we have that ming f (T) > 0 and so T = T. If now fo is only
nonnegative, take f; = %, and by continuity with respect to initial condition,
inequality (27)) is still valid. That gives that f is nonnegative on [0,7], and conse-
quently we have that inequality (28] is valid on [0, 7).

Now we can use the strong maximum principle (see [9], Thm 11, §7.1.4), which
gives that if the inequality (27)) is an equality for some ¢ > 0 and w € S, then fis

constant on [0,t] X S. So fy is the constant function 1. O

12



Proposition 2.5. Global existence, positivity. Suppose fo is a probability measure
belonging to H*(S) (this is always the case for s < —”T_l, according to Sobolev embed-
dings). Then there exists a global weak solution of [B), which remains a probability

measure for any time.

We remark that the uniqueness of the solution on any time interval remains by
Proposition

Proof. We first prove this proposition in the case s > ”TJFP’

We define a solution by constructing it on a sequence of intervals.
We set T = c% In(1+ W), as in ([[4]). This gives existence to a solution g
HS

in C([0, 1], H*(S)). By induction we define Tyyy = T + Cllln(l +

which gives existence to a solution g € C'([Tk, Ths1], H*(S)).

So we have a solution on [0, T, provided that T < T}, for some integer k.

Now by the previous proposition, this solution f = 1 + ¢ is nonnegative. We
obviously have [J[g]| = |J[f]| < [;|w|f = 1. Then we can do better estimates,
starting from (20):

1
ST AT

1d
2dt

2o < Col (gl gl
< Csllg|

911 +llg] i+ (n = 1) J]g]|*

(28)

2

CsTy,

Then, Gronwall’s lemma gives us that ||g(T%)|| 5s < |lgol| g-€“*"*. Suppose now that
the sequence (7}) is bounded, then ||g(T%)| z. is also bounded. By the definition
of Tyy1, the difference Ty 1 — T} does not tend to zero, which implies that the
increasing sequence (7}) is unbounded, and this is a contradiction. So we have

that Ty ey 00, and the solution is global in time.

Now we do the general case for any s. Take gf a sequence of elements of H3+2
converging to gy in H*, and such that J% =1+ g& are positive functions. Let g* be
the solutions associated to these initial conditions.

Then we have the same estimates as before, since we still have |J[g]| < 1, solv-

ing (28)) gives
t
;+74n¢w|

We want to prove that g* is a Cauchy sequence, so we study the difference u = ¢/ —g
(in the same way as what was done for g—g in ([22])-(23]) to prove uniqueness), which
satisfies, for any h € H*(S),

19" (t)] o

?{s+l < ||g]63| Hse

k

(Opu, h) = —7(Vyu, Voh)+(n—1)J[u]- J[h]+ (u, J[¢7]- Vi h) +{g*, J[u]-V,h). (29)
We take h = (—A)*u and use the first and second part of Lemma [l to get

1y
o

fre  Crllull g lg™ g (= 2) 0l -
< Cro(L + [1g° | gree) full. (30)

i T Tl < Collul

13



If we fix T" > 0, Gronwall’s lemma gives then the following estimate:

Hs+1))

HSGCST)> .

Since [|g¥|| 7+ is bounded (because g& converges in H*), together with 29), we finally
get that u is bounded in L*((0,T), H*+1(S)) N H*((0,T), H*~(S)) by a constant Cr
times [|u(0)||;7.. This gives that g is a Cauchy sequence in that space, and then
it converges to a function g, which is a weak solution of our problem (by Proposi-
tion 2.1 we have that ¢g(0) = go). This is valid for any 7" > 0, so this solution is
global.

If we take ¢ in C*(S), since f*(t) = 1+ ¢*(¢) is a positive function with mean 1,
we have that

—llellse = (FH 1), =llelloo) < (F5(1), ) < (A1), Illoc) = Il

Then passing the limit gives |(g(t), ©)| < ||¢]|oo- Furthermore we have (f*(t),1) =1
so (f(t),1) = 1, and if ¢ is a nonnegative function, then (f*(t),¢) > 0 and we
get (f(t),) = 0. This gives that f(¢) is a positive Radon measure with mass 1,
which is a probability measure. O

T T
lul,, + 7 / lalyoes < ol exp (Clo / (1+ 19"
0 0

2. exp (Cao(T + VT gf]

< Juo|

Proposition 2.6. Instantaneous regularity and boundedness estimates. If fo is a
probability measure, then the solution f belongs to C*((0,+00) X S), is positive for
any time t > 0, and we have the following estimates, for all s € R and m = 0:

2
Hs»

1
IO <€ (14 3 ) 15

where the constant C' depends only on T, s, and m.
In particular we have that for to > 0, f is uniformly bounded on [ty, +00) in
any H® norm.

Proof. Suppose fo € H*(S), and fix t > 0. The solution f is in C([0,+00), H*(S)),
and in L*((0,t), H*T'(S)). Then there exists s < ¢ such that f(s) € H*(S). So
we can construct a solution belonging to C/([s,+00), H*"!(S)). But this solution
is also a weak solution in L*((s,T), H*(S)) N H~'((s,T), H*X(S)), for all T > s
so by uniqueness it is equal to f. Then f belongs to C([t, +oc), H*TL(S)). Since
this is true for all ¢ > 0, then f belongs to C((0,+00), H*T'(S)). We can repeat
this argument and have that f belongs to C((0,400), HP(S)) for any p, and is a
positive classical solution, by Proposition 2.4l Using the equation, differentiating in
time gives that it is also in C*((0, +00), HP(S)) for any p and any k, so, by Sobolev
embeddings, it is a C*° function of (0, +00) x S.

Since we have positivity, we can have estimates for any of the modes of f = 1+g.
Let us denote fV the orthogonal projection of f on the N first eigenspaces of the
Laplacian, and g™ = f — f¥ the projection on the other ones (high modes).

14



We have a Poincaré inequality on this space: ||g™v

1
% < w197 e
(we recall that the eigenvalues of —A are given by ¢(¢ +n — 2) for £ € N). We use
the estimate (20):

1d s

L gl + 7ol < ColTallgl + (0 — 171 TTg)?

< g 913 + (0= D) + Coll Y = 1. (31)

Now we have, since f is a probability measure, that
LAY =105, = /S(—A)Sfodw <A e < KNl =1l

the last inequality being the equivalence between norms in finite dimension. Dividing

by this last norm, this gives that the low modes of f are uniformly bounded in time
by a constant Ky. Then we have, taking N sufficiently large,

1d 4

2dt

Now multiplying by t this formula at order s + 1, we get

1d

2dt

‘g’ Hs _HgHHs+1 X Clla

— (tllgll ) + tllgllHHz < Ot + 5 ||9|

H.5+17

and finally
1d
2dt

Together with Poincaré inequality, solving this inequality gives us

(gl + 5tlglFre) + TUglZe + 5tlgllee) < Cuu+ Cragt.

T oz
Hg’ %Vs + 5“’9‘ ?'{sﬂ < HQOH?'{se (=13t + C13(1 + t).

So we have the result for and m = 1:

e =1+ gl

Hs7

1
TOee (1 N 5) TN

Then we apply this inequality between 0 and £ 5, and the inequality at order m
between % 5 and ¢ to get the result at order m+-1. The case where m is any nonnegative
real also works, by interpolation. O

This last proposition ends the proof of Theorem [Il Let us do here two small
comments concerning the analyticity of the solution and the limit case with no
noise: 7 = 0.

Remark 2.1. Analyticity of the solution. We can show, as claimed in [{|], [5] that
at any time t > 0 the solution is analytic in the space variable. The idea is to
show, following [J] (based on [3], [11)]), that the solution is in some Gevrey class of
functions, defined by a parameter depending on time. This class is a subset of the set
of real analytic functions on the sphere. More details and a complete proof are given
in Appendiz[A4 We could have directly dealt with this classes of functions instead
of working in the Sobolev spaces, but we will not need these properties of analyticity
in the following. In any case, to prove analyticity we need the initial condition to be
n H _HT_l(S), so this study of instantaneous reqularization was necessary.
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Remark 2.2. Case where 7 = 0: no noise. The proof is also valid, except that
the solution belongs to L>((0,T), H*(S)) N HY((0,T), H*~X(S)) if the initial condi-
tion is in H*(S). By an optimal regqularity argument, we can get that a solution is
in fact in C([0,T], H*(S)). The nonnegativity arqgument is then also valid, and so
the solution is global. Obuviously, we do not have the instantaneous reqularity and
boundedness estimates.

3 Using the free energy
In this section, we derive the Onsager free energy () for Smoluchowski equation (3)),

and use it to get general results on the steady states.

3.1 Free energy and steady states

We rewrite the equation (3)):

Of = Q(f) = Vi (TVuf = Vu(w - JIf))f) = Vo - (fVu(rInf —w- J[f])).

Since any solution is in C*°((0,4o00) x S), and positive for any ¢ > 0, there is
no problem with using In f, and doing any integration by parts. We multiply the
equation by 7In f —w - J[f] and integrate by parts, we get

/Satf(Tlnf—w-J[f])dw——/Sf\vw(rlnf—w-J[f])Fdw.

Since the left part can be recast as a time derivative, this is a conservation relation.
We define the free energy F(f) and the dissipation term D(f) by

F(f)=7 [ finf - AP (32)
S
D) = [ AVulrinf = T (33)
and we have the following energy dissipation relation:
i.7-" +D=0 (34)
dt B

We define a steady state as a (weak) solution which does not depend on time.
Here are some characterizations of the steady states.

Proposition 3.1. Steady states. The steady states of Smoluchowski equation (Bl)
are the probability measures f on S which satisfy one of the following equivalent
conditions.

1. Equilibrium: f € C*(S) and Q(f) =0
2. No dissipation: f € C1(S) and D(f) =0

16



3. The probability density f € C°(S) is positive and a critical point of F (under
the constraint of mean 1).

4. There exists C' € R such that Tln f — J[f] - w = C.

Proof. By definition, a steady state f is a solution independent of ¢. Since it is a
solution, it is positive and C'*°, and we get that Q(f) = 0 . By the conservation
relation ([34]), we get that %]—" = 0, so D(f) = 0. Since it is positive, we get
that V(r1In f —w- J[f]) = 0, so there exists C' € R such that 7ln f — J[f] -w = C.
Now we do a variational study of F around f. We take a small perturbation f+h
of f which remains a probability density function (which means that fS h =0).
We can expand the function z — xlnx around f, since f > ¢ > 0, and we have

Ff4m =7 [ f+hing )= ZUF = I [wh+ (I

S
:fgygémfmf—ﬂﬂwn+owm&x
= F(f) + O(|hIR).

which means that f is a critical point of F. So f satisfies the four conditions.

Conversely if f € C%(S) and Q(f) = 0, then f is obviously a steady-state.

If 7Inf — J[f] -w = C, then f € C*S) and Q(f) = 0. We will show that the
second and third conditions reduce to this fourth condition.

Doing the above computation around a positive f € C°(S) gives that if f is a
critical point for the free energy, then [ A(rIn f — J[f] - w) is zero for any h with
mean zero. This is exactly saying that 71n f — J[f] - w is constant.

Finally if we suppose f € CY(S) and D(f) = 0, at any point wy € S such
that f(wp) > 0 we have that V(7In f — J[f] - w) = 0 on a neighborhood of wy.

The function ¢ defined by p(w) = 71ln f — J[f] - w is then locally constant at any
point where it is finite, so o' ({C}) is open in S for any C' € R.

Now if p(wr) = C, with wy converging to we, then f(wy) = exp(
C—&-J[j]-woo )

Passing to the limit, we get that f(w.) = exp( , which gives p(wy) = C.
So o 1({C'}) is closed.
Since f is not identically zero, there exists C' € R such that ¢~ ({C}) # 0, and

by connectedness of the sphere, we get o~ '({C})=S,so7Inf — J[f]-w=C. O

3.2 LaSalle principle

We give here an adaptation of LaSalle’s invariance principle to our PDE framework.

Proposition 3.2. LaSalle’s invariance principle. Let fy be a probability measure
on the sphere S. We denote by Foo the limit of F(f(t)) ast — oo, where f is the
solution to Smoluchowski equation [Bl) with initial condition fqy.
Then the set E, = {f € C®(S) s.t. D(f) =0 and F(f) = Fuo} is not empty.
Furthermore f(t) converges in any H® norm to this set of equilibria (in the
following sense):

lim inf £ (t) — g

t—o0 ge€oo

Hs:O.
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Proof. First of all F(f(t)) is decreasing in time, and bounded below by —1, so Fug
is well defined.

Let (¢,) be an unbounded increasing sequence, and suppose that f(t,) converges
in H%(S) to f. for some s € R. We first remark that f(¢,) is uniformly bounded
in H**?P(S) (using Theorem [I]), and then by a simple interpolation estimate we get
that [|f(¢,) — f(tm)] ?L‘Ierp < | f(tn) = FE) sl f(80) = f (&)l geven, and f(2,) also
converges in H*P(S). So f is in any H*(S).

We want to prove that D(f) = 0. Supposing this is not the case, we write

= [l /S 14— wow)f J|f] - 20l) [ Vuf

S 'v”ﬂz = 2n = ODIP - [ - TIPS, (3)

S

Now we take s sufficiently large such that H*(S) C Loo(S)NH(S). If f., is positive,
then D, as a function from the nonnegative elements of H*(S) to [0, +00], is contin-
uous at the point f.. In particular since D(f,) > 0, there exist § > 0 and M > 0
such that if ||f — feol|lgs < 6, then we have D(f) > M. We want to show the same
result in the case where f., is only nonnegative. We define

D) =7 [BIE o —stu it - [ 7

S

We have that by monotone convergence that D.(f,,) converges to D(f) as € — 0.
So there exists ¢ > 0 such that D.(f,) > 0. Now by continuity of D. at the
point f,,, we get that there exists § > 0 and M > 0 such that if ||f — foo|lms < 0,
then D.(f) > M. And the fact that D(f) > D.(f) gives the same result as before.

Now since 0,f is uniformly bounded in H® (for ¢t > ¢; > 0), there exists n > 0
such that if |t —¢'| <, then || f(t) — f(¢')| = < 3. We take then N sufficiently large
such that || f(t,) — foollms < 2 for alln > N.

Then we have that for n > N, D(f) > M on [t,,t, +n]. Up to extracting, we
can assume that ¢,,1 > t, + 1, so we have

F(fa) - Filtva) = [ D) >

tN

Since the left term is bounded by F(f(tn)) — Feo, taking p sufficiently large gives
the contradiction.

Now if we suppose that for a given s the distance (in H® norm) between f(t)
and &, does not tend to 0, we get € > 0 and a sequence t,, such that for all g € £,
we have ||f(t,) — gllgs = . Since f(t,) is bounded in H*"(S), by a compact
Sobolev embedding, up to extracting we can assume that f(¢,) is converging in H*(S)
to fe. By the previous argument f € C*(S) and we have D(f) = 0. Obviously
since F(f) is decreasing in time we have that F(fs) = Foo. S0 fo belongs to &,
and then || f(t,) — fool||ms = € for all n. This is a contradiction.

Since the distance between f(¢) and £ tends to 0, obviously this set is not
empty. ]
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3.3 Computation of equilibria

Define, for a unit vector 2 € S, and x > 0 the Fisher-Von Mises distribution with
concentration parameter x and orientation {2 by

exp(kw - Q)

Myqo(w) = fS exp(kv-Q)dv

(36)

Note that the denominator depends only on x. We have that the density of M,q
is 1, and the flux is

_ Jswexp(kw - Q)dw

J[Mq] = Jsexp(rw - Q)dw

= ¢(K), (37)

where f” ; 0 g g

o €osferclsin"
= = : 38
e(x) o ercosfsin™ % 6 dg (38)
If f is an equilibrium, 71n f — J[f] - w is constant, and then f = Cexp(r~'J[f] - w).
Since f is a probability density function, we get f = M,q with kKQ = 771J[f] (in the
case where [J[f]| = 0, then k = 0 and we can take any (2, this is just the uniform
distribution). Finally with B7) we get J[f] = ¢(k)2, which gives the following
compatibility condition

c(k) = TkK. (39)
We give the solutions of this equation in a proposition.
Proposition 3.3. Compatibility condition

o IfT> %, there is only one solution to the compatibility condition: k = 0. The
only equilibrium is the constant function f = 1.

o IfT< %, the compatibility condition has exactly two solutions: kK = 0 and one
unique positive solution, that we will denote k(7). Apart from the constant
function f = 1 (the case k = 0), the equilibria form a manifold of dimen-
sion n — 1: the functions of the form f = M), where ) € S is an arbitrary
unit vector.

Proof. Let us denote T(k) = c(:). A simple Taylor expansion gives 7 (k) e L. Since
the function 7 tends to 0 as kK — +o00o (because ¢(k) < 1), it is sufficient to prove that
it is decreasing. Indeed the function is then a one-to-one correspondence from R7
to (0, }1), and the compatibility condition for x > 0 is exactly solving 7 = 7(k).
But we have (after one integration by parts) that 7/(k) = £(1 — n7 (k) — ¢(k)?),
which, by the following lemma is negative for x > 0. [

Lemma 2. Define 8 = c¢(k)*> +n7(k) — 1. Then for any x > 0, we have 3 > 0.

Proof. Define [y(cos0)], = [ ~(cos ) e"**?sin" > 6 d6.

k[cos 0)% + nlcos 0],.[1], — k[1]?
RIE

have to show that the numerator is positive. We will prove in fact that the Taylor

expansion of this term in x has only positive terms.

Then we have by definition [ = So we only
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We have, if we denote a, = fo cos® fsin"260df > 0,

2 )'
1], = Z ay,k® and  [cos b, Z (2p + 2) ap kP!
p=0 p=0

Now doing an integration by part in the definition of a,;,, we get

2p+1 ap
Ap+1 = — Up+1 |

n—1 \(2p+1)2p+2)

which gives
ap

2p+n

(2p +2) api1 = (40)

We have, for k > 0,

Br[1])? = Z Z(Qp +2) ap1(2g +2) agi1 + Z n(2p + 2) api1a, — apaq> T

k=0 \pt+q=k-1 pt+g=k

= Z Z 2papﬁaq + Z (227% _ 1) apaq> o2kt
k=0 \p+q=k,p>1 p+q=Fk

3 (3 (ke ) )
k=0 \p+q=Fk
[ee]

(X (vlats— )+l — ) )
k=0 \p+q=Fk
> 2

_ 2(p—q) 2k+1
k=0 \p+q=k

So we finally get

o8 -1
— 2 2(p—q)* 2k
p=0 pra=k

k=0
which gives that 5 > 0 when x > 0. [

Remark 3.1. We can do another proof, following an argument of [25], which does
not need to compute explicitly (3.

The idea is that we compute 7" = (n — 1)}?2 —27(T — ), so we see (except in
the case k = 0) that if 7" = —g =0, then 7" < 0 (indeed, we will easily see in (40
that T — B is positive). For the case /'i = 0, we can compute the Taylor expansion
of T up to order 2: T(k) =+ — (n+2 k*+ O(k"). So we have that any critical point
of T is a maximum. Since there is a local maximum at k = 0 then the function is
decreasing.
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We can have an asymptotic expansion of the order parameter ¢(x(7)) as 7 reaches

the critical value L. Indeed we have that 7 — £ ~ —mK(T)Q by the expansion

of 7 in the previous remark. So

c(k(T)) ~ %/{(7') ~ \/(n - 2)(% —T)as T — % (41)

Proposition 3.4. Minimum of the free energy

o If T > %, the minimum of the free energy is 0, only reached by the uniform
distribution. Any solution converges to the uniform distribution in any H*®
norm.

o If T < %, the minimum of the free energy is negative, only reached by any

non-isotropic equilibrium M q.
Proof. By LaSalle principle (Proposition [3.2]), we have that

min F = min F(f).
feC>=(8), f>0 <f feC>=(8), f>0,D(f)=0 (f)

Indeed for any positive initial condition f in C'*°(S), there exists an equilibrium f,,
such that F(fx) = Foo < F(f). This gives

inf  F(f) = inf F(f).
feco})r(lg),po (/) feCOO(S),ljr‘l>0,D(f):0 (/)

Since the set of equilibria is compact (either a single point or one point and a
manifold homeomorphic to S), this infimum is a minimum.

Furthermore, if fo is not an equilibrium, then D(f;) > 0, and then F(f(t)) is
decreasing in the neighborhood of t = 0. So the minimum of F cannot be reached
for fo.

In the case 7 > %, this gives the result since the only equilibrium is the constant
function 1. By LaSalle principle, we also get that the solution is converging to in
any H® norm.

In the case 7 < %, we have that F(1 4+ ew - Q) ~ (7 — L)&? for a fixed unit
vector 2 € S, so there exists fy such that F(fy) < 0. Then the uniform distribution
cannot be a global minimizer. Since F (M, (-)a) is independent of €2, we get that this
value is the minimum. O

4 Convergence to equilibrium

In this section, we establish and study the convergence of the solution to an equi-
librium for any initial condition, in the three different regimes, depending wether 7
is greater, less, or equal to %
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4.1 A new entropy, application to the subcritical case 7 > %

In this section we derive a convex entropy, which shows global decay to the uniform
distribution in the case 7 > l

We define on =7 (S) the norm ||- || ~_n=1 by ||g||2 = Js gA-1 g, where the
conformal Laplacian A,_; is defined by (7). This norm is equlvalent to [ - ||, -ngr-
We also define || - || ._x s by Hg||2 = JsAgALL g, and this norm is equlvalent
to the || - ||H_HTS norm .

Taking h = ﬁ;ilg in the weak formulation ([3]), and using the last part of
Lemma [Il we obtain a conservation relation:

1
2 2 2
=— . — ) 42
Gl ozt = =Tlgl o + g1l (42)
We remark that this is a conservation law between quadratic quantities, as it would
be the case for a linear equation.
Since the component of g on the space of spherical harmonics of degree 1 is
given by nw - J[g|, a simple computatlon shows that the contribution to ||g|? o
2

2dt

of this component is equal to = ,\J [g]]>. Then the last term of the conservatlon
relation (42)) is bounded by = 1||g||~7n . Together with the Poincaré inequal-
ity HQHE, 5 = (n— 1)HgH a1, We get the following estimate:

2

1d

2 vl 2
Ll s < (1= ) =l e

This gives in the case 7 > < an exponential decay of rate (n — 1)(7 — ) for the

norm || - [P

lgll oz < llgoll ;- nsx exp(—(n — 1)(7 = 1)o).

In the general case, if fo € H*(S) with s > —"T’l, we use the estimate (BI):

1d
2dt

Now we have, since f is a probability measure,

(n—1)°|71g]l” + Coll F*

freen (0= 1| T[g]]* + Coll £

—llgll3. +7llgll?

e S W”g‘

1

KNI =1UE s < Knllgoll?,_apse 200000,

the first inequality being the equivalence between norms in finite dimension. For
any € < %, taking N sufficiently large, together with Poincaré inequality we get

1d (1) (r—L
59l + (2 = 1) = )9l < Cllgol2agse 2D,
where the constant C' depends only on s.

Solving this equation, we get

2 6—2(71—1)(7'—5)15 +

] —2(n—1)(7’—%)t
Hs ’

9113, < 9ol m”goﬂ n1€
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n—1

. o 1 .
Taking for example € = 5-, since s > —"3

, we get

72(n71)(77l)t‘

n

i < (1420727 [l9o

gl i

In summary, we have the following theorem:

Theorem 2. New entropy. For a given probability density function f, we define the
quantities H(f) = |f = 1% s end D(f) = 27| f = 1% s — 2zl ISP
We have the following conservation relation, for any solution f of Smoluchowski

equation (B)):

SH(r) +D() =0 (43)
When T > L+ the term ﬁ(f) is nonnegative, so the new entropy H(f) is decreasing
m time.

Furthermore, if T > %, then in any Sobolev space H*(S) with s > —”T_l, we have
global exponential decay of the solution to the uniform distribution, with rate given
by (n — 1)(r - 1).

More precisely there is a constant C' depending only on s such that for all initial
condition fo € H*(S), we have

e (DEDE

If = 1]

e < Cllfo =1

Let us do a small remark here. Actually this conservation relation is true for
any solution, without any positivity condition. We only need the mean of f to be 1.
And since we have existence and uniqueness in small time for any initial condition,
with the same instantaneous regularity results (only valid for a short time existence),
we get that the solution belongs to H ’WTA(S) at some time. But the conservation
relation gives then that we have a global solution. So we can state a stronger theorem
of existence and uniqueness:

Theorem 3. Given an initial condition fo in H*(S) (not necessarily nonnegative),
there ezists a unique weak solution f of @) such that f(0) = fo. This solution is
global in time (the definition [Z1 is valid for any time T > 0). Moreover, [ is a
classical solution, belonging to C*((0,4+00) x S) (and even analytic in space, see

Appendiz[A.7).

Remark 4.1. In this case, we do not have any uniform bound on H*(S), and we
can derive the same existence theorem for the case T =0 (see Remark[2.3), but only
for the case s > —”T_l (which does not include all radon signed-measures).

Another remark is that if we change the sign in front of the alignment term in
Smoluchowski equation @) (taking K(w,w) = w - w, every particle tends to go away
from the mean direction), then we can derive a conservation relation in the same
way. But here the “dissipation term” is D(f) = 27| f — 1”%—&}3 + ﬁU[fHQ >
27(n — 1)YH(f), without any condition on T > 0. So in any Sobolev space H*(S),
with s > —";1 we have global exponential decay of the solution to the uniform
distribution, with rate (n — 1)T.
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4.2 Study of the supercritical case 7 < %

In this section, we fix 7 < % and we study the behavior of a solution as ¢t — +oo.
We will write k for k(1) and ¢ for ¢(k(7)). We first establish that the limit set of
equilibria £, given by LaSalle principle (Proposition B.2)) depends only on the fact
that J[fo] is zero or not.

Proposition 4.1. If J[fo] = 0 then & is reduced to the uniform distribution.
FEquation ([3) becomes the heat equation. We have exponential decay to the uniform
distribution with rate 2nt in any H*(S).

If J[fo] # 0 then J[f(t)] # 0 for all t > 0. The limit set Ex = { M., € S}
consists in all the non-isotropic equilibria. Furthermore, we have for any s € R,

tlggo |f(t) — MnQ(t)HHS =0, (44)

where Q(t) = lﬁ;gg}l is the mean direction of f(t).

Proof. First of all, we write the equation for J[f], multiplying equation (B]) and
integrating on the sphere. We get

d

/=== DJf]+ (/S(Id—w@?w)fda)) JIf]

—(a=t-vom- [omer) i (15)
S

which can be viewed as a first order linear ODE of the form $J[f] = M(t).J[f].
The matrix M is a smooth function of time, so we have a global unique solution.
Consequently, if J[f(to)] = 0 for to > 0, then we have J[f(t)] =0, for all ¢ > 0, and
equation (B reduces to the heat equation. The distribution f has no component
on the first eigenspace of the Laplace-Beltrami operator, and the second eigenvalue
is 2n, so we have exponential decay with rate 2n7 in any H® norm.

Now we suppose that J|[fo] # 0, so by the previous argument we have J[f(t)] # 0
for all ¢ > 0. There are two possibilities for the limiting set, either the uniform
distribution, or the set {M.qn,Q € S} (by Proposition B4 they do not have the
same level of free energy).

In the first case, by LaSalle principle, f(¢) converges to the uniform distribution.
Then the matrix M(t) = (1—(n—1)7)Id — [;w®w f converges to (n—1)(+ —7)Id.
Using the ODE for J[f], we get

1d

s = JUT- M@ J[f] = ((n = 1) = 7) =),

for ¢ sufficiently large. Taking e sufficiently small, we get that |J[f]| tends to infinity,
which is a contradiction.

So we have that £, = {M.q,Q € S}. Now suppose that || f(t) — Meaq)|| ms does
not tend to 0. We take t,, tending to infinity such that || f(t,) — Meaq,)|las =€ > 0.
By our LaSalle principle, there exists €, € S such that || f(¢,) — Muq, ||zs — 0. Up
to extracting, we can suppose that Q, — Q. € S, so f(t,) = My, in H*(S). In
particular we have that J[f(t,)] = ¢(k)Qoo, and then Q(t,) = Qu. Then Mo,
converges to Myq_, giving that || f(t,) — Mxow,)||ms — 0, which is a contradiction.

[
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Now we focus on the case J[fy] # 0. We define Q(t) as in the previous proposition,
and we will expand the solution around M,qu). We first show the convergence
in L*(S) to a given equilibrium, with exponential rate, assuming conditions on the
initial data.

Proposition 4.2. There exists an “asymptotic rate” ro(7) > 0 satisfying the fol-
lowing property.

Suppose that || f(t)— Mo
with s > @ Then for all v < ro(7), there exists Qy € S and 6,C > 0, such

that if || f(to) — Muowyllzz < 0, we have

s 18 uniformly bounded on [ty, +00) by a constant K,

1£(6) = Mol < CILf () — Mg [lz2e 7.

The constants 0 and C' depend only on 7, s, K, and r. Moreover, as 7 — %, we

have that oo (1) = 2(n — 1)(: — 1) + O((2 — 7)2).

n

Proof. We first introduce some notations. When there is no confusion, we just
write Q for Q(t), and we will always assume t > t,. We write cosf = w - 2. We
denote by (-)n,,, the mean of a function against the probability measure M,q.

We have the following identities (we recall, by Lemma ] that 8 = ¢ +n7 — 1 is
positive):

(W) = (cosO)pr Q2 =,
(cos’ ) pr =1 — (n—1)7,

{(cos — )y =1—(n—17—c*=7—5>0. (46)

We can write f = (1 4+ h)M,q, then we have (h)y , = 0. Since Q is the direction
of J[f] = ((1 4+ h)w) ., we get that (hw) ., = (hcos @), <2
So we can do an expansion of the free energy and its dissipation in terms of h.

Since we know that M,q) is a critical point of F, we already know that the expan-
sion of F((1 4+ h)M.q) — F(M,q) will contain no term of order 0 and 1 in h. We

get, using (32),
F(( 4 h)Myq) — F(Mya) = T2 pg — S{h)ara | + O(||B]1%,).-

Using Sobolev embedding and interpolation, we have (writing C' for a generic con-
stant, depending only on 7, s, and K)

n—1

1—n=1
If = Miallo < Clf = Myall n51 < Cf = Mol > K2

So since 1 — “- LS % and [ — M.q = hM,q, with M,q uniformly bounded below

and above, we get that ||h||2, = o((h*)sr,,) (and more precisely, for any £ > 0 there

exists 7 > 0 depending only on ¢, 7, s, and K such that ||h]|>, < e(h?)), as soon
as () g, < 1). We get
F(f) = F(Myua) = 3[r(h*)arq — (heos0)yy ] + 0o((h*)asq)- (47)
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We use the definition ([B3) of D(f):

D(f) = ((1+h)|V(TIn(Mya(1 + h)) = (1 + h)w)asg - @) b
={(1+h)|V(rIn(1+h) — (hcos ), cos ) |*)ar,
> (1= [[hlloo){IV (7 In(1 + h) = (hcos 0) s, cos 0)*)

KQ "

Now we can derive a Poincaré inequality of the form

(V9 rre = Mal(g = (9)11.0) ") b
Indeed, we use the fact that M,q is positive and bounded:

(IVP)rse > min My / Vg2
S

> min M,q(n — 1) /(g - fg 9)?

Actually this is a rough estimate, we have here A,; > (n—1)e™*", a more precise study

of A, can be done using separation of variable, and is given in the appendix of [6].
The problem then reduces to finding the smallest eigenvalue of a one-dimensional
Sturm-Liouville problem, but even in that case, we did not manage to find a better
estimate for now.

So we finally get

D(f) = (1 = [Allso) Aw{[r In(1 + h) = 7{In(L + h))arg— (heosO)ar,q(cost — )] arg
> (1= [Ihlloo)Aw{[Th — (hcos ) r1,q(cos 6 — ¢) + O(1AlIZ)]*)at,
> (1= [|hlloo) An(T*(h*)ar — (B + T)(hcos0)y, ) + O(IR]I%,).

With the same argument as before, we get that
D(f) 2 AT (W) agq — (B +7)(hcos0)3, ) + o((h?)arg)- (49)

The goal is now to express the bounds in (49) and ([{7) as the sum of positive
terms. Indeed, we expect to have a Gronwall’s inequality which will give a rate of
convergence.
We set a = #(h cos @), and we write h = a(cos@ — ¢) + g. Using (0] we
have that a is well defined since 7 — 3 > 0 and we get (g) ., = 0 and (gw) s, = 0.
Plugging (%) r,q = (7 — )0 + (%), into @) and (@T) gives
F(f) = F(Mug) = 5[8(7 = B)a® + 7(9")as,0) + o((h*)11,), (50)
D(f) 2 Ae(B(7 = B)a® + 79" a1,0) + 0((h*) 01,0
> NeB(B(T = B)a” + 7(9")ara) + 0((h7) 1)
Soforall r < A, 3, if (h?)y; , is sufficiently small, we have D(f) > r(F(f)—F (Muq)).

Using the conservation relation (@3], there exists dp > 0 (depending only on 7, s, K
and r) such that if || f(t) — Muow |2 < do, we have

d

) = F(Mea)] = =D(f) < =2r[F(f) = F(Mea)].



Then we obtain, for all T, such that ||f — M.q||r2 < 09 on [to, T,
F(f(T)) = F(Muoery) < [F(f(to)) — F(Meog))]e >,
and then, using the estimate (B0), we get that for t € [to, 7],

I — Magllze < Coll £ (t0) — Muggllzze ™. (51)

So if we take § < g‘) do, and we start with || f(to) — Muoo)llr2 < 6, we get
that ||f — Mual|z2 < 3o on [to, T] for all T > ty. Otherwise, the largest of such a T
would satisfy g = || f(T) — e < Coe " @) < §,. So the inequality (BI)
holds for all ¢ € [tg, +00).
It remains to prove that €(t) converges to some €, if we want to have strong
convergence to a given steady state. This is possible using the ODE satisfied by ).
Indeed, we have J[f] = 2 + (hw)ur,, = (¢ + a(T — §))2, and then

d d d
/1= (ctalr = 5) 20+ (1= fQpa

So applying Id — Q ® 2 to the ODE (X)) gives an ODE for €, in terms of o and g.
We get

(Id—Q@Q)%J[f] C_(ld-Q&Q) (/Sw®wfdw) JIf]

—(c+a(t—0)Id—-Q® Q) [(hcosOw) ., + (cosOw)ar,]-
Since ((cosf — ¢) cosOw) ., and (cosf@w) s, are parallel to €2, we get that

Q-
dt
Since (c¢+ a7 — f)) is the norm of J[f], it is never zero, and we get (the notation C'
standing for a generic constant depending only on r, s, 7 and K)

(c+alr = p)) —(c+a(r = B))(Id - Q& Q)(gcosdw)r,q

\ VT < CIf = Mgl

fdQ

5 With rate 7, in particular ) is converging to

So we have exponential decay o
some (), € S. More precisely,

(1) — Qo] < / 1921dt < C|| f(to) — Mgyt || 2.
t

Now we have that ||[Meou) — Meo. ||z < ClQ(t) — Qo (the function Q — e 9
from S to R is globally Lipschitz with a constant independent of w € S). So we get
the final estimation:

1f = Ma N2z < IIf = Magllz2 + | My = Masll22 < CLf (t) = Mool 22671,

So the proposition is true with ro(7) = A,8 > 0. By the estimate (48], we know
that A, > (n — 1)e=?*. And by the expansions of cand k as 7 — + given in (@),

we get that 7. (7) >2(n—1)(——7’)+0((——7’) ). O
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By Proposition .1, we have that f(t) — M,qq) tends to zero in any H*(S). So
the hypotheses of Proposition 2] for any r < r.(7), are satisfied for some ¢, > 0.

Once more, by interpolation and uniform boundedness on [ty,4+00) of the H?
norm, we have

1—5 El
Hs < OHf - MK/QOOHLQPHf - MHQooHIp{P
~ 1—2 s
< O\ f (to — Myugug)l| 2 " "0 010,

If = Mya..|

so taking p sufficiently large, we also get exponential convergence for the H*® norm,
with rate r(1 — ¢) for any 6 > 0.

Finally we have that for all » < r.(7) and s, there exists some time tq and C' > 0
such that || f — Mua. |lgs < Ce™" for t > to. We can even get rid of the constant C
since for any 7 < r and ¢ sufficiently large Ce™™ < ™.

1

n

4.3 Study of the critical case ™ =

For any 7 € (0,400) \ {+}, we have exponential convergence to some equilib-
rium. However the rate of convergence tends to 0 when 7 is close to % (in the
case where J[fy] # 0). So we do not expect to have a similar rate of convergence in
the critical case.

First of all, we know by PropositionB.4lthat the solution converges (in any H*(S))
to the uniform distribution as time goes to infinity. The goal of this section is to

estimate the speed of convergence to this equilibrium.

Proposition 4.3. Suppose that ||f(t) — 1||gs is uniformly bounded on [ty,+00) by
a constant K, with s > @
Then for all C' > 1, there exists 6 > 0, such that if || f(to) — 1|12 < 0, we have,
f07’t > tO;
C

1F(t) = Lllze < 1 — :
\/ Vel iy e (o)

The constant § depends only on 7, s, K, and C.

Proof. As in the previous section, we work on [ty, +00). We write f = 1 + h and
as in the previous case, we suppose that J[fy] # 0. By the same argument used in
Proposition 1], we have that J[f(t)] # 0 for all t > 0, so we define () as the unit
vector Ii[ﬁ(%' Similarly we denote (-) for the mean of a function on the unit sphere
and cosé for w - €.

We have (h) = 0. Since 2 is the direction of J[f] = ((1 + h)w) = (hw), we get
that (hw) = (hcos ).

We perform an expansion of the free energy and its dissipation in terms of h. We
get, using (B2) and taking 7 = 1,

F(1+h) = 5 (5(h%) = §(h*) + 5(h") — 5{hcos 6)” + O(|IR]1%)-

Now we write o = n(hcos#) and we define

g=h—acost —ia’(cos’d — 1) — ga’(cos® 0 — 25 cos ). (52)
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We have (cos? §) = n(n3+2) (we have used the formula (Eﬂl) to compute 292 = (cos* 0)).

Since we have (cos®f) = (cosf) = 0, and (cos®#) = =, we get (g) = <g cosf) = 0.
We will see that the terms of order 2 in ¢ will not vanish in the expansion of the
free energy and the dissipation term. But we will need to expand the free energy
in a up to order 4, and the dissipation term up to order 6 in . We have

%(hQ) — %(92) + %oz + ma + a 2(gcos?0) + O(a®||gle + ), (53)
~41") = ke ~ datlocos'0) + Ol +allol + ol +),
50" = o @’ + Ol + allglli + o®llgllz + o?llglle + o).

We finally get
F(L+h) = 549%) + gopma’ + Olgll% +allglli +’llglle + 0. (54)

Using the inequality apbq sas +( —S)bl%s for s € (0,1), with a = awand b = ||¢|| 0,

2+1
we get that a|g|2 < Lo’ + 4|gl/ 2 and 0?[lg]l < 50° + 2lgll ®

By Sobolev embeddmg and interpolation, as in the previous section, we have

lglloe < Cllgllya ™ llgll 7 - (55)

with 1 — 224 > §.
Since « is controlled by ||A|

=, using the definition (52)) of g, we have a bound

for ||g|| gs on [to, +oo), depending only on s and K. We finally get HgHij% < Clg*)*,
with > (24 3)8 > 1.

So using (IE{D and (B4), we get that for any ¢ > 0, there exists § > 0 such
if ||h||z2 < 0, we have

(1=2)({¢%) + 2a®) < (") < (1 +2)((¢?) + 10”)
(1= )(5:(9%) + g @) S F(1+h) < goiigy (20 (n +2){g%) +a').  (56)

From that, up to take a smaller §, we obtain

2 2nF (14 h) < (h*) < = 2¢/n(n + 2)F (1 + h). (57)

1+6

We now estimate the dissipation term. We use the definition ([B3]) of D(f) and the
Poincaré inequality to get:

D(f)

(14 1) |V(E (L4 k) = (14 h)w) - w)]?)
(14 h)|V(L1n(1 + h) — (hcos8) cos0)[*)
211 — 17][oo){[In(1 + h) — (In(1 + h)) — n(hcosb) cos 0)%). (58)

s(h)

{
{

\\/

We have

S(h) =In(1+h) — (In(1 + h)) — n(hcosB) cos b
=h — (h) — acost — 5(h* — (h*)) + 3(h* — (h*)) + O(|[A[|*).
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We compute,

1
h—(h>—acos@=g+§0¢2(00829 1) + 1o’ (cos® O—QCOSG)

3(h* = (h%) = —3(a” + a*cosf)(cos® 0 — 3) + O(llgl* + allglloe + @)
3(B° = (%)) = 307 cos® 6 + O(llgll% + allgll% + @®llglles + o).

So
(S(h)?) = (g + 50°(2 = 25) cos 0)]*) + O(llg[* + allgl]* + a*[[gllc + )

n

= (92>+n(n+2)204 +O(llgll% + ellgllz + a*llglle + o). (59)

1
As before, we get that af|g|* < %047 + gHgHij and at(|g|le < %047 + %Hg”iér3

1
Using (B3)), we get ||g||2:>r3 < C{g*)*, with g > 2(2+ 3)2 = 1. So using (G3)
and (B9), up to take a smaller §, we have, for ||h| 2 <,

D(f) = (1 - )% ((¢*) + i)

Now for any C,C" > 0, if we take o and g sufficiently small (so again up to take a
smaller §), we have that C(g%) +aS > (C"(g%) + a*)2. So we get

D(f) > (1 — &)l (202 (n + 2)(g%) + a)2.

Putting this together with (Bl and the conservation relation (@3], we get that for
any 0 < e < 1, there exists dy > 0 such, as soon as ||h||z2 < dp, we have

d _ 8(n—-1)(1—¢) 3
T =P <~ S
Then we obtain, for all 7" such that ||h||zz < dg on [to, T,
FUHT) 2 2 F(f(to)* + 7=t~ o). (60)

(1+€)% v/ n(n+2)

Then, using (B1), we get that for t € [ty, T,

-2 5 Vi—e 2n(l1—¢) 4(n—1)(1—¢) . ‘
5
We write C' = 1+ ;; (a one-to-one correspondence between 0 < ¢ < 1 and C' > 1)
AV
and we get
1
—2
< 1 2(n—1) ry ‘
e <€ [\/2(n+2)||h(to)Lz + 2y (o) (61)

So if we take § < min(dp, 62), and ||h(to)|lz2 < J, we get that [|A]|z: < &

e

on [to, T'] for all T > ty. Otherwise, the largest of such a 7" would satisfy

g = ”h(T)||L2 <C |: ! :| < dp.

2(n+2)d

So the inequality (&1]) holds for all ¢ € [ty, +00), which ends the proof. O
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With this proposition, since f tends to the uniform distribution in any H*(S), we

get that for any r < Z((Z:L;)), there exists to such that we have || f(¢) — 1|2 < —(: t
\V rt—to
fort > to. We can even get rid of the #; in this inequality since for any r < 7 < Z((Zjé)),

. 1 < 1
for ¢ sufficiently large, we have s S v

As in the previous section, using interpolation to deal with the other Sobolev
norms of the solution would lead, for any n > 0 and t sufficiently large, to an
inequality of the form [|f(t) — 1||gr < Cnt_%J’”. But we can actually do slightly
better. Indeed we have, following the notations of the proof and using (52I),

Allzs < lolll cos Ol + Caa® + Cslal* + gl -

We have | cosf|lg» = (n — 1)2. We take t, > 0 satisfying the conditions of the
proposition and such that [|hl|zz < 6. We have that g is uniformly bounded in
any H”(S), and so by interpolation, we have ||g||z+ < C,||g]/}>" for any 1 > 0. Now

using (60) and (B4]), we get

1.2 1 41 An-1)(1-8)3 ,,
Gl + mtem ) 2 G e )

3
which gives [|g|lrz = O(t™!) and o? < 2(n(jr)i)12—Z§%J(rt2—)to)' So finally, for any n > 0,

3
we have that ||hl|g» < (n — 1)5\/ (+e)2n(nt2) 4 O(¢=+7). This gives that there
2(n—1)(1—¢) 2 (t—to)

3
exists t; > to such that for ¢ > t;, we have ||h|| g < (1+5)(n—1)§\/ (1te)n(ni2)
2(n—1)(1—2) 3 (1—to)

This is true for any € > 0. In conclusion, we have that for any r <
there exists ¢; such that for ¢t > ¢;, we have || f(t) — 1||g» <

I
) n(n—1)P—1(n+2)’
Tt

4.4 Summary

In summary we can state the following theorem:

Theorem 4. Convergence to equilibrium.

Suppose fo is a probability measure, belonging to H*(S) (this is always the case
for some s < =51 ).

Then there ezists a unique weak solution f to Smoluchowski equation (B), satis-
fying the initial condition f(0) = f.

Furthermore, this is a classical solution, positive for all time t > 0, and belonging
to C*°((0,+00) x S).

If J[fo] # 0, then we have the three following cases, depending on T.

o IfT> %, then f converges exponentially fast to the uniform distribution, with

global rate (n — 1)(7 — L) in any H? norm.

More precisely, for all tg > 0, there exists a constant C' > 0 depending only
on tg,s,p,n, and T, such that for all t > tog, we have

1 (&) = Um» < Cllfol

e (G
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o If T < %, then there exists 2 € S such that [ converges exponentially fast
to M., with asymptotic rate roo(7) > 0 in any HP norm.

More precisely, for all r < ro(T), there exists to > 0 (depending on fy) such
that for all t > ty, we have

1 () = Myall e < e

When 7 is close to £ we have that ro(T) ~ 2(n — 1)(+ — 7).

o [fT = %, then f converges to the uniform distribution in any HP norm, with

asymptotic rate 1/ %:("’LQ) .

More precisely, for all r < m;

such that for all t > ty, we have

there exists to > 0 (depending on fy)

1
t)—1 < —.
If J[fo] = 0 the equation reduces to the heat equation on the sphere, so f converges
to the uniform distribution, exponentially with global rate 2nt in any HP norm.

For the subcritical case 7 > %, we used Theorem 2l In the case where p < —”T’l,

a simple embedding gives || f(¢) — 1l|n» < [|f(t) — 1| ,,_n51 so we only have to show
the result for p > —”T’l. We get

Ly —(n— ‘r—l -
£ = U < ClF(t0) = Ulre™ "D < Y ()] are™ 00,

The last inequality comes from the fact that f(ty) is a probability density function,
so f(to)—1 is the orthogonal projection of f () on the space of mean-zero functions.
Using Proposition 2.6, we get || f(to)||mr < Cyll follgs in the case p > s. Otherwise
we just use a simple embedding to get first || f(to)||a» < ||f(to)|lzs and then by the
same proposition || f(to)|lar < C|| folla= -

Then the results in the case 7 < % and 7 = % are a summary of the conclusions
of the two previous subsections. However, although it gives a clear understanding of
how fast the solution converges to the equilibrium, in some sense, this summary is
not as accurate as Propositions and .3, which give a kind of stability: starting
close to an equilibrium, the solution stays close.

5 Conclusion

In this paper, we have investigated all the possible dynamics in large time for the
Smoluchowski equation (B]) with dipolar potential. We have obtained a rate of
convergence towards the equilibrium given any initial condition and any noise pa-
rameter 7 > 0, for all dimension n > 2.

The rate of convergence to the anisotropic steady state, in the case 7 < %,
depends on a Poincaré constant which does not seem easy to estimate. A better
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knowledge of the behavior of this constant, for example as the noise parameter 7
tends to zero, would be useful to understand the limiting case 7 = 0, where we have
existence and uniqueness of the solution. In this limit, the steady states are given by
the sum of two antipodal Dirac masses (1 — «)dg+ad_q with 2 € Sand 0 < o < %
We conjecture that if the initial condition is continuous (and with non zero initial
momentum), then the solution converges to one of these steady states, with a = 0.

It should also be possible to get the same kind of rates for the Maier-Saupe
potential, but there the classification of the initial conditions leading to a given type
of equilibria is much more difficult, in particular in the case where two types of
equilibria are stable.
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A Appendix

A.1 Using the spherical harmonics

For the following we will use the spherical harmonics, so we recall some preliminaries
results. We fix n > 2 and work on R™ and its unit sphere S,,_;.

Definition A.1. A spherical harmonic of degree £ on S, _1 is the restriction to S, _1
of a homogeneous polynomial of degree { in n variables (seen as a function R™ — R)
which is an harmonic function (a function P such that AP = 0, where A is the
usual Laplace operator in R"™). We denote Hén) the set of spherical harmonics of
degree £ on S, 1 (including 0 so they are vector spaces).

We know that the space of homogeneous polynomials of degree ¢ in n variables
has dimension ("'[") (the number of n-tuples (i1, ...i,) of sum ¢). Writing an
arbitrary homogeneous polynomial P of degree ¢ under the form P = Zf:o Qi X},
with the polynomials ¢); being homogeneous of degree ¢ in the first n — 1 variables,
and imposing that P is an harmonic function gives the following conditions (taking
the term in X' 72), for i € [0, — 2]: AQ—; + (¢ + 1)(i + 2)Qy—;—» = 0. Finally the
polynomial P is only determined by the polynomials @), and @), in n — 1 variables,
of respective degrees ¢ and ¢ — 1. This gives the dimension of the space of spherical
harmonics.

Proposition A.1. The dimension of Hén) 15 given by

ké") _ (n+£—2) + (n+é—3) _ <n+e—1) . (n+€—3).

n—2 n—2 n—1 n—1
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The second expression comes from two successive applications of Pascal’s trian-
gle rule, and will be useful in the following. It can also be seen by the following
propertyll: every homogeneous polynomial P of degree ¢ can be decomposed in a
unique way as H + | X|?Q, where H is harmonic of degree £ and Q is homogeneous
of degree ¢ — 2. Iterating this decomposition, we get

) A |X|°Hy  { even
where the polynomials H; are harmonic of degree i. This shows that any restriction of
a polynomial on the sphere is equal to a sum of spherical harmonics (the terms | X|*
are constant when restricted to the sphere). This gives, with the Stone-Weierstrass
theorem, that the sum of spherical harmonics are dense in L*(S,_) (since they are
dense in the continuous functions). Together with the radial decomposition of the
Laplacian A = rnl,l(?r(r”_lar) + T%Aw (where A, is the Laplace Beltrami operator

on the sphere S,_;, which is self-adjoint in L*(S,_1)), we get the following result:

Proposition A.2. The spaces Hgn), for ¢ € N, are the eigenspaces of the Laplace
Beltrami operator A, on the sphere S,_1 for the eigenvalues —¢( +n — 2). They
are pairwise orthogonal and complete in L*(S,_1).

We can construct a basis of Hén) by induction on the dimension, using the sep-
aration of variables. We describe this construction and will use it in the following.

For a given unit vector e,, € R™, we take an orthonormal basis (ey, ..., e,) of R™.
Any w € S,_1 \ {en, —€,} can be written w = cosfe,, + sinfv, with 0 € (0,7)
and v € S, 5. We identify R""! with the vector space spanned by (e1,..., e, 1).
The special case n = 2 works if we consider Sy = {e1, —e1}.

By convention, the only spherical harmonics on Sy are the constant functions (of
degree 0) and the functions e; +— ¢, —e; — —c (of degree 1).

Now, for n > 1, we choose an orthonormal basis (Z!, ... Z,’Z(??—l)) of HE Y for
any m € N and we have the following result:

Proposition A.3. There exists polynomials Q¢ of degree £ —m such that if we de-
note Y[ (w) = Qum(cos ) sin™ 02, (v), then the Y[, for m € [0,(], k € [1, kgf_l)]]

: (n)
form an orthonormal basis of H, .

Proof. Writing Y (w) = Qgm(cosf)sin™ 0ZF (v) and asking it to be a spherical
harmonic is equivalent to the following linear ODE for @y, (we recall that the

!This can be shown using the appropriate inner product (P,Q) — P(D)Q on the space of

homogeneous polynomials P of degree ¢, where P(D) is defined as it P=X{". . X,

and extended by linearity (so for example, we have that | X |*(D) = A). If we denote by E the space
of polynomials of the form P = |X|?Q, with Q of degree ¢ — 2, then the orthogonal of E consists
in all the polynomials P such that for all ) of degree £ — 2, we have (|X|?Q)(D)P = Q(D)AP =0,
that is to say in all the polynomials P such that AP = 0. So the claimed decomposition is just
the orthogonal decomposition, on E and E*.
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Laplace-Beltrami operator is given by sin®~" 00 (sin" 2 09y) + ﬁAU in this coor-
dinates):

sin® ™" 9p( — sin" ! 0Q} ,,,(cos0) +mcos sin™ " 0Qy m (cos )

—m(m +n — 3)Qqm(cosf)sin™ ? 0 = —L({ +n — 2)Qy,,(cos §) sin™ 0.
We write © = cos 6 and this equation transforms into
(1—2?) Z’m —(n+2m— l)ngm +(l—=m)l+n+m—2)Qpm =0.

This equation is a particular form of the Jacobi differential equation, where the two
parameters « and [ are equal (also called Gegenbauer differential equation). One
solution of this differential equation is a polynomial, called ultraspherical polynomial
(a particular case of the Jacobi Polynomials, also called Gegenbauer polynomials),

and denoted Pi(’\) following the notation of Szego in [20]. Precisely, it satisfies the
differential equation

(1 —2?)y" — X+ Dy +i(i +2)\)y = 0.

(m—1+%)

Taking A = m — 1+ 5 and i = £ —m, we get a solution Q,, = aymbP,_,, ,

where ay,, is a positive constant of normalization, such that Y} is of norm 1

in L(S,_1). We have to be careful here because Pi(’\) is not defined for A = 0, and
so the only special case is n = 2, m = 0, for which we have a solution Q¢ = V2T,
where Ty(cos ) = cos £0 (the Chebyshev polynomial of first order of degree /).

So for a fixed ¢, we have constructed a family of spherical harmonics Yfm of
degree ¢ for m € [0,(],k € [[1,/{,(,?71)]]. They are pairwise orthogonal in L(S,_;)
since the Z* are pairwise orthogonal in L2(S,_5). The size of this family is exactly

/¢ l
DoK== () = () + (UL =R (62)

which is the dimension of ng"), so we get that the Y5 for m € [0, /], k € [1, k,(ff_l)]]

form an orthonormal basis of H én). ]

From now on, we will use the construction done in the proof. We have that, for a
fixed m > 0, the polynomials ()¢, for £ > m are a family of orthogonal polynomials
n—1
for the inner product (P, Q) — f_ll P(2)Q(z)(1 — 22)™ "2 du.
We will use three properties on the Gegenbauer polynomials (see [20]) for the
following, for i > 0, A # 0, and A > —3 (with the convention Pg) =0):

L e o1, 27PD(i 4 2))
/1(3 @)=Y = oG+ 1) (63)
(i+ )P =26+ )X PY = (i+ 21— 1)PY (64)
(1= X)) = 5 1+ 5 (i+22 =D+ 20PN —ii+ DY) (65)
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We have the following normalization for the Qg :
! n—1 1 n—1
Q@) -2ty e = [ () e

This gives the following relation, together with (G3]):

2 (R e-m)
Yt1m = (¢+3-1)(C+m+n—2) Y

(66)

By the previous construction, we can decompose g = Y., ¢, Y/, and we
have [o 9> =2, |} ,u|?. Since g is of mean zero, we have c¢j, = 0 (the only
spherical harmonic of degree 0 is the constant function 1). So from now, the in-
dices k, ¢, m of the sum will mean ¢ > 0,m € [0,/],k € [[1,]{:5,?_1)]].

We decompose in the same way h = Zumdlijfm We give a first formula, in
the form of a lemma.

Lemma 3. We have

1
€n - / QVh -5 Z bg’m[(f +n— ]')C?,mdl;—&—l,m - éclz—&-l,md?,m]? (67)
Sn—1 2 ke lm

where by, = YiEmEWEmin=2

VS -1/t+%

Proof. We have

e, VY), = —sin00,Y), = [(1 = X*)Q,, — mXQum] (cos ) sin™ 02} (v),

and using the inductions formulas ([64)), (G8) and (G0), we get

1
(1 - X2)Q/£,m - mXQZ,m - i[be—l,m(g +n— Q)Qﬁ—l,m - bé,mEQZ—i—l,m]v (68)

where by, is given in the statement of the lemma. In the special case n =2, m =0,
using the formula Qyo(cosf) = cos €0 gives the same formula as ([68), with b, = 1.
So we have that [; e, - V}Q’fmn’?:m, can be non-zero only if m = m/, k = ¥/,

and ¢ = ¢' + 1. By bilinearity, together with the fact that ngm form an orthonormal
basis, this gives the claimed formula. O]

Now we have all the tools to prove Lemma [ (we recall it here).
Lemma 1. Estimates on the sphere.

1. If hoin H=**Y(S) and g in H*(S), the following integral is well defined and we
have

/S gw‘ < Ollgllir ol e

where the constant depends only on s and n.
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2. We have the following estimation, for any g € H*(S):

< Cllgl

Hs?

SgV(—A)

where the constant depends only on s and n.

3. We have the following identity, for any g € H™"2"

/ gVA g =0
s
Proof. Using Lemma Bl we get

[ten—1 (A1) 2
en'/S: QVh Z 6—24_11 < & > |)‘2C€m||)\£+l d€+1m|
+5 Z\/M (25)" Nkl b 2

<CH9HHS hlljg-ess
where Ay = (({ + n — 2) (the eigenvalue of —A for the spherical harmonics of
degree £). The last line comes from the fact that the sequences “Zﬁ;l (’\‘;1> ’

l4+n—2 \ Ap41
inequality. This gives the first part of the lemma, since this is true for any unit

vector e,,.
Now we take h = (—A)®g, which is replacing d m by )\ch in LemmaBl We get

and £ <L> ® are bounded (they tend to 1), together with a Cauchy-Schwarz

1
€n * /S gV(=A)g = Z §bg,mc’;+17mc’gm[(£ +n— 1)\ — O]

k.m

S

s El A 2
<> MmNl n—1) (22)" =0 (25)7

k.m

[N

Indeed we have that % =1-240(2),s0[(l+n—1) (%) v <A’\f >2 | is
¥4 4 0+1
bounded (it tends to (n — 1)+ 2s). Since this computation is now valid for any unit
vector e,, this gives the second part of the lemma.
The last part is straightforward by taking h = A ', g with Lemma[B According

to the definition given in (8), we have dj,, = m C} - We get

l4+n—1 4 _
n '/S gVA 9= Z bf mc€+1 mcém[(€+1)+(£+n ) £(£+1)...(z+n—2)] =0,
n—1 kEm

which is true for any unit vector e,. O
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A.2 Analyticity of the solution

Following [5], we will show that the solution belongs to a special Gevrey class. We de-

~ 1 1
fine the space G, as the set of functions g (with mean zero) such that A, % e"(=2)%g
is in L?(S). Using the notations of the previous proof, this is an Hilbert space
associated to the inner product

Z U(t+n—2) -
Cé,mdé,m’

bt 0+1) —2)

The norm on this Hilbert space will be written || - ||¢,

Theorem 5. We define r(t) = d min{1,¢}.

If 0 > 0 is sufficiently small, then for any solution of Smoluchowski equation (Bl)
of the form f =1+ g, with g(0) € H_%(S), we have that g(t) is bounded in G,y
uniformly for t > 0.

Before giving a proof, we remark that the condition g(0) € H _%(S) is not very
strong, since, by instantaneous regularization (Proposition 2.6]) we have it for any
time ¢ > 0. The shape of r(t) is not optimal, and we will provide a more precise
condition in the proof. Now since G,., for r > 0, is a subset of the set of analytical
functions on the sphere, we get that any solution becomes instantaneously analytic
in space.

Proof. We take r an arbitrary function of ¢, we will denote its time derivative by 7.
~ 1
For a given solution f = 14 g, we put h = A1 e?(=2)2 g in ([I3).
The left-hand side is

50 Kl % U(ttn—2) Ld
€ C —C
< t9, Bp_1 I;emg £_|_1 f—i—n 2) E,mdt lm
2r\/2(€+n 2) e €2r\/2(2+n—2)

= e 2 ; ko2
Z 2dt €(Et1)..(En— 2)|Cz | )_rﬂ(z+1)...(z+n—1)m\cz,m!

1 d 1
=5l = F=2) gl

Using Lemma Bl we get

A 1 A)? 1 k & (l+1)(l+n—-1) _ 62r L(l4+n—2)
\% = - be.mCri1 mCom
ne i QWZ’mf’ rm, (+1)...(+n—-2)
Z \/(g+1)(e+n 1) erV/ (D) (t+n—1) k \/g (t+n— Q)ET\/aun 2)’ % |
V() (CFn—2) (t4n—1) Cor1m W+ (b4n—2) | tm

,,m

o af _ten—1) (er(\/(€+1)(€+n—1)—\/£(€+n—2))_e—r<\/(€+1)(ﬁ+n—1)—\/£(€+n—2)))

((+1)(+n—2)

<sinh(r(vV2n — v — 1) (—=A)ig|2 .
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Indeed the expression /(¢ + 1)(¢ +n — 1) — /€( +n — 2) is a decreasing function
of £ > 0. Since this is valid for any unit vector e,,, we get

Tlg) - (9. VAL g)| < sinh(r(v2n — V= D) (=) gl

. s 1 62r\/m
Now since [|(=A)Tg[%, < ZA5lI(=A)zg[)%,, and [J[h]] < G50 |T[g]], we finally
get
1d . . 1 627‘\/71—1
5 qillol, + [ = A=+ sinh(r(v20 — V= D) -8l < C—gp

As soon as 7 +sinh(r(v/2n —v/n — 1)) < (1 —€)y/n — 1 and r is bounded in time
(for example the shape given in the statement of the theorem, r(¢) = 6 min(1,1),
for § sufficiently small), using Poincaré inequality, we have that ||g||, satisfies an
inequality of the form ¢ + ay < b with some positive constants a and b. Therefore
this quantity is uniformly bounded, provided g(0) is in G, (). So if we have 7(0) = 0,
we only need g(0) to be in H="2 (S). O
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