ON SOME INEQUALITIES IN NORMED LINEAR SPACES

S.S. DRAGOMIR

Abstract. Upper and lower bounds for the norm of a linear combination of vectors are given. Applications in obtaining various inequalities for the quantities \(\|x/\|x\| - y/\|y\| \) and \(\|x/\|y\| - y/\|x\| \), where \(x \) and \(y \) are nonzero vectors, that are related to the Massera-Schäffer and the Dunkl-Williams inequalities are also provided. Some bounds for the unweighted Čebyšev functional are given as well.

1. Introduction

In [9], L. Maligranda has obtained the following interesting inequality for two nonzero vectors \(x, y \) in a real or complex normed linear space \((X, \|\cdot\|)\):

\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \frac{\|x - y\| + \|\|x\| - \|y\||\max\{\|x\|, \|y\|\}}{\max\{\|x\|, \|y\|\}}.
\]

Notice that, this inequality provides a refinement for the celebrated Massera-Schäffer inequality [10]:

\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \frac{2\|x - y\|}{\max\{\|x\|, \|y\|\}},
\]

which, in its turn, is a refinement of the Dunkl-Williams inequality [7]

\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \frac{4\|x - y\|}{\|x\| + \|y\|}.
\]

More recently, in order to provide a lower bound for the quantity \(\|x/\|x\| - y/\|y\|\), P.R. Mercer obtained in [11] the following result as well:

\[
\frac{\|x - y\| - \|\|x\| - \|y\||}{\min\{\|x\|, \|y\|\}} \leq \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|.
\]

In an effort to generalise the above results for \(n \)–vectors, J. Pečarić and R. Rajić have obtained in [13] the following double inequality:

\[
\max_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{\|x_k\|} \left[\sum_{j=1}^{n} x_j \|x_j\| - \sum_{j=1}^{n} \|x_j\| - \|x_k\| \right] \right\} \\
\leq \left\| \frac{x}{\|x\|} \right\| \leq \min_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{\|x_k\|} \left[\sum_{j=1}^{n} x_j \|x_j\| - \sum_{j=1}^{n} \|x_j\| - \|x_k\| \right] \right\},
\]

Date: 28 May, 2007.

2000 Mathematics Subject Classification. Primary 26D15, 46B05.

Key words and phrases. Normed linear spaces, Triangle inequality, Massera-Schäffer inequality, Dunkl-Williams inequality, Čebyšev functional.
for any \(x_j \in X \setminus \{0\} \), where \(j \in \{1, \ldots, n\} \) and observed that, for \(n = 2 \), \(x_1 = x \) and \(x_2 = -y \), (1.5) reduces to the Maligranda & Mercer inequalities outlined above. They also remarked that, the following refinement of the generalised triangle inequality obtained by M. Kato et al. in [8]

\[
\min_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \right\}
\leq \sum_{j=1}^{n} \|x_j\| - \left\| \sum_{j=1}^{n} x_j \right\|
\leq \max_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \right\}
\left[\sum_{j=1}^{n} \|x_j\|^{p-1} - \left\| \sum_{j=1}^{n} x_j \right\|^{p} \right],
\]

can be deduced from (1.5) as well.

We should remark that (1.6) can be also obtained as a particular case from the author’s recent result established in [1]

\[
\max_{1 \leq j \leq n} \left\{ \|x_j\| \right\}
\left[\sum_{j=1}^{n} \|x_j\|^{p-1} - \left\| \sum_{j=1}^{n} x_j \right\|^{p} \right]
\geq \sum_{j=1}^{n} \|x_j\|^{p} - n^{1-p} \left\| \sum_{j=1}^{n} x_j \right\|^{p}
\geq \min_{1 \leq j \leq n} \left\{ \|x_j\| \right\}
\left[\sum_{j=1}^{n} \|x_j\|^{p-1} - \left\| \sum_{j=1}^{n} x_j \right\|^{p} \right],
\]

where \(p \geq 1 \) and \(n \geq 2 \).

Notice that, in [1], a more general result for convex functions has been obtained as well.

Motivated by the above results, we establish in this paper some upper and lower bounds for the more general quantity \(\left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \) where \(\alpha_j, j \in \{1, \ldots, n\} \) are scalars in \(K (K = \mathbb{C}, \mathbb{R}) \) and \(x_j, j \in \{1, \ldots, n\} \) are vectors in the normed linear space . For \(\alpha_j = \|x_j\| \) with \(x_j \in X \setminus \{0\} \), \(j \in \{1, \ldots, n\} \) we obtain a result which is similar to (1.1). For the case of two vectors we recapture Maligranda’s result (1.1) and provide various inequalities for the dual expression \(\|x/\|y\| - y/\|x\|\| \) with \(x, y \in X \setminus \{0\} \). Some bounds for the unweighted Čebyšev functional are given as well.

2. Inequalities for \(n \)-Vectors

The following result may be stated.
Theorem 1. If $x_k \in X$ and $\alpha_k \in \mathbb{K}$, $k \in \{1, \ldots, n\}$, then

$$\max_{k \in \{1, \ldots, n\}} \left\{ \sum_{j=1}^{n} \alpha_j \|x_k\| - \sum_{j=1}^{n} |\alpha_j| \|x_k - x_j\| \right\} \leq \sum_{j=1}^{n} \alpha_j \|x_j\|$$

$$\leq \min_{k \in \{1, \ldots, n\}} \left\{ \sum_{j=1}^{n} \alpha_j \|x_k\| + \sum_{j=1}^{n} |\alpha_j| \|x_k - x_j\| \right\}.$$

Proof. For any $k \in \{1, \ldots, n\}$, we have

$$\sum_{j=1}^{n} \alpha_j x_j = \left(\sum_{j=1}^{n} \alpha_j \right) x_k + \sum_{j=1}^{n} \alpha_j (x_j - x_k).$$

Taking the norm in (2.2) and using the triangle inequality we have successively:

$$\left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq \left\| \sum_{j=1}^{n} \alpha_j \right\| \|x_k\| + \sum_{j=1}^{n} |\alpha_j| \|x_k - x_j\|$$

for any $k \in \{1, \ldots, n\}$. Taking the minimum over k in (2.3) we deduce the second inequality in (2.1).

From (2.2) we also have

$$\sum_{j=1}^{n} \alpha_j x_j = \left(\sum_{j=1}^{n} \alpha_j \right) x_k - \sum_{j=1}^{n} \alpha_j (x_k - x_j).$$

Taking in this equality the norm and using the continuity property of the norm, we have

$$\left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \geq \left\| \left(\sum_{j=1}^{n} \alpha_j \right) x_k - \sum_{j=1}^{n} \alpha_j (x_k - x_j) \right\|$$

$$\geq \left\| \sum_{j=1}^{n} \alpha_j \right\| \|x_k\| - \sum_{j=1}^{n} |\alpha_j| \|x_k - x_j\|$$

for each $k \in \{1, \ldots, n\}$. Taking the maximum in (2.4) we deduce the first part of (2.1).

Remark 1. If there exists an $r > 0$ such that $\|x_j - x_k\| \leq r \|x_k\|$ for each $j, k \in \{1, \ldots, n\}$, then we get from the second inequality in (2.1) that

$$\left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq \min_{k \in \{1, \ldots, n\}} \|x_k\| \left[\sum_{j=1}^{n} |\alpha_j| \right] + r \sum_{j=1}^{n} |\alpha_j|.$$
Moreover, if \(\alpha_j \in \mathbb{K}, j \in \{1, \ldots, n\} \) are such that
\[
\left| \sum_{j=1}^{n} \alpha_j \right| \geq r \left| \sum_{j=1}^{n} |\alpha_j| \right|
\]
(and in this case \(r \) should be in \((0, 1)\)) then the opposite inequality
\[
(2.6) \quad \max_{k \in \{1, \ldots, n\}} \|x_k\| \left[\left| \sum_{j=1}^{n} \alpha_j \right| + r \sum_{j=1}^{n} |\alpha_j| \right] \leq \left\| \sum_{j=1}^{n} \alpha_j x_j \right\|
\]
also holds.

Corollary 1. For any nonzero vectors \(x_k \in X, k \in \{1, \ldots, n\} \), we have the inequalities:
\[
(2.7) \quad \max_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \sum_{j=1}^{n} \frac{1}{\|x_j\|} \left| \sum_{j=1}^{n} \frac{|x_k - x_j|}{\|x_j\|} \right| \right\} \leq \sum_{j=1}^{n} \left\| x_j \right\| \leq \min_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \sum_{j=1}^{n} \frac{1}{\|x_j\|} + \sum_{j=1}^{n} \|x_k - x_j\| \right\}
\]
and
\[
(2.8) \quad \max_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \sum_{j=1}^{n} \|x_j\| - \sum_{j=1}^{n} \|x_j\| \|x_k - x_j\| \right\} \leq \sum_{j=1}^{n} \|x_j\| \leq \min_{k \in \{1, \ldots, n\}} \left\{ \|x_k\| \sum_{j=1}^{n} \|x_j\| + \sum_{j=1}^{n} \|x_j\| \|x_k - x_j\| \right\}.
\]

3. **Inequalities for Two Vectors**

The case for two vectors is of interest due to the fact that some similar inequalities obtained in the past by several authors have been applied in investigating various problems in the Geometry of Banach spaces, including the characterization problem of strict convexity and the characterization of inner product spaces in the larger class of normed spaces.

Lemma 1. For any \(\alpha, \beta \in \mathbb{K} \) and \(x, y \in X \) we have
\[
(3.1) \quad \frac{1}{2} \left(|\|x\| + \|y\|| \right) |\alpha + \beta| - (|\alpha| + |\beta|) \|x - y\| \]
\[
+ \frac{1}{2} |\alpha + \beta| (||x|| - \|y\|) + (|\alpha| - |\beta|) \|x - y\| \]
\[
\leq \|\alpha x + \beta y\|
\]
\[
\leq \frac{1}{2} |\alpha + \beta| (||x|| + \|y\|) + (|\alpha| + |\beta|) \|x - y\| \]
\[
- \frac{1}{2} |\alpha + \beta| (||x|| - \|y\|) - (|\alpha| - |\beta|) \|x - y\|.
\]
Proof. If we choose in Theorem 1, \(\alpha_1 = \alpha_1, \alpha_2 = \beta, x_1 = x \) and \(x_2 = y \), then we get

\[
(3.2) \quad \max \{ \|x\| |\alpha + \beta| - |\beta||x - y|, \|y\| |\alpha + \beta| - |\alpha||x - y|\} \\
\leq \|\alpha x + \beta y\| \\
\leq \min \{ \|x\| |\alpha + \beta| + |\beta||x - y|, \|y\| |\alpha + \beta| + |\alpha||x - y|\}.
\]

Utilising the properties for real numbers

\[
\max \{ a, b \} = \frac{1}{2} (a + b + |a - b|) \quad \text{and} \quad \max \{ a, b \} = \frac{1}{2} (a + b - |a - b|), a, b \in \mathbb{R}
\]

we have:

\[
\max \{ \|x\| |\alpha + \beta| - |\beta||x - y|, \|y\| |\alpha + \beta| - |\alpha||x - y|\} \\
= \frac{1}{2} \left((\|x\| + \|y\|) |\alpha + \beta| - (|\alpha| + |\beta|) \|x - y\| \right) \\
+ \frac{1}{2} |\alpha + \beta| (\|x\| - \|y\|) + (|\alpha| - |\beta|) \|x - y\|
\]

and

\[
\min \{ \|x\| |\alpha + \beta| + |\beta||x - y|, \|y\| |\alpha + \beta| + |\alpha||x - y|\} \\
= \frac{1}{2} \left(|\alpha + \beta| (\|x\| + \|y\|) + (|\alpha| + |\beta|) \|x - y\| \right) \\
- \frac{1}{2} |\alpha + \beta| (\|x\| - \|y\|) - (|\alpha| - |\beta|) \|x - y\|
\]

which, by (3.2) produces the desired result (3.1).

The following particular cases are of interest:

Theorem 2. If \(\alpha, \beta \in \mathbb{K} \) with \(|\alpha| = |\beta| = 1 \), then

\[
(3.3) \quad \left| \|\alpha x + \beta y\| - \frac{1}{2} (\|x\| + \|y\|)|\alpha + \beta| \right| \leq \|x - y\| - \frac{1}{2} |\alpha + \beta| |\|x\| - \|y\||.
\]

for any \(x, y \in X \).

Theorem 3. If \(x, y \in X \) with \(\|x\| = \|y\| = 1 \), then

\[
(3.4) \quad \|\alpha x + \beta y\| - |\alpha + \beta| \leq \max \{ |\alpha|, |\beta| \} \|x - y\|,
\]

for any \(\alpha, \beta \in \mathbb{K} \).

Theorem 4. For any two nonzero vectors \(x, y \in X \) we have:

\[
(3.5) \quad \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \frac{\|x - y\| + \|x\| - \|y\|}{\max \{ \|x\|, \|y\| \}}.
\]
Proof. We choose in the second inequality from (3.2) \(\alpha = \frac{1}{\|x\|} \) and \(\beta = \frac{1}{\|y\|} \), then we get

\[
(3.6) \quad \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \min \left\{ \frac{\|x\|}{\|y\|} \left(\frac{\|x\|}{\|y\|} - \frac{\|x - y\|}{\|y\|} \right) + \frac{\|x - y\|}{\|y\|} \left(\frac{\|x\|}{\|y\|} - \frac{\|y\|}{\|x\|} \right) + \frac{\|x\|}{\|y\|} \right\}
\]

\[
= \left[\|x - y\| + \|x\| - \|y\| \right] \min \left\{ \frac{1}{\|x\|}, \frac{1}{\|y\|} \right\}
\]

\[
= \|x - y\| + \|x\| - \|y\| \min \{ \|x\|, \|y\| \}
\]

and the inequality (3.5) is proved. \[\square \]

Remark 2. The inequality (3.5) has been firstly obtained by L. Maligranda in [9] on utilising a different approach.

Corollary 5. For any two nonzero vectors \(x, y \in X \) we have the reverse of the triangle inequality

\[
(3.7) \quad (0 \leq \|x\| + \|y\| - \|x + y\| \leq \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \min \{ \|x\|, \|y\| \}. \]

Proof. If we write the first inequality in (3.2) for \(-y\) and for \(\alpha = \frac{1}{\|x\|}, \beta = \frac{1}{\|y\|} \), then we get

\[
\max \left\{ \frac{\|x\|}{\|x\| + \|y\|} - \frac{\|x + y\|}{\|y\|}, \frac{\|x\|}{\|x\| + \|y\|} - \frac{\|x + y\|}{\|y\|} \right\}
\]

\[
\leq \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|
\]

which is clearly equivalent to (3.7). \[\square \]

Remark 3. In [9], P.R. Mercer has obtained the following lower bound for the quantity \(\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| : \)

\[
(3.8) \quad \frac{\|x - y\| - \|x\| - \|y\|}{\min \{ \|x\|, \|y\| \}} \leq \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|
\]

for any \(x, y \in X \setminus \{ 0 \} \).

In order to compare the lower bounds provided by (3.7) and (3.8) consider \(B_1, B_2 : X^2 \to \mathbb{R} \)

\[
B_1(x, y) := \|x\| + \|y\| - \|x + y\|
\]

and

\[
B_2(x, y) := \|x - y\| - \|\|x\| - \|y\|\|.
\]

Now, we observe that

\[
B_2(x, y) - B_1(x, y) = \|x - y\| + \|x + y\| - \|\|x\| + \|y\|\| + \|\|x\| - \|y\|\|
\]

\[
= \|x - y\| + \|x + y\| - 2 \min \{ \|x\|, \|y\| \} \geq 0
\]

for any \(x, y \in X \). Therefore the Mercer result is better than (3.7) in providing a lower bound for the quantity \(\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| . \)
In the following we consider the dual problem, namely the problem of finding upper and lower bounds for the quantity
\[
\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\|
\]
where \(x, y \in X \setminus \{0\} \).

The first result that provides a lower bound is incorporated in

Theorem 2. For any two nonzero vectors \(x, y \in X \) we have:

\[
0 \leq \frac{\|x\| + \|y\|}{\min \{\|x\|, \|y\|\}} - \frac{\|x + y\|}{\max \{\|x\|, \|y\|\}} \leq \left\| \frac{x}{\|y\|} - y \right\|.
\] (3.9)

Proof. Taking \(\alpha = \frac{1}{\|y\|} \) and \(\beta = \frac{1}{\|x\|} \) in the left side of the inequality (3.2) we have

\[
\max \left\{ \frac{\|x\| (\|x\| + \|y\|)}{\|x\| \|y\|}, \frac{\|y\| (\|x\| + \|y\|)}{\|x\| \|y\|}, \frac{\|x - y\| (\|x\| + \|y\|)}{\|x\| \|y\|} \right\}
= \frac{1}{2} \left\{ \left(\frac{\|x\| + \|y\|}{\|x\| \|y\|} \right) (\|x\| + \|y\|) \right\} - \frac{1}{2} \left\{ \frac{\|x - y\| (\|x\| + \|y\|)}{\|x\| \|y\|} \right\}
\]

Then, by the first inequality in (3.2) we get

\[
\left(\|x\| + \|y\| \right) \max \left\{ \frac{1}{\|x\| \|y\|}, \frac{1}{\|x\| + \|y\|} \right\} - \frac{\|x - y\|}{\|x\| \|y\|} \min \left\{ \|x\|, \|y\| \right\}
\]

which clearly implies (3.9).

Theorem 3. For any two nonzero vectors \(x, y \in X \) we have

\[
\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \leq \frac{\|x - y\|}{\min \{\|x\|, \|y\|\}} + \frac{\|x - y\|}{\max \{\|x\|, \|y\|\}}.
\] (3.10)
Proof. Taking $\alpha = \frac{1}{\|y\|}$ and $\beta = -\frac{1}{\|x\|}$ in the right side of (3.2) we have successively

$$
\begin{aligned}
&\min \left\{ \|x\| \left[\frac{|\|x\| - \|y\|}{\|x\| \|y\|} + \frac{1}{\|x\|} \|x - y\| \cdot \frac{\|\|x\| - \|y\||}{\|x\| \|y\|} \right] + \frac{1}{\|y\|} \cdot \|x - y\| \right\} \\
&= \frac{1}{2} \left[\left(\|\|x\| + \|y\|| \right) \|\|x\| - \|y\|| \right] + \frac{1}{2} \|x - y\| \left(\|\|x\| + \|y\|| \right) \\
&\quad - \frac{1}{2} \left(\|\|x\| + \|y\|| \right) \|\|x - y\| - \|\|x\| - \|y\|| \right] \\
&= \frac{1}{2} \left(\|\|x\| + \|y\|| \right) \|\|x - y\| - \|\|x\| - \|y\|| \right] + \frac{1}{2} \left(\|\|x\| - \|y\|| \right) \|\|x - y\| - \|\|x\| - \|y\|| \right] \\
&\quad + \frac{1}{2} \left(\|\|x\| - \|y\|| \right) \|\|x\| + \|y\| + \|\|x\| + \|y\|| \right] \\
&\quad + \frac{1}{2} \left(\|\|x\| - \|y\|| \right) \|\|x\| + \|y\| + \|\|x\| - \|y\|| \right] \\
&= \|\|x\| - \|y\|| \max \left\{ \frac{1}{\|\|x\|\| \|y\|}, \frac{1}{\|\|x\|\| \|y\|} \right\} + \|x - y\| \min \left\{ \frac{1}{\|\|x\|\| \|y\|}, \frac{1}{\min \left\{ \|\|x\|\| \|y\| \right\}} \right\} \\
&= \|\|x\| - \|y\|| \max \left\{ \frac{1}{\|\|x\|\| \|y\|}, \frac{1}{\|\|x\|\| \|y\|} \right\} + \|x - y\| \min \left\{ \frac{1}{\|\|x\|\| \|y\|}, \frac{1}{\min \left\{ \|\|x\|\| \|y\| \right\}} \right\},
\end{aligned}
$$

and by the second part of (3.2) we get the desired result (3.10). \blacksquare

4. Bounds for the Čebyšev Functional

For $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{R}^n$ and $y = (y_1, \ldots, y_n) \in X^n$, we consider the un-weighted Čebyšev functional defined by

$$
C_n(\beta, y) := \frac{1}{n} \sum_{j=1}^{n} \beta_j y_j - \frac{1}{n} \sum_{j=1}^{n} \beta_j \cdot \frac{1}{n} \sum_{j=1}^{n} y_j.
$$

We remark that this functional has been considered previously by the author and some bounds have been established. We recall here some simple results.

With the above assumptions for X, α and y, we have

\begin{equation}
||C_n(\alpha, y)|| \leq \begin{cases}
\frac{1}{12} \left(\alpha^2 - 1 \right) \max_{j \in \{1, \ldots, n-1\}} |\Delta \alpha_j| \max_{j \in \{1, \ldots, n-1\}} \|\Delta y_j\|, & [6]; \\
\frac{1}{6} \cdot (1 - \frac{1}{n}) \sum_{j=1}^{n-1} |\Delta \alpha_j| \sum_{j=1}^{n-1} \|\Delta y_j\|, & [3]; \\
\frac{1}{n} \left(\sum_{j=1}^{n-1} |\Delta \alpha_j|^p \right)^{1/p} \left(\sum_{j=1}^{n-1} |\Delta y_j|^q \right)^{1/q}, & p > 1, \frac{1}{p} + \frac{1}{q} = 1, & [2],
\end{cases}
\end{equation}
where $\Delta z_j = z_{j+1} - z_j$ is the forward difference. Here the constants $\frac{1}{12}, \frac{1}{2}$ and $\frac{1}{6}$ are best possible in the sense that they cannot be replaced by smaller quantities.

In [5] we also have established that

$$
\|C_n (\alpha, y)\| \leq \frac{1}{n^2} \times \left\{ \begin{array}{l}
\max_{j \in \{1, \ldots, n-1\}} \left| \sum_{k=1}^{j} \alpha_k - \frac{1}{j} \sum_{k=1}^{n} \alpha_k \right| \left| \sum_{j=1}^{n-1} \| \Delta y_j \| \right; \\
\left| \sum_{j=1}^{n-1} \left| \det \left(\sum_{k=1}^{j} \alpha_k - \frac{1}{j} \sum_{k=1}^{n} \alpha_k \right) \right|^{q/4} \right| \left(\sum_{j=1}^{n-1} \| \Delta y_j \|^p \right)^{1/p} \\
\text{for } p > 1, \frac{1}{p} + \frac{1}{q} = 1;
\end{array} \right.
$$

and

$$
\|C_n (\alpha, y)\| \leq \frac{1}{n} \times \left\{ \begin{array}{l}
\max_{j \in \{1, \ldots, n-1\}} \left| \frac{1}{n} \sum_{k=1}^{n} \alpha_k - \frac{1}{j} \sum_{k=1}^{j} \alpha_k \right| \left| \sum_{j=1}^{n-1} \| \Delta y_j \| \right; \\
\left(\sum_{j=1}^{n-1} \left| \frac{1}{n} \sum_{k=1}^{n} \alpha_k - \frac{1}{j} \sum_{k=1}^{j} \alpha_k \right|^{q/4} \right| \left(\sum_{j=1}^{n-1} \| \Delta y_j \|^p \right)^{1/p} \\
\text{for } p > 1, \frac{1}{p} + \frac{1}{q} = 1;
\end{array} \right.
$$

\begin{align*}
&\sum_{j=1}^{n-1} \left| \frac{1}{n} \sum_{k=1}^{n} \alpha_k - \frac{1}{j} \sum_{k=1}^{j} \alpha_k \right| \cdot \max_{j \in \{1, \ldots, n-1\}} \| \Delta y_j \|. \\
\end{align*}

Finally, we recall the following result from [4]:

If there exists the complex numbers $a, A \in \mathbb{C}$ such that

$$
\Re \left[(A - \alpha_j) \left(\overline{\alpha_j} - a \right) \right] \geq 0 \text{ for each } j \in \{1, \ldots, n\}
$$

or, equivalently,

$$
\left| \alpha_j - \frac{a + A}{2} \right| \leq \frac{1}{2} |A - a| \text{ for each } j \in \{1, \ldots, n\},
$$

then one has the inequality:

$$
\|C_n (\beta, y)\| \leq \frac{1}{2} |A - a| \cdot \frac{1}{n} \sum_{j=1}^{n} \left| y_j - \frac{1}{n} \sum_{j=1}^{n} y_j \right|.
$$

The constant $\frac{1}{2}$ in the right hand side of the inequality is best possible in the sense that it cannot be replaced by a smaller constant.

For many other results that hold for n-tuples β and y of real numbers we recommend the chapters devoted to Grüss and Čebyšev inequalities from the books [12] and [14].

In the following we provide other upper and lower bounds for $\|C_n (\beta, y)\|$:
Proposition 1. For any β and y as above, we have:

\[(4.4) \quad ||C_n(\beta, y)|| \]

\[
\leq \min_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \left| \beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l \right| ||y_j - y_k|| \right\}
\]

\[
\leq \min_{k \in \{1, \ldots, n\}} \left\{ \max_{j \in \{1, \ldots, n\}} \left\{ \left| \beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l \right| \right\} \cdot \frac{1}{n} \sum_{j=1}^{n} \left| y_j - y_k \right|^q \right\}^{\frac{1}{q}}
\]

\[
\leq \min_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \left| \beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l \right| \right\} \cdot \max_{j \in \{1, \ldots, n\}} \left\{ \left| \beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l \right| \right\}.
\]

Proof. We observe that

\[
C_n(\beta, y) = \frac{1}{n} \sum_{j=1}^{n} \left(\beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l \right) y_j.
\]

Now, on applying the second inequality in Theorem 1 for $\alpha_j = \beta_j - \frac{1}{n} \sum_{l=1}^{n} \beta_l$ and $x_j = y_j$, we deduce the first part of (4.4). The second part is obvious by the Hölder inequality.

The following result can be stated as well:

Proposition 2. For any $\beta = (\beta_1, \ldots, \beta_n) \in K^n$ and $y = (y_1, \ldots, y_n) \in X^n$ we have the double inequality:

\[(4.5) \quad \max_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \beta_j - \gamma \left\| y_k - \frac{1}{n} \sum_{l=1}^{n} y_l \right\| - \frac{1}{n} \sum_{j=1}^{n} \left| \beta_j - \gamma \right| ||y_j - y_k|| \right\}
\]

\[
\leq ||C_n(\beta, y)||
\]

\[
\leq \min_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \beta_j - \delta \left\| y_k - \frac{1}{n} \sum_{l=1}^{n} y_l \right\| - \frac{1}{n} \sum_{j=1}^{n} \left| \beta_j - \delta \right| ||y_j - y_k|| \right\}.
\]

Proof. Follows from Theorem 1 on noting that

\[
C_n(\beta, y) = \frac{1}{n} \sum_{j=1}^{n} \left(\beta_j - t \right) \left(y_j - \frac{1}{n} \sum_{l=1}^{n} y_l \right)
\]

for any $t \in K$. \[Q.E.D.\]
Remark 4. As a particular case of interest we can state the following result:

\[
\max_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \beta_j \left\| y_k - \frac{1}{n} \sum_{l=1}^{n} y_l \right\| - \frac{1}{n} \sum_{j=1}^{n} |\beta_j| \left\| y_j - y_k \right\| \right\} \leq \|C_n(\beta, y)\|
\]

(4.6)

\[
\leq \left\{ \frac{1}{n} \sum_{j=1}^{n} \beta_j \left\| y_k - \frac{1}{n} \sum_{l=1}^{n} y_l \right\| - \frac{1}{n} \sum_{j=1}^{n} |\beta_j| \left\| y_j - y_k \right\| \right\}.
\]

(4.7)

\[
\leq \min_{k \in \{1, \ldots, n\}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \beta_j \left\| y_k - \frac{1}{n} \sum_{l=1}^{n} y_l \right\| - \frac{1}{n} \sum_{j=1}^{n} |\beta_j| \left\| y_j - y_k \right\| \right\}.
\]

(4.8)

References

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne VIC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/dragomir