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Abstract. A new weighted geometric inequality is established by Klamkin’s polar moment of
inertia inequality and the inversion transformation, some interesting applications of this result are
given, and some conjectures which verified by computer are also mentioned

1. Introduction

In 1975, M.S.Klamkin [1] established the following inequality: Let ABC be an arbitrary triangle
of sides a, b, c, and let P be an arbitrary point in space, the distances of P from the vertices A,B, C
are R1, R2, R3. x, y, z are real numbers, then

(1.1) (x + y + z)(xR2
1 + yR2

2 + zR2
3) > yza2 + zxb2 + xyc2,

with equality if and only if P lies the plane of4ABC and x : y : z =
⇀
S4PBC :

⇀
S4PCA:

⇀
S4PAB(

⇀
S4PCA

denote the algebra area, etc.)
Inequality (1.1) is called the polar moment of inertia inequality, it is one of the most important

inequality for the triangle, there exist many consequences and applications for this one, see [1]-[5].
In this paper, we will apply Klamkin’ inequality (1.1) and the inversion transformation to deduce
a new weighted geometric inequality, then we discuss applications of our results. In addition, we
also pose some conjectures.

2. Main Result

In order to prove our new results, first of all, we give the following lemma.
Lemma Let ABC be an arbitrary triangle, and let P be an arbitrary point in the plane of the
triangle ABC, if the following inequality:

(2.1) f(a, b, c, R1, R2, R3) > 0.

holds, then we have the dual inequality:

(2.2) f(aR1, bR2, cR3, R2R3, R3R1, R1R2) > 0.

Indeed, the above conclusion can be deduced by using inversion transformation, see[6] or [3], [7].
Now, We state and prove main result.

Theorem Let x, y, z be positive real numbers, then for any triangle ABC and arbitrary point P
in the plane of 4ABC holds the following inequality:

(2.3)
R2

1

x
+

R2
2

y
+

R2
3

z
> aR1 + bR2 + cR3√

yz + zx + xy
,

with equality if and only if 4ABC is acute-angled, P coincide with its orthocenter and x : y : z =
cot A : cot B : cot C.

Proof. If P coincide with one of the vertices of 4ABC, for example P ≡ A, then PA = 0, PB =
c, PC = b, (2.3) becomes trivial inequality and we easily to know it is holds true. In this case,
equality in (2.3) obviously cannot occur.

Next assume P does not coincide with the vertices.
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If x, y, z are positive real numbers, then by the polar moment of inertia inequality (1.1) we have

(xR2
1 + yR2

2 + zR2
3)

(
1
yz

+
1
zx

+
1
xy

)
> a2

x
+

b2

y
+

c2

z
.

On the other hand, from Cauchy-Schwarz inequality we get

a2

x
+

b2

y
+

c2

z
> (a + b + c)2

x + y + z
,

with equality if and only if x : y : z = a : b : c.
Combining these two above inequalities, for any positive real numbers x, y, z, the following inequal-
ity holds:

(2.4) (xR2
1 + yR2

2 + zR2
3)

(
1
yz

+
1
zx

+
1
xy

)
> (a + b + c)2

x + y + z
.

and we easily to know that the equality if and only if x : y : z = a : b : c and P is the incenter of
4ABC.

Now, applying the inversion transformation in the lemma to inequality (2.4), we obtain

[
x(R2R3)2 + y(R3R1)2 + z(R1R2)2

](
1
yz

+
1
zx

+
1
xy

)
> (aR1 + bR2 + cR3)2

x + y + z
,

or equivalently

(2.5)
(R2R3)2

yz
+

(R3R1)2

zx
+

(R1R2)2

xy
>

(
aR1 + bR2 + cR3

x + y + z

)2

.

where x, y, z are positive numbers.
For x → xR2

1, y → yR2
2, z → zR2

3, then holds

(2.6)
1
yz

+
1
zx

+
1
xy

>
(

aR1 + bR2 + cR3

xR2
1 + yR2

2 + zR2
3

)2

.

Take again x → 1
x , y → 1

y , z → 1
z , then we get the inequality (2.3) of the theorem.

Notice that the conclusion in [7]: If equality in (2.1) occurs only P is the incenter of 4ABC,
then equality in (2.2) only 4ABC is acute-angled and P is its orthocenter. According to this and
the condition which occurs equality in (2.4), we easy know equality in (2.3) if and only if 4ABC
is acute-angled, P is its orthocenter and holds

(2.7)
R1

xa
=

R2

yb
=

R3

cz
.

Since when P is the orthocenter of the acute triangle ABC, we have R1 : R2 : R3 = cos A :
cos B : cos C. Hence from (2.7) we have x : y : z = cot A : cot B : cot C in this case. Thus,
there is equality in (2.3) if and only if 4ABC is acute-angled, P coincide with its orthocenter and
x/ cot A = y/ cot B = z/ cot C. This complete the proof of the Theorem. ¤

Remark 2.1. If P does not coincide with the vertices, then inequality (2.4) is equivalent to the
following result in [8]:

(2.8) x
R2R3

R1
+ y

R3R1

R2
+ z

R1R2

R3
> 2

√
xyz

x + y + z
s,

where s is the semi-perimeter of 4ABC, x, y, z are positive real numbers. In [8], the proof of (2.8)
without using the polar moment of inertia inequality, So does not start from Klamkin’s inequality
(1.1) we can deduce the inequality of the theorem.
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3. Applications of the theorem

Besides the above notations, as usual, let R and r denote the radii of the circumcircle and
incircle of triangle ABC, respectively, ∆ denote the area, ra, rb, rc denote the radii of excircles. In
addition, when point P lies interior of triangle ABC, let r1, r2, r3 denote the distances of P to the
sides BC,CA, AB.

According to the theorem and the well-known inequality for any point P in the plane

(3.1) aR1 + bR2 + cR3 > 4∆,

We get
Corollary 1 For any point P in the plane and arbitrary positive numbers x, y, z, the following
inequality holds:

(3.2)
R2

1

x
+

R2
2

y
+

R2
3

z
> 4∆√

yz + zx + xy
,

with equality if and only if x : y : z = cot A : cot B : cot C and P is the orthocenter of the acute
angled triangle ABC.

Remark 3.1. Clearly, (3.2) is equivalent with

(3.3) xR2
1 + yR2

2 + zR2
3 > 4

√
xyz

x + y + z
∆.

The above inequality is first given in [9] by Xue-Zhi Yang. The author [10] obtained the following
generalization:

(3.4) x

(
a′

a

)2

+ y

(
b′

b

)2

+ z

(
c′

c

)2

> 4
√

xyz

x + y + z
∆′,

where a′, b′, c′ denote the sides of 4A′B′C ′, ∆′ denote its area.

If, in (2.3) we put x = 1
a , y = 1

b , z = 1
c , note that 1

bc + 1
ca + 1

ab = 1
2Rr , we get the result:

Corollary 2 For arbitrary point P in the plane of 4ABC, the following inequality holds:

(3.5)
aR2

1 + bR2
2 + cR2

3

aR1 + bR2 + cR3
>
√

2Rr,

equality holds if and only if the triangle ABC is equilateral and P is its center.

Remark 3.2. The conditions for equality that the following inequalities of corollary 4-8 are the same
in the statement of Corollary 2.

In the theorem, for x =
R1

a
, y =

R2

b
, z =

R3

c
, after reductions we obtain

Corollary 3 If P is arbitrary point which does not coincide with the vertices of 4ABC, then

(3.6)
R2R3

bc
+

R3R1

ca
+

R1R2

ab
> 1,

equality holds if and only if 4ABC is acute-angled and P is its orthocenter.
Inequality (3.6) first proved by T.Hayashi (see [11] or [3]), the author gave its two generalizations

in [12].
Indeed, assume P does not coincide with the vertices, put x → R1

xa , y → R2
yb , z → R3

zc in (2.2),
then we can get the weighted generalization form of Hayashi inequality:

(3.7)
R2R3

yzbc
+

R3R1

zxca
+

R1R2

xyab
>

(
aR1 + bR2 + cR3

xaR1 + ybR2 + zcR3

)2

.

For x = 1
a , y = 1

b , z = 1
c , we have

(3.8) (R2R3 + R3R1 + R1R2)(R1 + R2 + R3)2 > (aR1 + bR2 + cR3)2.
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Applying the inversion transformation of the lemma to the above inequality, then divide both sides
by R1R2R3 we get
Corollary 4 If P is arbitrary point which does not coincide with the vertices of 4ABC, then

(3.9) (R2R3 + R3R1 + R1R2)2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
> 4s2.

It is not difficult to know that the above inequality is stronger than the following result which
the author obtained many years ago:

(3.10)
√

R2R3

R1
+

√
R3R1

R2
+

√
R1R2

R3
>

√
2
√

3s

Now, Let P be an interior point of the triangle ABC, then we have the well known inequalities(see[13]):

aR1 > br3 + cr2, bR2 > cr1 + ar3, cR3 > ar2 + br1,

Summing them up, note that a + b + c = 2s and the identity ar1 + br2 + cr3 = 2rs we easily get

(3.11) aR1 + bR2 + cR3 > 2s(r1 + r2 + r3)− 2rs.

Multiplying both sides by 2 then adding inequality (3.1) and using ∆ = rs, then

3(aR1 + bR2 + cR3) > 4s(r1 + r2 + r3),

that is

(3.12)
aR1 + bR2 + cR3

r1 + r2 + r3
> 4

3
s.

According to this and the equivalent form (2.5) of inequality (2.3), we get immediately the result:
Corollary 5 Let P be an interior point of the triangle ABC, then

(3.13)
(R2R3)2

r2r3
+

(R3R1)2

r3r1
+

(R1R2)2

r1r2
> 16

9
s2.

From inequality (3.8) and (3.12) we infer that

(R2R3 + R3R1 + R1R2)(R1 + R2 + R3)2 > 16
9

s2(r1 + r2 + r3)2,

Note that again 3(R2R3 + R3R1 + R1R2) 6 (R1 + R2 + R3)2, we get the following inequality:
Corollary 6 Let P be an interior point of triangle ABC, then

(3.14)
(R1 + R2 + R3)2

r1 + r2 + r3
> 4√

3
s.

Letting x = ra, y = rb, z = rc in (2.3) and note that identity rbrc + rcra + rarb = s2, hence

(3.15)
R2

1

ra
+

R2
2

rb
+

R2
3

rc
> 1

s
(aR1 + bR2 + cR3).

This inequality and (3.12) lead us get the following inequality:
Corollary 7 Let P be an interior point of the triangle ABC, then

(3.16)
R2

1

ra
+

R2
2

rb
+

R2
3

rc
> 4

3
(r1 + r2 + r3).

Adding (3.1) and (3.11) then dividing both sides by 2, we have

(3.17) aR1 + bR2 + cR3 > s(r1 + r2 + r3 + r).

From this and (3.15), we get again the following inequality which similar to (3.16):
Corollary 8 Let P be an interior point of the triangle ABC, then

(3.18)
R2

1

ra
+

R2
2

rb
+

R2
3

rc
> r1 + r2 + r3 + r.
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When P locates interior of the triangle ABC, let D, E, F be the feet of the perpendicular from
P to the sides BC,CA,AB respectively. Take x = ar1, y = br2, z = cr3 in equivalent form (2.6) of
inequality (2.3), then

1
bcr2r3

+
1

car3r1
+

1
abr1r2

>
(

aR1 + bR2 + cR3

ar1R1 + br2R2 + cr3R3

)2

,

Using identity ar1 + br2 + cr3 = 2∆ and well known identity(see[7]):

(3.19) ar1R
2
1 + br2R

2
2 + cr3R

2
3 = 8R2∆p,

(where ∆p is the area of pedal triangle DEF )We get

abcr1r2r3(aR1 + bR2 + cR3)2 6 64∆R4∆2
p.

Let sp, rp denote the semi-perimeter of the triangle DEF and radius of incircle respectively. Note
that ∆p = rpsp, aR1 + bR2 + cR3 = 4Rsp, from the above inequality we obtain the following
inequality which established by the author in [14]:
Corollary 9 Let P be an interior point of the triangle ABC, then

(3.20)
r1r2r3

r2
p

6 2R,

equality holds if and only if P is the orthocenter of the triangle ABC.
It is well known, the inequality related to a triangle and two points is very few. Several years

ago, the author guessed the following inequality holds:

(3.21)
R2

1

d1
+

R2
2

d2
+

R2
3

d3
> 4(r1 + r2 + r3),

where d1, d2, d3 denote the distances from an interior point Q to the sides of 4ABC.
Inequality (3.21) is very interesting, the author have been trying to prove it. In what follows, we

will prove the stronger result. To do so, we need a corollary of the following conclusion(see[15]):
Let Q be an interior point of 4ABC, t1, t2, t3 denote the bisector of ∠BQC,∠CQA,∠AQB

respectively, 4A′B′C ′ is an arbitrary triangle, then

(3.22) t2t3 sinA′ + t3t1 sinB′ + t1t2 sinC ′ 6 1
2
∆,

with equality if and only if 4A′B′C ′ ∼ 4ABC, and Q is the circumcentre of 4ABC.
In (3.22), letting 4ABC be equilateral, then we immediately get

(3.23) t2t3 + t3t1 + t1t2 6 1√
3
∆.

From this and the simple inequality s2 > 3
√

3∆, we have

(3.24) t2t3 + t3t1 + t1t2 6 1
9
s2.

According to the inequality (2.3) of the theorem and (3.24), we can see that

(3.25)
R2

1

t1
+

R2
2

t2
+

R2
3

t3
> 3

s
(aR1 + bR2 + cR3).

By using inequality (3.12), we obtain the following stronger of inequality (3.21)
Corollary 10 Let P and Q be two interior points of the 4ABC, then

(3.26)
R2

1

t1
+

R2
2

t2
+

R2
3

t3
> 4(r1 + r2 + r3).

with equality if and only if 4ABC is equilateral, P and Q both are its center.
Analogously, from inequality (3.17) and inequality (3.25) we get

Corollary 11 Let P and Q be two interior points of 4ABC, then

(3.27)
R2

1

t1
+

R2
2

t2
+

R2
3

t3
> 3(r1 + r2 + r3 + r).
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with equality if and only if 4ABC is equilateral, and P and Q both are its center.

4. Some conjectures

In this section, we will state some conjectures in allusion to the inequality which appeared in
this paper.

Inequality (3.8) is equivalent to

(4.1) R2R3 + R3R1 + R1R2 >
(

aR1 + bR2 + cR3

R1 + R2 + R3

)2

.

Enlightened by this one and the well known inequality:

(4.2) R2R3 + R3R1 + R1R2 > 4(w2w3 + w3w1 + w1w2),

We pose the following
Conjecture 1 Let P be an arbitrary interior point of the triangle ABC, then

(4.3)
(

aR1 + bR2 + cR3

R1 + R2 + R3

)2

> 4(w2w3 + w3w1 + w1w2).

We consider the stronger of corollary 5, the author posed these two conjectures:
Conjecture 2 Let P be an arbitrary interior point of the triangle ABC, then

(4.4)
(R2R3)2

w2w3
+

(R3R1)2

w3w1
+

(R1R2)2

w1w2
> 4

3
(a2 + b2 + c2).

Conjecture 3 Let P be an arbitrary interior point of the triangle ABC, then

(4.5)
(R2R3)2

r2r3
+

(R3R1)2

r3r1
+

(R1R2)2

r1r2
> 4(R2

1 + R2
2 + R2

3).

For the inequality of corollary 6, we guess the following stronger inequality holds:
Conjecture 4 Let P be an arbitrary interior point of the triangle ABC, then

(4.6)
R2R3 + R3R1 + R1R2

r1 + r2 + r3
> 4

3
√

3
s.

On the other hand, for the acute-angled triangle, we pose the following conjecture:
Conjecture 5 Let 4ABC be acute-angled and P is an arbitrary point in its interior, then

(4.7)
(R1 + R2 + R3)2

w1 + w2 + w3
> 6R.

Two years ago, Xue-Zhi Yang proved the following inequality (in a private communication with
the author):

(4.8)
(R1 + R2 + R3)2

r1 + r2 + r3
> 2

√
a2 + b2 + c2.

which is stronger than (3.14). Here, we further put forward the following
Conjecture 6 Let P be an arbitrary interior point of the triangle ABC, then

(4.9)
(R1 + R2 + R3)2

w1 + w2 + w3
> 2

√
a2 + b2 + c2.

In [14], the author point out the following phenomenon(so-called r − w phenomenon): If holds
the inequality for r1, r2, r3(this inequality can be also includes R1, R2, R3 and otherwise geometric
elements), then after changing r1, r2, r3 into w1, w2, w3 respectively, the stronger inequality often
holds or often holds for the acute triangle. Conjecture 6 was proposed based on this kind of
phenomenon. Analogously, we pose these following four conjectures:
Conjecture 7 Let 4ABC be acute-angled and P is an arbitrary point in its interior, then

(4.10)
aR1 + bR2 + cR3

w1 + w2 + w3
> 4

3
s.
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Conjecture 8 Let 4ABC be acute-angled and P is an arbitrary point in its interior, then

(4.11)
aR1 + bR2 + cR3

w1 + w2 + w3 + r
> 2s.

Conjecture 9 Let P and Q be two interior points of the 4ABC, then

(4.12)
R2

1

t1
+

R2
2

t2
+

R2
3

t3
> 4(w1 + w2 + w3).

Conjecture 10 Let P and Q be two interior points of the 4ABC, then

(4.13)
R2

1

t1
+

R2
2

t2
+

R2
3

t3
> 3(w1 + w2 + w3 + r).

Remark 4.1. If conjecture 7 and 8 are proofed, then we can proof conjecture 9 and 10 valid for
the acute triangle ABC.
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[3] D.Mitrinović, J.E.Pečarić and V.Volenec, Recent Advances in Geometric Inequalities[M], Kluwer Academic Pub-
lishers, 1989.

[4] Jian Liu, On the Polar Moment of Inertia Inequality, Shanghai Zhongxue shuxue, No.1(1992), 36-39.(Chinese)
[5] Tong-Yi Ma, Xiong Hu, Klamkin is the Integration of a Lot of Triangle Inequality, Journal of Normal Colleges,

Vol.6 No.2(2001),18-22.(Chinese)
[6] M.S.Klamkin, Triangle Inequalities via Transforms,Notices of Amer.Math.Soc, Jan.1972,A-103,104.
[7] Jian Liu, Several New Inequalities for the Triangle, Mathematic Competition, Hunan Education Press. Hunan,

P.R.C., 15(1992), 80-100.(Chinese)
[8] Jian Liu, Exponential Generalization of Carlitz-Klamkin inequality, Journal of Suzhou Railway Teachers College,

1999, 16(4), 73-79.(Chinese)
[9] Xue-Zhi Yang, A Further Generalization of a Trigonometric Inequality, No.1(1988), 23-25.(Chinese)
[10] Jian Liu, The Inequality for the Multi-Triangles, Hunan Annals of Mathematics, Vol.15.NO.4(1995), 29-

41.(Chinese)
[11] T.Hayashi, Two Theorems on Complex Number, Tôhoku Math.J.4(1913-1914),68-70.
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