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Abstract. In this paper, by the use of some classical results from the Theory
of Inequalities, we point out quasi-trapezoid quadrature formulae for which
the error of approximation is smaller than in the classical case. Examples
are given to demonstrate that the bounds obtained within this paper may be
tighter than the classical ones. Some applications for special means are also
given.

1. Introduction

The following inequality is well known in the literature as the trapezoid inequality :∣∣∣∣∣
∫ b

a

f (x) dx− f (a) + f (b)
2

(b− a)

∣∣∣∣∣ ≤ ‖f ′′‖∞12
(b− a)3

,(1.1)

where the mapping f : [a, b] ⊂ R→ R is supposed to be twice differentiable on
the interval (a, b) , with the second derivative bounded on (a, b) , that is, ‖f ′′‖∞ :=
supx∈(a,b) |f ′′ (x)| <∞.

Now if we assume that Ih : a = x0 < x1 < ... < xn−1 < xn = b is a partition of
the interval [a, b] and f is as above, then we can approximate the integral

∫ b
a
f (x) dx

by the trapezoid quadrature formula AT (f, Ih) , having an error given by RT (f, Ih) ,
where

AT (f, Ih) :=
1
2

n−1∑
i=0

[f (xi) + f (xi+1)]hi,

and the remainder satisfies the estimation

|RT (f, Ih)| ≤ 1
12
‖f ′′‖∞

n−1∑
i=0

h3
i ,

where hi := xi+1 − xi for i = 0, ..., n− 1.
In this paper, via the use of some classical results from the Theory of Inequalities

(Hölder’s inequality, Grüss’ inequality and the Hermite-Hadamard inequality), we
produce some quasi-trapezoid quadrature formulae for which the remainder term is
smaller than the classical one given above.

Some applications to special means: arithmetic means, geometric means, identric
means, logarithmic means, etc., are also given.

For other results in connection with the trapezoid inequalities, see Chapter XV
of the recent book by Mitrinović et al. [2].
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2. Some Integral Inequalities

We shall start with the following lemma which is also interesting in its own right.

Lemma 1. Let f : [a, b] → R be a twice differentiable mapping on (a, b) and sup-
pose that

‖f ′′‖∞ := sup
x∈(a,b)

|f ′′ (x)| <∞.

Then we have the estimation∣∣∣∣∣
∫ b

a

f (x) dx− f (a) + f (b)
2

(b− a)

∣∣∣∣∣(2.1)

≤



‖f ′′‖∞
12 (b− a)3

1
2 ‖f

′′‖q [B (p, p)]
1
p (b− a)2+ 1

p , 1
p + 1

q = 1, p > 1

‖f ′′‖1
8 (b− a)2

,

where

‖f ′′‖1 : =
∫ b

a

|f ′′ (t)| dt,

‖f ′′‖q : =

(∫ b

a

|f ′′ (t)|q dt

) 1
q

, q > 1

and B is the Beta function of Euler, that is,
B (l, s) :=

∫ 1
0 t

l−1 (1− t)s−1
dt, l, s > 0.

Proof. Integrating by parts we can state that:∫ b

a

(x− a) (b− x) f ′′ (x) dx

= [(x− a) (b− x) f ′ (x)]ba −
∫ b

a

[(a+ b)− 2x] f ′ (x) dx

=
∫ b

a

[2x− (a+ b)] f ′ (x) dx

= f (x) [2x− (a+ b)]ba − 2
∫ b

a

f (x) dx

= (b− a) (f (a) + f (b))− 2
∫ b

a

f (x) dx,

from which we get the inequality∫ b

a

f (x) dx =
f (a) + f (b)

2
(b− a)− 1

2

∫ b

a

(x− a) (b− x) f ′′ (x) dx.(2.2)

Thus, ∣∣∣∣∣
∫ b

a

f (x) dx− f (a) + f (b)
2

(b− a)

∣∣∣∣∣ ≤ 1
2

∫ b

a

(x− a) (b− x) |f ′′ (x)| dx.(2.3)
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First of all let us observe that∫ b

a

(x− a) (b− x) |f ′′ (x)| dx ≤ ‖f ′′‖∞
∫ b

a

(x− a) (b− x) dx

=
‖f ′′‖∞

6
(b− a)3

,

as ∫ b

a

(x− a) (b− x) dx =
(b− a)3

6
.

Thus, by (2.3) , we get the first inequality in (2.1) . Further, by Hölder’s integral
inequality we obtain:∫ b

a

(x− a) (b− x) |f ′′ (x)| dx ≤

(∫ b

a

(x− a)p (b− x)p dx

) 1
p

‖f ′′‖q ,

where 1
p + 1

q = 1, p > 1 and ‖f ′′‖q is as given above.
Now, using the transformation x = (1− t) a+ tb, t ∈ [0, 1] , we get

(x− a)p (b− x)p = (b− a)2p
tp (1− t)p ,

dx = (b− a) dt

and thus ∫ b

a

(x− a)p (b− x)p dx = (b− a)2p+1
∫ 1

0
tp (1− t)p dt

= (b− a)2p+1
B (p+ 1, p+ 1) ,

where B is the Beta function of Euler; and the second inequality in (2.1) is proved.
Finally, we have that∫ b

a

(x− a) (b− x) |f ′′ (x)| dx ≤ max
x∈[a,b]

[(x− a) (b− x)] ‖f ′′‖1 .

Also, since

max
x∈[a,b]

[(x− a) (b− x)] =
(b− a)2

4
,

we deduce the last part of (2.1) .

Some examples will now be presented to illustrate that the different norms in
equation (2.1) provide better bounds on the error depending on the behaviour of
the integrand.

Without loss of generality and for simplicity we take a = 0 and β = b−a
2 in (2.1)

to give as the right hand side of (2.1) ,

T1 =
2
3
β3 sup

t∈(0,2β)
|f ′′ (t)|

T2 =
1
2
β2

(
4
√
πβ

Γ
(
p+ 1

2

)) 1
p
(∫ 2β

0
|f ′′ (t)|q dt

) 1
q

,
1
p

+
1
q

= 1, p > 1,
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Figure 1

FIGURE 1: Contours of T1
T2

= 1 and T3
T2

= 1 on the βp−plane. The regions from
the bottom satisfy: T2 < T1 < T3, T1 < T2 < T3, and T1 < T3 < T2 respectively.

and

T3 = β2
∫ 2β

0
|f ′′ (t)| dt

respectively, where the Beta function has been expressed in terms of the gamma
function and the duplication formula has been used.

Consider the example f ′′ (t) = 1+cos t. It may be demonstrated through the use
of some package such as Mathematica that T1 is always smaller than T3 since T1

T3

is always less than 1. Figure 1 shows two contours, the top one being T1
T2

= 1 and
the lower one being T3

T2
= 1, relating to β and p. The regions from bottom to top

satisfy: T2 < T1 < T3, T1 < T2 < T3, and T1 < T3 < T2 respectively. This example
demonstrates than one bound is not universally the best.

Another interesting and simple example is f ′′ (t) = et. Figure 2 shows that T1
T3

= 1
when β = β∗ = 1.41072, and thus the traditional bound (T1) is best for β < β∗

and so T3 gives a tighter bound for larger integration intervals. The contours of
T1
T2

= 1 and T3
T2

= 1 intersect with the line β = β∗, thus breaking the βp-plane
into six regions. the regions represent A : T2 < T1 < T3, B : T1 < T2 < T3,
C : T1 < T3 < T2, D : T2 < T3 < T1, E : T3 < T2 < T1 and F : T3 < T1 < T2.
This further demonstrates that each of the bounds may be best under different
circumstances. T1 is best in regions B and C, T2 in regions A and D, and T3 in E
and F. The regions D, E, and F relate to larger intervals of integration.
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Figure 2

FIGURE 2: The diagram shows regions A,...,F of the βp−plane which are sep-
arated by the contours T1

T2
= 1, T3

T2
= 1 and the line β = β∗ (corresponding to

T1
T3

= 1).

The above two examples demonstrate that the proposed bounds are not univer-
sally best. Work on determining a priori the best bound is the subject of future
investigation.

The following lemma is of interest since it provides another integral inequality
in connections with the trapezoid formula.

Lemma 2. Let f : [a, b]→ R be a twice differentiable mapping on (a, b) and assume
that

m := inf
x∈(a,b)

f ′′ (x) > −∞ and M := sup
x∈(a,b)

f ′′ (x) <∞.(2.4)

Then, we have the estimation∣∣∣∣∣
∫ b

a

f (x) dx− f (a) + f (b)
2

(b− a) +
(b− a)2

12
(f ′ (b)− f ′ (a))

∣∣∣∣∣(2.5)

≤ (b− a)3 (M −m)
32

.
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Proof. We shall apply the celebrated Grüss’ inequality (see for example [2]) which
says that:

∣∣∣∣∣ 1
b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣ ≤ (Φ− φ) (Γ− γ)
4

,

(2.6)

where h, g are integrable mappings satisfying the conditions φ ≤ h (x) ≤ Φ and
γ ≤ g (x) ≤ Γ for all x ∈ [a, b] .
Now, if we choose in (2.6) , h (x) = (x− a) (b− x) , g (x) = f ′′ (x) , x ∈ [a, b] , we
get:

φ = 0, Φ =
(b− a)2

4
, γ = m and Γ = M,

and we can state that∣∣∣∣∣ 1
b− a

∫ b

a

(x− a) (b− x) f ′′ (x) dx(2.7)

− 1
b− a

∫ b

a

(x− a) (b− x) dx · 1
b− a

∫ b

a

f ′′ (x) dx

∣∣∣∣∣
≤ (b− a)2 (M −m)

16
.

A simple calculation gives us that∫ b

a

(x− a) (b− x) dx =
(b− a)3

6
and

∫ b

a

f ′′ (x) dx = f ′ (b)− f ′ (a) ,

then, from (2.7) ,∣∣∣∣∣
∫ b

a

(x− a) (b− x) f ′′ (x) dx− (b− a)2

6
(f ′ (b)− f ′ (a))

∣∣∣∣∣
≤ (b− a)3 (M −m)

16
.

Finally, using the identity (2.2) gives∣∣∣∣∣f (a) + f (b)
2

(b− a)−
∫ b

a

f (x) dx− (b− a)2

12
(f ′ (b)− f ′ (a))

∣∣∣∣∣
≤ (b− a)3 (M −m)

32
and the lemma is proved.

Finally, using a classical result on convex functions due to Hermite and Hadamard
we have the following lemma concerning a double integral inequality.

Lemma 3. Let f : [a, b] → R be a twice differentiable mapping on (a, b) and sup-
pose that −∞ < m ≤ f ′′ (x) ≤M <∞ for all x ∈ (a, b) .
Then we have the double inequality

m

12
(b− a)2 ≤ f (a) + f (b)

2
− 1
b− a

∫ b

a

f (x) dx ≤ M

12
(b− a)2

,(2.8)
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and the estimation

∣∣∣∣∣f (a) + f (b)
2

(b− a)− M +m

24
(b− a)2 −

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (M −m) (b− a)3

24
.

(2.9)

Proof. We shall use the following inequality for convex mappings g : [a, b]→ R :

1
b− a

∫ b

a

g (x) dx ≤ g (a) + g (b)
2

,(2.10)

which is well known in the literature as the Hermite-Hadamard inequality.
Let us choose firstly g : [a, b]→ R, g (x) = f (x)−m

2 x
2. Then g is twice differentiable

on [a, b] and

g′ (x) = f ′ (x)−mx, g′′ (x) = f ′′ (x)−m ≥ 0 on (a, b) ,

hence, g is convex on [a, b] . Thus, we can apply (2.10) for g to get

1
b− a

∫ b

a

(
f (x)− m

2
x2
)
dx ≤ f (a) + f (b)

2
− m

4
(
a2 + b2

)
,

giving on rearrangement

1
b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

− m

12
(b− a)2

,

which is ostensibly identical to the first inequality in (2.8) .
The second part in (2.8) follows by (2.10) applied for the convex (and twice differ-
entiable mapping) h : [a, b]→ R, h (x) = M

2 x
2 − f (x) .

Now, it is straightforward to see that, for α ≤ t ≤ β and thus
∣∣∣t− α+β

2

∣∣∣ ≤ β−α
2 , on

taking α = m
12 (b− a)2 and β = M

12 (b− a)2 we get the desired estimation (2.9) .

3. Some Trapezoid Quadrature Rules

We now consider applications of the integral inequalities developed in Section 2,
to obtain, what is claimed to be, some new trapezoid or quasi-trapezoid rules.

Theorem 1. Let f : [a, b]→ R be as in Lemma 1.
If Ih : a = x0 < x1 < ... < xn−1 < xn = b is a partition of the interval [a, b] , then
we have: ∫ b

a

f (x) dx = AT (f, Ih) +RT (f, Ih) ,(3.1)

where

AT (f, Ih) :=
1
2

n−1∑
i=0

[f (xi) + f (xi+1)]hi
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is the trapezoid quadrature rule and the remainder RT (f, Ih) satisfies the relation:

|RT (f, Ih)| ≤



1
2 ‖f

′′‖∞
∑n−1
i=0 h

3
i

1
2 ‖f

′′‖q [B (p+ 1, p+ 1)]
1
p

(∑n−1
i=0 h

2p+1
i

) 1
p

1
8 ‖f

′′‖1 v2 (Ih)

,
1
p

+
1
q

= 1, p > 1,

(3.2)

where hi := xi+1 − xi, i = 0, ..., n− 1 and v (Ih) = maxi=0,n−1 hi.

Proof. Applying the first inequality, (2.1) , we get

∣∣∣∣∫ xi+1

xi

f (x) dx− f (xi) + f (xi+1)
2

(xi+1 − xi)
∣∣∣∣ ≤ ‖f ′′‖∞12

h3
i

for all i ∈ {0, ..., n− 1} .
Summing over i from 0 to n− 1 we get the first part of (3.2) .
The second inequality in (2.1) gives us:

∣∣∣∣∫ xi+1

xi

f (x) dx− f (xi) + f (xi+1)
2

(xi+1 − xi)
∣∣∣∣

≤ 1
2
h

2+ 1
p

i [B (p+ 1, p+ 1)]
1
p

(∫ xi+1

xi

|f ′′ (t)|q dt
) 1
q

,

for all i = 0, ..., n− 1.
Summing and using Hölder’s discrete inequality, we get:

∣∣∣∣∣
∫ b

a

f (x) dx−AT (f, Ih)

∣∣∣∣∣
≤ 1

2
[B (p+ 1, p+ 1)]

1
p

n−1∑
i=0

h
2p+1
p

i

(∫ xi+1

xi

|f ′′ (t)|q dt
) 1
q

≤ 1
2

[B (p+ 1, p+ 1)]
1
p

[
n−1∑
i=0

(
h

2p+1
p

i

)p] 1
p
[
n−1∑
i=0

[(∫ xi+1

xi

|f ′′ (t)|q dt
) 1
q

]q] 1
q

=
1
2

[B (p+ 1, p+ 1)]
1
p

(
n−1∑
i=0

h2p+1

) 1
p n−1∑
i=0

(∫ xi+1

xi

|f ′′ (t)|q dt
) 1
q

=
1
2

[B (p+ 1, p+ 1)]
1
p ‖f ′′‖q

(
n−1∑
i=0

h2p+1

) 1
p

,
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and the second inequality in (3.2) is proved.
In the last part, we have by (2.1) , that:

|RT (f, Ih)| ≤ 1
8

n−1∑
i=0

(∫ xi+1

xi

|f ′′ (t)| dt
)
h2
i

≤ 1
8

max
i=0,n−1

h2
i

n−1∑
i=0

(∫ xi+1

xi

|f ′′ (t)| dt
)

=
1
8
v2 (Ih) ‖f ′′‖1 ,

and the theorem is proved.

Remark 1. We would like to note that in every book on numerical integration,
encountered by the authors, only the first estimation in (3.2) is used. Sometimes,
when ‖f ′′‖q (q > 1) or ‖f ′′‖1 are easier to compute, it would perhaps be more
appropriate to use the second or the third estimation.

We shall now investigate the case where we have an equidistant partitioning of
[a, b] given by:

Ih : xi = a+
b− a
n
· i, i = 0, 1, ..., .n.

The following result is a consequence of Theorem 1.

Corollary 1. Let f : [a, b]→ R be a twice differentiable mapping and ‖f ′′‖∞ <∞.
Then we have ∫ b

a

f (x) dx = AT,n (f) +RT,n (f) ,

where

AT,n (f) =
b− a
2n

n−1∑
i=0

[
f

(
a+

b− a
n

i

)
+ f

(
a+

b− a
n

(i+ 1)
)]

and the remainder RT,n (f) satisfies the estimation

|RT,n (f)| ≤



(b−a)3‖f ′′‖∞
12n2

(b−a)2[B(p+1,p+1)]
2+ 1

p ‖f ′′‖
q

2n2

(b−a)2‖f ′′‖1
8n2

,
1
p

+
1
q

= 1, p > 1,

for all n ≥ 1.

The following theorem gives a quasi-trapezoid formula which is sometimes more
appropriate.

Theorem 2. Let f : [a, b]→ R be as in Lemma 2 and Ih is an arbitrary partition
of the interval [a, b] . Then we have:∫ b

a

f (x) dx = AT (f, f ′, Ih) + R̃T (f, Ih) ,(3.3)
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where

AT (f, f ′, Ih) :=
1
2

n−1∑
i=0

[f (xi) + f (xi+1)]hi +
1
12

n−1∑
i=0

(f ′ (xi+1)− f ′ (xi))h2
i

is a perturbed trapezoidal rule and the remainder term R̃T (f, Ik) satisfies the esti-
mation: ∣∣∣R̃T (f, Ik)

∣∣∣ ≤ M −m
32

n−1∑
i=0

h3
i ,(3.4)

where the hi are as above.

Proof. Writing the inequality (2.5) on the intervals [xi, xi+1] (i− 0, ..., n− 1) we
get:

∣∣∣∣∫ xi+1

xi

f (x) dx− f (xi) + f (xi+1)
2

· hi +
1
12

(f ′ (xi+1)− f ′ (xi))h2
i

∣∣∣∣ ≤ M −m
32

· h3
i

for all i = 0, ..., n− 1.
Summing over i from 0 to n− 1, we deduce easily the desired estimation (3.4) .

Remark 2. As

0 ≤M −m ≤ 2 ‖f ′′‖∞ ,

then
M −m

32
≤
‖f ′′‖∞

16
<
‖f ′′‖∞

12
,

and so the approximation of the integral
∫ b
a
f (x) dx by the use of AT (f, f ′, Ih) is

better than that provided by the classical trapezoidal formulae AT (f, Ih) for every
partition Ih of the interval [a, b] . Atkinson [1] calls this the corrected trapezoidal
rule. However, only the classical ‖f ′′‖∞ norm is used as the bound on the error.
Atkinson [1] uses the idea of an asymptotic error estimate rather than the inequality
by Grüss.

The following corollary of Theorem 2 holds:

Corollary 2. Let f : [a, b]→ R be as in Lemma 2. Thus we have:∫ b

a

f (x) dx = AT,n (f, f ′) + R̃T,n (f) ,

where

AT,n (f, f ′) =
b− a
2n

n−1∑
i=0

[
f

(
a+

b− a
n
· i
)

+ f

(
a+

b− a
n
· (i+ 1)

)]

+
(b− a)2

12n2 (f ′ (b)− f ′ (a)) ,

and the remainder R̃T (f) satisfies the estimation:∣∣∣R̃T,n (f)
∣∣∣ ≤ (M −m) (b− a)3

32n2 ,

for all n ≥ 1.
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Now, of we apply Lemma 3, we can state the following quadrature formulae
which is a quasi-trapezoid formula.

Theorem 3. Let f be a in Lemma 3. If Ih is a partition of the interval [a, b] , then
we have: ∫ b

a

f (x) dx = AT,m,M (f, Ih) +RT,m,M (f, Ih) ,(3.5)

where

AT,m,M (f, Ih) =
n−1∑
i=0

f (xi) + f (xi+1)
2

· hi −
M +m

24

n−1∑
i=0

h3
i

and

|RT,m,M (f, Ih)| ≤ M +m

24

n−1∑
i=0

h3
i .(3.6)

Proof. Applying the inequality (2.9) on [xi, xi+1] , we get:∣∣∣∣∫ xi+1

xi

f (x) dx− f (xi) + f (xi+1)
2

· hi +
M +m

24
· h2

i

∣∣∣∣ ≤ M +m

24
· h3

i

for all i ∈ {0, ..., n− 1} .
Summing over i from 0 to n− 1 we get the representation (3.5) over the estimation
(3.6) .

Corollary 3. Let f be as above. Then we have:∫ b

a

f (x) dx = AT,m,M,n (f) +RT,m,M,n (f) ,

where

AT,m,M,n (f) =
1
2

n−1∑
i=0

[
f

(
a+ i · b− a

n

)
− f

(
a+ (i+ 1) · b− a

n

)]

+
M +m

12
· (b− a)2

n

and the remainder term RT,m,M,n (f) satisfies the estimation:

|RT,m,M,n (f)| ≤ (M −m) (b− a)3

24n2 .

Remark 3. As 0 ≤M−m ≤ 2 ‖f ′′‖∞ , then the approximation given by AT,m,M,n (f)
to the integral

∫ b
a
f (x) dx is better than the classical trapezoidal rule.

4. Applications for Some Special Means

Let us recall the following means:
(a) The arithmetic mean: A = A (a, b) := a+b

2 , a, b ≥ 0.
(b) The geometric mean: G (a, b) :=

√
ab, a, b ≥ 0.

(c) The harmonic mean: H = H (a, b) := 2
1
a+ 1

b

, a, b ≥ 0.

(d) The logarithmic mean: L (a, b) :=


a if a = b

b−a
ln b−ln a if a 6= b

; a, b ≥ 0.
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(e) The identric mean:

I (a, b) :=


a if a = b

1
e

(
aa

b

) 1
b−a

.

(f) The p-logarithmic mean:

Lp = Lp (a, b) :=


a if a = b

[
b−ap+1

(p+1)(b−a)

] 1
p

if a 6= b

,

p ∈ R\ {−1, 0} .
The following inequality is well known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also well known that Lp is monotonically increasing, That is, p ∈ R (assuming
that L0 := I and L−1 := L).

4.1. Special Means: Results for the Traditional Trapezoidal Rule. The
inequality (2.1) is equivalent to:∣∣∣∣∣f (a) + f (b)

2
− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣(4.1)

≤



‖f ′′‖∞
12 (b− a)2

1
2 ‖f

′′‖q [B (p+ 1, p+ 1)]
1
p (b− a)1+ 1

p

‖f ′′‖1
8 (b− a) .

We can now apply (4.1) to deduce some inequalities for the special means given
above by the use of some particular mappings as follows.

(a) Consider the mapping f (x) = xr, f : (0,∞)→ R, where r ∈ R\ {0, 1} . Then
we have for a < b :

1
b− a

∫ b

a

f (x) dx = Lrr (a, b) ,

f (a) + f (b)
2

= A (ar, br) ,

‖f ′′‖∞ = |r (r − 1)| ×

 br−2 if r ∈ [2,∞]

ar−2 if r ∈ (−∞, 2) \ {−1, 0}
,

‖f ′′‖q = |r (r − 1)| (b− a)
1
q Lr−1

q(r−1) (a, b) ,

‖f ′′‖1 = |r (r − 1)|Lr−1
r−1 (a, b) (b− a) .
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Thus, the inequality (4.1) gives us that:

|A (ar, br)− Lrr (a, b)|(4.2)

≤



|r(r−1)|δr(a,b)
12 (b− a)2

1
2 |r (r − 1)| (b− a)2

Lr−1
q(r−1) (a, b) [B (p+ 1, p+ 1)]

1
p

r(r−1)Lr−1
r−1(a,b)(b−a)2

8 .

where

δr (a, b) :=

 br−2 if r ∈ [2,∞]

ar−2 if r ∈ (−∞, 2) \ {−1, 0}

and 1
p + 1

q = 1, p > 1.
(b) Consider now the mapping f (x) = 1

x , x ∈ [a, b] ⊂ (0,∞) .
Then we have:

1
b− a

∫ b

a

f (x) dx = L−1
−1 (a, b) ,

f (a) + f (b)
2

=
A (a, b)
G2 (a, b)

,

‖f ′′‖∞ =
2
a3 ,

‖f ′′‖q = 2 (b− a)
1
q L−1
−3q,

‖f ′′‖1 = 2 (b− a)L−3
−3 (a, b) .

Then the inequality (4.1) gives us that:

∣∣∣∣ AG2 −
1
L

∣∣∣∣ ≤


(b−a)2

6a3

(b− a)2 [B (p+ 1, p+ 1)]
1
p L−3
−3q

(b−a)2

4 L−3
−3

,
1
p

+
1
q

= 1, p > 1.

which is equivalent to:

0 ≤ AL−G2 ≤



(b−a)2

6a3 LG2

(b− a)2 [B (p+ 1, p+ 1)]
1
p L−3
−3qG

2L

(b−a)2

4 L−3
−3G

2L.

,
1
p

+
1
q

= 1, p > 1.

(4.3)
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(c) Let us consider the mapping f (x) = lnx, x ∈ [a, b] ⊂ (0,∞) .
Thus we have:

1
b− a

∫ b

a

f (x) dx = ln I (a, b) ,

f (a) + f (b)
2

= lnG,

‖f ′′‖∞ =
1
a2 ,

‖f ′′‖q = (b− a)
1
q L−2
−2q,

‖f ′′‖1 = (b− a)L−2
−2.

Then the inequality (4.1) gives us that:

|lnG− ln I| ≤



(b−a)2

12a2

1
2 (b− a)2

L−2
−2q [B (p+ 1, p+ 1)]

1
p

(b−a)2

8 L−2
−2

,

which is equivalent to:

1 ≤ I

G
≤



exp
[

(b−a)2

12a2

]
exp

[
1
2 (b− a)2

L−2
−2q [B (p+ 1, p+ 1)]

1
p

]
exp

[
(b−a)2

8 L−2
−2

]
.

,
1
p

+
1
q

= 1, p > 1.(4.4)

4.2. Special Means: Results for the Quasi-trapezoidal Rule. The inequality
(2.5) is equivalent to:∣∣∣∣∣f (a) + f (b)

2
− (b− a)2

12
· (f ′ (b)− f ′ (a))

b− a
− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣(4.5)

≤ (M −m) (b− a)2

32
.

We can now apply (4.5) to deduce some inequalities for the special means given
above by the use of some particular mappings as follows.

(a) Let us consider the mapping f (x) = xr, f : (0,∞)→ R, where r ∈ R\ {0, 1} .
Thus we have

f ′ (b)− f ′ (a)
b− a

= r (r − 1)Lr−2
r−2,

m = inf
x∈[a,b]

f ′′ (x) =

 r (r − 1) ar−2 if r ∈ (0, 1) ∪ (2,∞)

r (r − 1) br−2 if r ∈ (−∞, 0) ∪ (1, 2) \ {−1}
,

M = sup
x∈[a,b]

f ′′ (x) =

 r (r − 1) br−2 if r ∈ (0, 1) ∪ (2,∞)

r (r − 1) ar−2 if r ∈ (−∞, 0) ∪ (1, 2) \ {−1}
,
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M −m = r (r − 1)
(
br−2 − ar−2) = r (r − 1) (r − 2) (b− a)Lr−3

r−3,

and thus the inequality (4.5) becomes:∣∣∣∣∣A (ar, br)− (b− a)2

12
r (r − 1)Lr−2

r−2 (a, b)− Lrr (a, b)

∣∣∣∣∣(4.6)

≤ r (r − 1) (r − 2) (b− a)3

32
Lr−3
r−3

(b) Let us consider the mapping f (x) = 1
x , x ∈ [a, b] ⊂ (0,∞) .

Then,

f ′ (b)− f ′ (a)
b− a

=
2A (a, b)
G4 (a, b)

,

m = inf
x∈[a,b]

f ′′ (x) =
2
b2
,

M = sup
x∈[a,b]

f ′′ (x) =
2
a2 ,

M −m =
4 (b− a)A (a, b)

G4 (a, b)
,

and then the inequality (4.5) becomes:∣∣∣∣∣ AG2 −
(b− a)2

A

6G4 − 1
L

∣∣∣∣∣ ≤ (b− a)3
A

8G4 .(4.7)

(c) Let us consider the mapping f (x) = lnx, x ∈ [a, b] ⊂ (0,∞) .
Then we have:

f ′ (b)− f ′ (a)
b− a

= − 1
G2 ,

m = inf
x∈[a,b]

f ′′ (x) = − 1
a2 ,

M = sup
x∈[a,b]

f ′′ (x) = − 1
b2
,

M −m =
2 (b− a)A

G4

and then the inequality (4.5) becomes:∣∣∣∣∣lnG+
(b− a)2

12G2 − ln I

∣∣∣∣∣ ≤ (b− a)3
A

16G4 .(4.8)

Remark 4. If we use inequality (2.8) and (2.9) we can deduce similar results. We
shall omit the details.

References

[1] K.E. ATKINSON, An Introduction to Numerical Analysis, Wiley and Sons, Second Edition,
1989.
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