Estrogen Stimulates Dimethylarginine Dimethylaminohydrolase Activity and the Metabolism of Asymmetric Dimethylarginine

Desmond P. Holden, Judith E. Cartwright, Stephen S. Nussey and Guy St J. Whitley

Circulation. 2003;108:1575-1580; originally published online September 8, 2003; doi: 10.1161/01.CIR.000091083.61609.DF

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/108/13/1575
Estrogen Stimulates Dimethylarginine Dimethylaminohydrolase Activity and the Metabolism of Asymmetric Dimethylarginine

Desmond P. Holden, MRCOG, PhD; Judith E. Cartwright, PhD; Stephen S. Nussey, FRCP, DPhil; Guy St J. Whitley, PhD

Background—Experimental evidence suggests that estrogens stimulate the production of nitric oxide (NO) by vascular endothelial cells. This effect has been attributed to increased expression and enzymatic activity of both the constitutive and inducible isoforms of NO synthase. In this study, we have investigated whether estrogens regulate the metabolism or release of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase.

Methods and Results—The concentration of ADMA in the plasma of 15 postmenopausal women was 0.722±0.04 μmol/L (mean±SEM). Two weeks after subcutaneous implantation with estradiol, there was an increase in plasma estradiol concentration from 0.693±0.075 to 0.81±0.87 nmol/L, which was accompanied by a significant fall in plasma ADMA concentration to 0.588±0.03 μmol/L (P=0.006). Human and murine endothelial cell lines previously cultured in estrogen-free medium and then exposed to 17β-estradiol showed a dose-dependent decrease in the release of ADMA. This reached statistical significance at 10−14 mol/L 17β-estradiol and was accompanied by a corresponding increase in the activity of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that catalyzes the metabolism of ADMA.

Conclusions—We have demonstrated that estrogens can alter the catabolism and release of ADMA in vitro and reduce the circulating concentration in vivo. We therefore propose that increased DDAH activity and the subsequent fall in ADMA could contribute to the positive effect of estrogen on NO synthesis. (Circulation. 2003;108:1575-1580.)

Key Words: endothelium ■ nitric oxide ■ cardiovascular diseases ■ asymmetric dimethylarginine

Significant differences in cardiovascular function and disease have been reported between men and women. The incidence of coronary heart disease (CHD) in men exceeds that in women of similar age, whereas CHD among women rises sharply after the onset of natural or surgically induced menopause. Many of these effects have been attributed at least in part to gonadal steroids, in particular estrogen. Additional support comes from numerous studies using experimental models.1 Although the concept that estrogen replacement therapy (ERT) is cardioprotective has been challenged recently by the negative results of randomized clinical trials in coronary heart disease,2,3 several retrospective and cross-sectional studies indicate that women treated with ERT have improved vascular function and a lower incidence of CHD.4

Mechanistically, the effects of estrogen on cardiovascular function have been attributed to favorable changes in plasma lipid profile, which may account for 25% to 50% of the protective effects. Direct effects of estrogens on endothelial function and vascular reactivity as a result of enhanced production or activity of several vasoactive compounds including nitric oxide (NO) have also been reported.5 Estradiol stimulates the expression of both endothelial NO synthase (eNOS) and inducible NOS (iNOS) in vascular cells5,6 and stimulates NO-dependent vasodilatation in vivo.7 There is also evidence that estrogen stimulates eNOS activity directly via the activation of membrane-associated steroid hormone receptors.8 The mechanisms involved have not been fully elucidated, but there is evidence that activation of the phosphatidylinositol 3-kinase/Akt pathway is involved.9,10

Endogenous competitive inhibitors of NO synthesis have been identified; Nω-monomethylarginine (L-NMMA) and Nω,Nω-dimethylarginine (ADMA) and their contribution to the maintenance of basal vascular tone have been demonstrated.11 Both L-NMMA and ADMA are found in the plasma and urine of healthy individuals and are altered in those with several diseases, including renal failure, hypercholesterolemia, and atherosclerosis.12–14 We15 and others16 have shown that the plasma concentration of ADMA drops early in normal pregnancy (hyperestrogenic state) but is elevated in preeclampsia. L-NMMA and...
ADMA, but not symmetric dimethylarginine (SDMA), are metabolized to citrulline by dimethylarginine dimethylaminohydrolase (DDAH), which is present in several tissues and cells that synthesize NO, including endothelial cells.17,18 The following study was performed to test the hypothesis that estrogens can regulate the concentration of ADMA through changes in DDAH enzymatic activity. We propose that this may be one mechanism by which estrogens exert their cardiovascular effects.

Methods

Effect of Subcutaneous Ethynylestradiol Implant on Plasma Dimethylarginine Concentration

Fifteen postmenopausal women attending outpatient clinics at St George’s Hospital were chosen at random and gave informed, verbal consent for blood sampling. None had received ERT before the study. All were healthy and were not taking any medication for blood pressure. At the time of recruitment, their average age, blood pressure, and plasma cholesterol was 55.3±1.5 years, 123±4.0/75.8±2.3 mm Hg, and 5.58±0.334 mmol/L, respectively. Their diet was unrestricted, and samples were taken immediately before and 2 weeks after the insertion of a 100-mg ethynylestradiol implant into subcutaneous fat of the abdominal wall. Blood was taken by venipuncture for the subsequent determination of methylarginines. Serum estradiol concentration was determined by the Department of Clinical Biochemistry using an enzyme-linked immunosorbent assay.

Isolation and Measurement of Dimethylarginines

Quantitation of dimethylarginines was achieved by HPLC using the method described previously.15 Concentrations of ADMA and SDMA in the samples were determined by comparison with authentic standards. Extraction efficiency was determined by the addition of 10 μg L-NMMA to each sample before extraction.

Cell Culture

In this study, we used the human umbilical vein endothelial cell line SGHEC-7 and the murine endothelial cell line sEnd-1. Both exhibit an endothelial cell phenotype and have been characterized and used in several studies of ADMA and DDAH biology.17,19–21 The cells were cultured as previously described.19,22 For experimental purposes, estrogen was removed from the serum by overnight incubation with 0.2% (wt/vol) charcoal and 0.02% (wt/vol) dextran, stirring constantly, at 4°C. This was then added to phenol red-free medium, which was otherwise identical in composition to the normal growth medium.

Effect of 17β-Estradiol on the Release of Dimethylarginines by Endothelial Cells in Culture

SGHEC-7 or sEnd-1 cells were seeded at a density of 2.5×10⁴ cells/mL, 10 mL per 90-mm culture dish, and maintained for 24 hours under standard incubation conditions. After washing with PBS, the cells were incubated in estrogen-depleted, phenol red-free medium for 72 hours. The medium was replaced with identical medium containing 17β-estradiol (final concentration, 10⁻¹⁴ to 10⁻⁸ mol/L), which was added for 24 hours. After this time, protein isolation, electrophoresis, and Western blot analysis were carried out. The protein concentration was determined before loading. Detection of membrane-bound antibodies was carried out using enhanced chemiluminescence (Boehringer Mannheim). For the detection of the estrogen receptors, confluent plates of SGHEC-7, sEnd-1, and human umbilical vein endothelial cells were used.19,22 Antibodies to estrogen receptor-α (ER-α) and ER-β were obtained from Santa Cruz. DDAH-I monoclonal antibody was a gift from Dr Kimoto.

Data Analysis

Data obtained from cell culture experiments were analyzed using the nonparametric Mann-Whitney U test. The Student’s t test was used for statistical analysis of clinical data. Statistical significance was assumed at P<0.05.

Results

Effect of 17β-Estradiol Implants on Plasma Dimethylarginine Concentration In Vivo

Fifteen postmenopausal women (mean age, 55.3±1.5 years; range, 46 to 63) allowed venipuncture immediately before and 2 weeks after the insertion of a 100-mg ethynylestradiol implant. Before implant, the mean±SEM serum estradiol concentration was 0.693±0.075 nmol/L, whereas after implant there was a small but significant increase to 0.810±0.087 nmol/L (Figure 1, P<0.05 as determined by Student’s t test). The mean plasma ADMA concentration decreased from a mean±SEM of 0.722±0.04 μmol/L to 0.588±0.03 μmol/L (P<0.05). Although there was an apparent drop in the mean plasma SDMA concentration after treatment with 17β-estradiol, this did not reach statistical significance (0.486±0.07 μmol/L, SEM compared with 0.395±0.14 μmol/L, P=0.54).

Endothelial Estrogen Receptor Expression

Western blot analysis showed the expression of both ER-α and ER-β by SGHEC-7 and sEnd-1 cells. Primary human umbilical endothelial cells, which were used as a positive control for the expression of the receptors (Figure 2).

Effect of 17β-Estradiol on Dimethylarginine Accumulation in Endothelial Cell Cultures

Stimulation of SGHEC-7 cells with 17β-estradiol (10⁻¹⁴ to 10⁻⁸ mol/L) significantly reduced the concentration of ADMA in the medium by a maximum of 65.7±23.6%. At 10⁻¹⁰ mol/L, compared with control cultures (P<0.001; Figure 3A), the concentration of SDMA was unaffected (data not given).
Using sEnd-1 cells, a similar dose-dependent reduction in the concentration of ADMA was seen in the culture supernatant (Figure 3B). Changes in the release of ADMA were not detected at earlier time points.

Effect of Tamoxifen on the Accumulation of Dimethylarginines in Endothelial Cell Cultures

In the presence of 10^{-14} mol/L 17β-estradiol, there was a significant reduction in the ADMA concentration of the culture supernatant from SGHEC-7 cells, as seen previously (Figure 4). Under these conditions, tamoxifen at 10^{-8} mol/L inhibited the reduction in ADMA concentration associated with 10^{-14} mol/L 17β-estradiol (83\%\, P < 0.01); the methanol control had no effect. In the presence of tamoxifen, the effect of 17β-estradiol on ADMA was not significantly different from control. A similar inhibitory effect could also be demonstrated after the incubation of sEnd-1 cells with tamoxifen (data not shown).

Neither tamoxifen nor its vehicle methanol had any effect on the concentration of SDMA in the culture supernatant (data not shown). Neither ethanol nor methanol had any effect on dimethylarginine accumulation in SGHEC-7 cell culture supernatants at concentrations up to 10-fold higher than those used in these experiments. The specific high-affinity estrogen receptor antagonist ICI 182780 was also able to partially inhibit the effects of 17β-estradiol (17β-estradiol ADMA as a percent of control, 42.89\%\, n = 5; compared with 17β-estradiol plus ICI 182780, 87.4\%\, n = 5; P < 0.05).

Effect of 17β-Estradiol on DDAH Activity

DDAH activity in SGHEC-7 cells was stimulated by 17β-estradiol (10^{-14} and 10^{-8} mol/L) as determined by the production of 14C-citrulline by 23\%\, P < 0.01 and 35\%\, P < 0.001, respectively (Figure 5A). This activity was inhibited by tamoxifen. Cells incubated with tamoxifen in the absence of 17β-estradiol showed a small increase in DDAH activity, although this did not reach statistical significance (data not shown). The DDAH-specific conversion of 14C-L-NMMA to 14C-citrulline was investigated, and the results from a representative assay are shown in Figure 5B. The production of 14C-citrulline was inhibited by the addition of 3 mol/L ADMA to the assay from 13.8\%\, n = 5; compared with 17β-estradiol plus ICI 182780, 87.4\%\, n = 5; P < 0.05).
addition of 3 mmol/L SDMA had no effect on \(^{14}\text{C}\)-citrulline production.

Effect of 17β-Estradiol on DDAH-I Protein Expression

Having established that 17β-estradiol increased DDAH activity in both SGHEC-7 and sEnd-1 cells, we used sEnd-1 cells to determine whether DDAH-I protein expression was altered after stimulation. The use of murine cells in this experiment overcame poor species cross-reactivity previously reported when using the monoclonal antibody raised against rat DDAH-I.\(^{17,23}\) Stimulation with 17β-estradiol up to 10\(^{-8}\) mol/L had no effect on DDAH-I expression in these cells (Figure 6).

Discussion

The significant findings of this investigation are the following: (1) circulating ADMA is reduced in women after ERT; (2) in vitro, estrogen reduces the release of ADMA by endothelial cells; (3) estrogen stimulates endothelial cell DDAH enzyme activity; (4) both the inhibition of the release of ADMA and the increased DDAH activity are inhibited by estrogen receptor antagonists; and (5) increased DDAH activity was not attributable to increased expression of DDAH I.

There has been considerable interest in the regulation of cardiovascular function by estrogen and in particular how estrogens may regulate the production of NO. Mechanistic studies demonstrate the ability of estrogens to increase the bioavailability of NO by directly stimulating changes in the expression of eNOS or through indirect regulation of genes encoding essential cofactors. In addition, estrogen may alter NO synthesis via its direct antioxidant effects.\(^{24}\) We examined whether estrogen could also regulate the concentration of ADMA, an endogenous inhibitor of NO synthesis.

Previous studies have shown that ADMA is synthesized by and released from endothelial cells in culture.\(^{19,25}\) It competes with arginine for both the active site of NOS and the Y\(^+\) transporter.\(^{21,26}\) Significantly, the intracellular concentration of ADMA can reach 5 times that of the extracellular or circulating concentration. At this concentration, inhibition of NOS is a possibility.\(^{27}\) Therefore, manipulation of intracellular or the circulating concentration of ADMA can reach 5 times that of the extracellular or circulating concentration. At this concentration, inhibition of NOS is a possibility.\(^{27}\) More recently, a role for ADMA as a marker of cardiovascular disease has been proposed,\(^{28}\) and significant correlation between the circulating concentration of ADMA and intima-media thickening in the carotid artery and impaired endothelium-dependent relaxation has been found.\(^{29}\) We have shown during normotensive pregnancies (a hyperestrogenic state) that an early drop in
DDAH activity was determined by the conversion of 14C-L-
arginine to citrulline. The production of 14C-citrulline is normalized
to that of unstimulated control cells. Results presented are
mean±SEM of n=12 determinations from 3 independent experi-
ments. Significance was determined using Mann-Whitney U
test; ****P<0.0001.

![Figure 5](image)

Figure 5. Effect of 17β-estradiol on DDAH enzyme activity. A, SGHEC-7 cells were stimulated with 17β-estradiol for 24 hours. DDAH activity was determined by the conversion of 14C-L-
arginine to citrulline. The production of 14C-citrulline is normalized
to that of unstimulated control cells. Results presented are
mean±SEM of n=12 determinations from 3 independent experi-
ments. Significance was determined using Mann-Whitney U
test; **P<0.01, ***P<0.001. B, DDAH-specific conversion of 14C-
arginine to 14C-citrulline was investigated, and the results from
a representative assay are shown. Cells were treated as above but were incubated in the presence and absence of either 3 mmol/L ADMA or 3 mmol/L SDMA. Results are mean±SEM of n=8 determinations from a representative experiment. Signifi-
cance was determined using Mann-Whitney U test; ***P<0.001.

blood pressure correlated with a significant fall in plasma
ADMA concentration.15

Increased NO synthesis after the administration of estradiol
has been demonstrated.7 In premenopausal women, plasma NO
peaks midcycle, when estrogen reaches its maximum circulating
concentration.30 Administration of estradiol to postmenopausal
women induced a sustained increase in NO production,31 whereas increased expression of eNOS mRNA and enhanced calcium-dependent NOS activity has been reported in animals.32

Contrary to expectations, the serum ADMA concentration of
our sample group before treatment was not significantly differ-
ent from our previous report, in which 20 healthy young
nonpregnant women were studied.15 However, there was a
significant reduction in the plasma concentration of ADMA after
estradiol implantation. Our failure to detect any change in the
concentration of SDMA would be predicted after the specific
activation of DDAH by estrogen. Although the limited nature of
the study group restricts the extent of the interpretation, this
study is in agreement with a recent study indicating a reduction
in circulating ADMA in postmenopausal women undergoing
ERT.33 The magnitude of the fall in ADMA in response to a
modest rise in estradiol probably reflects the sensitivity of
endothelial cells to 17β-estradiol, which is supported by our in
vitro studies.

To examine the mechanism at a cellular level, experiments
were performed using 2 endothelial cell models, which express
both ER-α and ER-β. In both cell types, stimulation with
physiological concentration of 17β-estradiol significantly re-
duced the concentration of ADMA. The involvement of the
estrogen receptor was investigated using receptor antagonists.
Tamoxifen, which inhibits estrogen-induced NO synthesis by
endothelial cells,34 significantly increased endothelial cell
ADMA concentrations. Consistent with mixed agonist/antago-
nist activity, 10^{-11} mol/L tamoxifen alone reduced the accumu-
lation of ADMA but not SDMA (data not shown). In this regard,
it is interesting to speculate that a reduction in the circulating
concentration of ADMA may contribute to the cardioprotective
effects observed in some groups undergoing cancer treatment
with tamoxifen.35 We were able to confirm the involvement of
estrogen receptors by the use of ICI 182780, which, like
tamoxifen, was able to partially inhibit the fall in ADMA
observed with 17β-estradiol treatment.

The active metabolism of ADMA and L-NMMA, but not
SDMA or l-arginine, to citrulline and methylamines by DDAH
has been described in vascular endothelial cells.37 The differen-
tial effect of estradiol on ADMA but not SDMA observed in
vivo in this study would indicate a specific change in ADMA
metabolism, perhaps by alterations in DDAH activity. This
involvement could be confirmed, because treatment with 17β-
estradiol significantly increased DDAH activity in vitro. How-
ever, the exact mechanism for this is unknown. Two isoforms of
DDAH have been identified.18 Whereas a change in DDAH-I
expression was not detected, in this study, undetected changes in
DDAH-II protein expression may in part be responsible for the
increased DDAH activity observed. The expression of DDAH-II
was examined using recently available commercial antibodies;
however, these proved unsatisfactory both in the detection of
DDAH-II from test samples as well as recombinant DDAH II.
Alternatively, 17β-estradiol may act as an antioxidant, because
oxidative stress can inhibit DDAH without affecting DDAH
expression.36

![Figure 6](image)

Figure 6. Effect of 17β-estradiol on DDAH-I expression. sEnd-1
cells were stimulated with 17β-estradiol (final concentration,
10^{-14} to 10^{-8} mol/L) and subjected to western blot analysis.
Lanes 1 and 2 show control, unstimulated cells; lanes 3 and 4
show 10^{-8} mol/L; lanes 5 and 6 show 10^{-11} mol/L; lane 7 shows
10^{-14} mol/L 17β-estradiol; and lanes 8 and 9 show a positive
control of rat glioma cells transfected to overexpress DDAH I.
Two large randomized studies, one of healthy postmenopausal women and the other of postmenopausal women with preexisting cardiovascular disease, found significant adverse cardiovascular effects after the combined use of estrogen and progesterone therapy. However, because neither study was designed to determine the effects of estrogen alone, direct comparison with the present study is not possible. It is interesting to speculate how administration of progesterone might interact with estradiol to regulate DDAH activity and, therefore, ADMA accumulation.

In conclusion, we have demonstrated that 17β-estradiol decreases the circulating concentration of ADMA in vivo and release from endothelial cells in vitro, the latter because of increased DDAH activity. These results may in part explain increased NO synthesis observed in women undergoing hormonal replacement therapy and therefore could contribute to some of the cardiovascular effects attributed to estrogens.

Acknowledgments

This work was supported by WellBeing and The Tommy’s Campaign.

References

