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Abstract

Though the advantages of routine virological monitoring for patients on anti-retroviral therapy have been established, cost and

complexity limit its full implementation. Monitoring is important for diagnosing virological failure early on, before the

development of drug resistance mutations, and to trigger early adherence interventions. Simple and cost-effective viral load

tests that facilitate simplification and decentralization of testing and strategies, such as the use of dried blood spots and pooled

sample testing, which further aid simplification, are becoming available. In addition, replacing immunological monitoring with

virological monitoring in non-viremic patients in a phased manner will reduce the costs associated with dual immuno-virological

monitoring. Going forward, the simplification of testing paired with price reducing strategies that will allow for healthy

competition between multiple manufacturers will enable the implementation of viral load testing in resource-poor settings. It is

important that future HIV and AIDS treatment guidelines provide clear recommendations for routine virological monitoring and

that governments and donors fund the implementation of accurate and operationally proven testing platforms in a

comprehensive manner.
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Introduction
The benefits of virological monitoring for patients on anti-

retroviral therapy (ART) are well established and include the

ability to diagnose adherence problems and treatment

failure, and optimize therapy to support reduced transmis-

sion [1�3]. However, there are a number of access barriers to

viral load in resource-limited settings, including high cost,

technical complexity and difficulties with sample transport

from the periphery and quality control. The result is that,

while viral load testing is the standard of care for patients in

rich countries, routine virological monitoring is rarely avail-

able in most high-HIV prevalence settings. A recent survey

across 23 low-resource countries revealed that national

virological testing was available only for confirmation of

treatment failure in Kenya and for routine treatment

monitoring in Brazil, Botswana and South Africa [4].

Evidence of the benefit of viral load monitoring at the

population level is mixed. Trials evaluating the short-term

benefit of virological monitoring against clinical endpoints,

which are considered delayed outcomes, have concluded no

major benefit over-and-above clinico-immunological moni-

toring [5�7]. However, longer term observational studies

have shown that clinico-immunological monitoring is inaccu-

rate [3,8�10]. Furthermore, while it is well accepted that

mortality follows a CD4 decline on treatment [11], both

viremia copy-years and cross-sectional virological measure-

ments can independently predict all-cause mortality as

well [12]. Support for simpler, more affordable and more

cost-effective technologies is growing [2�13], partly fuelled

by a growing concern that unchecked viremia could lead to

the development and transmission of drug resistance [14,15].

Recognizing these multiple benefits, the latest World

Health Organization (WHO) guidelines for ART in resource-

limited settings, issued in 2010, recommend that all countries

begin to phase-in viral load monitoring. This viewpoint article

provides an overview of current implementation barriers to

viral load testing in resource-limited settings and provides

some practical recommendations for increasing capacity for

routine virological monitoring in low- and middle-income

countries.

Importance of routine virological monitoring
Diagnose early virological failure on ART

Effective treatment should suppress viral replication. A meas-

urable viral load is, therefore, a very accurate measure of

unsuccessful treatment. The WHO defines virological failure

as a viral load above 5000 copies/ml and recommends

that virological monitoring be performed biannually [16].

Frequent monitoring enables the diagnosis of virological

failure before the development of drug resistance mutations,

which would ultimately lead to treatment failure and allow

for possible viral transmission [17].

In the absence of virological monitoring, immunological

monitoring by CD4 count change is recommended. WHO

guidelines define immunological failure as a CD4 count

falling to or below the baseline value, or a 50% fall from the
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on-treatment peak or persistent CD4 values below 100 cells/

ml [16]. However, CD4 testing has a poor accuracy and low

positive predictive value in both adults [10,18] and children

[8] for diagnosing treatment failure. Thus, viral load remains

the gold standard.

Discriminate between poor adherence and treatment

failure

Unsuccessful treatment, leading to virological failure, may be

due to a number of reasons, including drug interactions,

malabsorption and poor adherence [19�21]. While viral

load has been seen as a tool to diagnose failure, the main

benefit is the prevention of treatment failure by identifying

patients in need of intensive adherence counselling. The

WHO guidelines define treatment failure as persistent

virological failure [16], the first episode of virological failure

typically being followed by a period of intensive adherence

counselling and support, followed by a second viral load.

If virological failure persists, and there has not been a

significant (�0.5 log) drop in viral load, treatment failure is

diagnosed, with a consequential regimen switch. However,

published data indicate that, in the majority of cases, viral

suppression is achieved after intensive adherence counselling

[20�23]. Early good adherence is predictive of long-term

virological suppression [20], and there is some evidence that

virological monitoring, if done soon after treatment initiation

(i.e. at three months) leads to better outcomes by flagging

those patients in need of adherence counselling [24].

Once non-adherence has been ruled out, persistent

viremia indicates treatment failure and the need for an

appropriate treatment switch. According to WHO guidelines,

a persistent viral load above 5000 copies/ml confirms

treatment failure [16], although some countries, such as

South Africa and Zambia, have adopted a lower-level

threshold of 1000 copies/ml [10,17]. Drug resistance occurs

when patients are kept on failing regimens at virological

levels above 1000 copies/ml, limiting future treatment

options [25]. European guidelines recommend that an ARV

drug resistance test be performed at a viral load above

500 to 1000 copies/ml [26]; however, data from a European

multicentre cohort study showed that 15.14% of test

results were obtained at viral loads B1000 copies/ml and

that, while the probability of mutations occurring below

500 copies/ml was lower, their presence might indicate

the emergence of drug resistance and allow for an earlier

preventative intervention [27]. Guideline revisions to favour

lower thresholds may therefore be necessary.

Importantly, the poor accuracy and positive predictive

value of clinico-immunological monitoring compared to

virological monitoring for predicting treatment failure means

that, without viral load testing, patients are either diagnosed

very late or misdiagnosed completely, with the result

that patients can be kept on a failing regimen or switched

unnecessarily. Furthermore, when clinico-immunological cri-

teria are used to diagnose treatment failure, extensive drug

resistance occurs, limiting the use of future treatment

options [28,29]. Virological monitoring is therefore necessary

for the confirmation of both clinical and immunological

failure and should ideally be used for the timely diagnosis

of treatment failure, before clinical or immunological

deterioration [10,18,30].

Support treatment monitoring and optimization

The superiority of virological monitoring over clinico-

immunological monitoring for diagnosing virological failure

has multiple benefits beyond the initiation of adherence

interventions and the appropriate switching of treatment

regimens. Reducing the risk of virological failure through

targeted adherence counselling and support prevents the

development of drug resistance mutations, leading to the

preserved use of affordable, fixed-dose, first-line drugs [1,31].

The benefit of using the diagnosis of virological failure as a

means to intervene and prevent disease progression early

has been shown in studies which found that patients without

access to annual virological monitoring have poorer out-

comes [32]. Virological monitoring can serve as an indepen-

dent predictor of AIDS-defining events and mortality, even at

CD4 counts above 350 cells/ml [33�35]. In some Western

settings, it is recommended that patients are initiated on ART

at high viral loads (above 100,000 copies/ml), regardless of

CD4 count [26].

Simplification of ART delivery

To scale up treatment to the millions of people in need, ART

delivery needs to be made as simple as possible, in line with

the public health approach to HIV treatment and care

promoted by the WHO. The management of treatment

failure is one area where simplification is becoming increas-

ingly urgent. Detection of treatment failure using standard

immunological definitions is poorly implemented in resource-

limited settings. Only 1.6% of patients receiving treatment as

part of HIV programmes supported by Médecins Sans

Frontières (MSF) in 19 countries have been switched to

second-line therapy, suggesting very poor levels of detection

[36]. Calculating CD4 changes over time from paper records

is a challenge for clinicians, especially in overburdened

clinics. In contrast, routine virological monitoring provides a

useful cross-sectional measurement of treatment efficacy,

reducing the necessity to review historic data and facilitating

appropriate clinical interventions (such as adherence coun-

selling or regimen switching).

Having a test that clearly confirms virological suppression

may also allow for less frequent clinical follow-up and further

task shifting. Simplification of treatment monitoring using an

annual clinical visit with review of the viral load could

significantly reduce the number of clinical contacts required,

having both a cost-saving effect and reducing the burden on

patients and healthcare workers alike.

Options for increasing access to

virological testing
Types of tests

An overview of current and pipeline tests for viral load has

been provided elsewhere [37].

Molecular versus non-molecular testing

Viral load assays have traditionally been based on the

amplification of nucleic acid using molecular techniques,

such as real-time polymerase chain reaction (PCR). However,
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contamination with foreign nucleic acid or amplicon (PCR

products) can cause false positive results, and great care

must be taken to avoid cross-contamination of samples

[38,39]. Moreover, precision pipetting is required to achieve

an accurate result. One way to limit contamination and

pipetting errors is to automate the process as far as possible,

which is feasible with currently available technologies for

sample preparation and subsequent amplification and detec-

tion. PCR products should be contained and disposed of or

safely stored directly after the amplification and detection

stage [40].

As an alternative, a non-molecular test, such as the ExaVir

Load Assay (Cavidi, Uppsala, Sweden), may be used. This

method relies on the detection of reverse transcriptase as a

surrogate marker for HIV RNA using an ELISA-type technique

routinely used even at district laboratory level [38]. A major

advantage is that the enzyme is conserved across HIV-1

strains and is therefore subtype independent [41]. While

inexpensive and easy to perform, this assay has a number of

disadvantages, including the use of plasma as a sample type,

lower through-put (the test takes two days to perform and a

technician can only process a maximum of 180 samples/week

compared to four hours processing and 800 samples/week

for molecular tests); no automation, resulting in demand for

hands-on time; and the inability of the manufacturer to

supply controls (known HIV-positive and HIV-negative plasma

must be supplied on-site for this purpose) [38,42].

Viral load may also be measured by quantifying the

concentration of p24 antigen. This non-molecular test is

cheaper and simpler than a test for HIV RNA [41]. While the

WHO recommends the use of ultrasensitive p24 testing

for early infant diagnosis, it is not considered sufficiently

sensitive to serve as a treatment monitoring tool [38,43].

A further disadvantage is that there is only one test available

for the ultrasensitive measurement of p24, manufactured by

PerkinElmer (Waltham, USA), although it is not commercia-

lized and may only be used for research purposes [37]. Given

that the concentration of p24 has been found to correlate

with HIV RNA and predicts clinical stages and mortality [44],

further research into the use of p24 for treatment-monitor-

ing purposes may be warranted in areas where HIV RNA

testing is not available due to resource constraints.

Laboratory-based tests versus point-of-care devices

MSF has set up a molecular laboratory at the district level in

Thyolo, Malawi, to offer viral load testing using the NucliSENS

EasyQ HIV-1 v2.0 assay (bioMérieux, Marcy-l’Étoile, France).

The NASBA-based technique was chosen due to the fact that

the test has been validated on dried blood spots (DBS)

[45,46], which was the chosen sample type. A number of

logistical challenges were encountered during the setting up

of this laboratory, including unsuitable laboratory infrastruc-

ture; unreliable power supply; unreliable water supply and

provision of RNAse-free water; unreliable air-conditioning;

non-adherence to cold chain transportation, especially at

customs; inability to find local laboratory technicians with

molecular biology expertise; and lack of in-country trouble-

shooting and maintenance services.

These findings are not unique to MSF and the two main

implementation barriers to be overcome for facilitating

access to viral load testing in resource-limited settings are

cost and complexity [2]. The development of simpler

laboratory-based tests, or even point-of-care devices, could

therefore go a long way in solving these access problems,

if prices are low enough. Current tests are not considered

suitable for district laboratory settings because they are

expensive and technically complex, requiring a large labora-

tory area and highly trained staff. Two exceptions may be the

ExaVir Load Assay, a non-molecular, ELISA-based technique,

and the Generic HIV-1 Viral Load Assay (Biocentric, Bandol,

France), which has been developed by the Agence Nationale

de Recherches sur le SIDA et les hepatites virales (ANRS) for

resource-limited settings and has a small laboratory footprint

[41�47]. Both tests may be performed at district laboratory

level and are less costly than their counterparts, but still rely

on medium to highly trained technicians [38�41].
There is a pipeline of devices that, if shown to be

technically validated, cost-effective and field appropriate,

will greatly enhance our ability to implement viral load

testing in a decentralized approach, at point of service. The

first products are predicted to be available from 2013. These

include greatly simplified laboratory-based tests that can be

used at district level, or in mini-laboratories set up alongside

public health clinics, and automated, all-in-one, point-of-care

tests that can be used at the clinic level by clinicians or even

lay workers. A review of the pipeline has recently been

published and will not be considered further here [48].

A number of operational challenges will have to be

overcome during the implementation of these new devices,

including the cost-effectiveness compared to centralized

laboratory-based testing; the ability to meet through-put

requirements; the effect on health service outcomes, such as

staff work-load at the clinics, and number of transcription

errors; and the effect on patient outcomes (morbidity,

mortality and retention in care). In addition, staff should

be adequately trained to acquire the appropriate sample

and operate the instruments correctly, and strict quality

control should be mandatory, even at decentralized facilities

[39�49].
Options for roll-out of routine viral load may be considered

in three tiers: (1) a centralized high through-put approach

utilizing traditional platforms paired with DBS as a sample

transport method; (2) simple, automated devices at district

laboratory level; and (3) true point-of-care devices at

individual clinic level. The choice will depend on the

individual programme setting, cohort size, and whether the

epidemic is generalized or concentrated. Where a decentra-

lized approach to ART provision is implemented, careful

consideration needs to be given to through-put require-

ments, feasibility of ensuring quality control and the cost-

effectiveness of a true point-of-care test. These should be

balanced against the need for an effective specimen collec-

tion and result delivery system in a centralized approach.

Experience of moving CD4 testing for ART initiation from

a centralized laboratory to a point-of-care approach pro-

vides some insights about potential challenges for imple-

mentation of point-of-care viral load testing. Task shifting for
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performance of the test has proven feasible, with improved

patient retention prior to ART initiation [50,51]. However,

sampling errors have illustrated the importance of adequate

staff training in the implementation of point-of-care CD4

testing [51�53].

Approaches to a phased implementation
The benefits of providing routine viral load monitoring in

resource-limited settings were recognized a decade ago [54],

but, with the exception of South Africa and Botswana,

widespread access to routine viral load testing in Africa is

still a long way off. Nevertheless, a number of approaches

have been recently piloted to support the WHO recommen-

dation to phase in viral load testing. These are discussed in

the subsequent sections.

Dried blood spots

The sensitivity of molecular viral load testing is dependent

on the volume of sample, and 1ml of plasma is usually

recommended to achieve a sensitivity down to 50 viral

copies/ml. The disadvantages of using plasma as a sample

type are that whole venous blood must be drawn by a health

professional and plasma must be separated from the whole

blood within six hours of blood draw [40]. This is both

impractical and unreliable in remote settings that are far

from laboratories or where the clinics do not have a daily

transport network for samples. Transportation of samples, in

particular, remains one of the biggest challenges to viral load

testing in resource-limited settings. One solution is to use

DBS [55], where whole blood is pipetted onto filter paper,

which is then stored, with desiccant, in an air-tight bag [42].

Whole blood may be taken from a finger or heel prick, for

example, by trained lay workers. This overcomes the need for

clinical staff or phlebotomists, and desiccated filter papers

may be transported easily over long distances, without the

need for a cold-chain or speedy delivery, with elution of

the nucleic acid from the filter paper being the only extra

laboratory step [40,42]. The preparation of DBS is commonly

used in resource-limited settings as a sample type for early

infant diagnosis and is therefore a familiar and well-

established technique [42,56]. Genotypic resistance testing

may also be performed from DBS [46].

There are two potential disadvantages to DBS. First, the

small sample volume (50 to 100ml) results in poor sensitivity

at lower viral loads below 3000 viral copies/ml [42,45],

making it difficult to use a threshold of 1000 copies/ml to

reliably diagnose virological failure [57]. Second, the use of

whole blood rather than plasma means that pro-viral DNA

and cellular RNA are amplified along with plasma viral RNA,

artificially raising the viral load at lower values below

5000 copies/ml [58]. The latter may lead to a false diagnosis

of virological failure with adverse clinical implications. The

only technique currently available that is RNA specific is the

NASBA technique, used in the NucliSENS Assay [42]. Alter-

natively, a DNAse pre-step, or DNase-containing filter paper,

may be used to select for RNA [59]. Thus, the limits of DBS-

based virological testing may be overcome by (1) raising

the threshold for virological failure to 3000 copies/ml and

(2) using RNA-specific techniques that select for viral RNA so

that pro-viral DNA contamination may be avoided.

Pooled viral load testing

Pooled sample testing is a strategy to reduce the number of

samples run by combining five to ten samples together

[60�62]. If the pooled sample tests positive, an algorithm is

then used to identify those individuals with a detectable viral

load, or, failing this, the individual samples in the pool are

tested individually. When less than a third of patients are

viremic, negative predictive values are 100% at viral loads

above 500 copies/ml.

Pooled viral load testing can reduce the number of

individual tests required by up to 60%, without compromis-

ing on accuracy. Cost savings are significant, with one study

from Mexico quoting a saving of up to $14,308 by a 30%

reduction in individual testing [60], a study in San Diego

reporting a 70% cost saving from an almost 50% reduction in

individual testing [61] and a study in South Africa reporting a

$1220 per 100 specimens (at $40 per test) saving from a

30% reduction in individual testing [62].

Reducing testing frequency

A recent costing study assessing the cost-effectiveness of

viral load compared to CD4 testing determined that the cost-

effectiveness of viral load testing was sensitive to the

frequency of testing, with annual viral loads being more

cost-effective than the currently recommended six-monthly

viral load testing [63]. Currently, WHO guidelines recommend

viral load testing every six months [16] but, in practice,

testing frequency varies. In Malawi, viral load testing is

recommended to be performed every two years, whereas

in South Africa it is done annually. Another study, from

South Africa, that assessed the optimal timing of viral load

testing concluded that viral load testing done at three

months post-ART initiation is associated with better out-

comes than viral load testing performed at six months [24].

These results suggest that an initial viral load is beneficial for

detecting early adherence problems. After this initial phase,

once patients have adapted to taking ART and reached stable

and durable viral suppression, less frequent viral load testing

may be possible. Future research is needed in this regard.

Replacing immunological monitoring with virological

monitoring

Clinical trials conducted so far have only assessed the added

value of viral load monitoring, rather than evaluating the

potential to use viral load testing to replace CD4 as a patient-

monitoring strategy [5�7]. Future trials should consider

comparing CD4 and viral load monitoring head-to-head,

following patients for longer duration, so that the possibility

of abandoning immunological monitoring may be considered.

Further evidence is required to assess the benefit of CD4

monitoring above and beyond viral load, following baseline

CD4 at initiation (including for patients who develop clinical

problems and to guide decisions about cotrimoxazole or

fluconazole prophylaxis).
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Prioritizing patients for viral load

Even with the many potential opportunities for simplifying

the provision and reducing the cost of viral load testing, roll

out at national level may still need to be phased in. Scale up

of a triggered viral load testing approach using a clear

algorithm to identify patients with CD4 reductions of 30% or

more, specific clinical signs and those with poor adherence

may be one approach. The MSF programme in Zimbabwe,

recognizing a severe under-detection of treatment failure in

their setting, implemented such an algorithm and saw a

substantial increase in the number of viral load tests

requested and subsequent detection of cases eligible for

second-line ART. Alternative approaches, where routine viral

load testing may not yet be feasible, may include the

introduction of viral load testing to assess early adherence,

continuing subsequent monitoring with CD4; as a tool to

detect virological failure prior to switching to a less toxic first-

line regimen; to confirm treatment failure before switching

to second-line ART; or to monitor ARV-treated pregnant

women before birth and during breast-feeding to confirm

viral suppression. Introducing viral load in such a phased

manner may allow for the logistical and technical laboratory

capacity to be firmly established before scaling up the service

to support routine virological monitoring for all.

Discussion
Routine virological monitoring for HIV-positive patients on

ART is important for early detection of virological failure,

preventing the development of drug-resistant mutations,

identifying patients in need of intensive adherence support

and accurately diagnosing treatment failure. Through these

clinically advantageous outcomes, the use of first-line drugs

may be preserved and transmission of viral strains that are

both drug sensitive and drug resistant may be limited.

Use of viral load testing may facilitate task shifting and

reduce the number of clinical visits required for the patient.

A once yearly viral load test could be the only treatment

efficacy monitoring test required, which, if undetectable,

allows for a simplified follow-up of patients on ART through

community-based models, in line with the current priorities

of the WHO [64].

Despite clear benefits, virological monitoring, especially on

a routine basis, is the exception in resource-limited settings.

It is therefore important for both national and international

guidelines to clearly recommend routine virological monitor-

ing for all patients on ART as the standard of care and for

donors and governments to fund the implementation of

accurate and operationally proven testing platforms in a

comprehensive manner. Importantly, operational research

will be required to investigate which tests work better at

different levels of the healthcare system and in different

settings.

The implementation of point-of-care viral load testing will

need to be accompanied by operational research to deter-

mine which system, or combination of systems, work best in

which contexts. Further simplification of laboratory-based

tests, so that they can be performed at district level, will

allow for the decentralization of testing currently performed

at national level and should thus be prioritized.

Ultimately, the price of viral load testing will have to be

reduced to benefit the majority of patients in need. There are

currently only four main suppliers of single-manufacturer viral

load testing platforms, and just one of those has a majority

stake in Africa [48]. These four platforms are expensive,

require a high level of technical skill and laboratory infra-

structure, and are more suited to national or reference

laboratories. A broader availability of tests capable of being

placed at district laboratory and clinic level, without the

formation of a monopoly by a single manufacturer, is there-

fore required. Going forward, it will be important to ensure

that multiple manufacturers are able to enter what will be a

growing market for viral load testing and that incentives for

manufacturers of quality-approved generics are encouraged

through mechanisms, such as cooperative licensing strategies,

that will enable access to the large number of overlapping

patents applicable to molecular techniques [65]. Simplifica-

tion of testing along with price-reducing strategies is needed

to support full implementation of viral load monitoring in

remote and resource-limited settings.
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Pooled nucleic acid testing to detect antiretroviral treatment failure in Mexico.

J Acquir Immune Defic Syndr. 2011;56:e70�4.
61. Smith DM, May SJ, Perez-Santiago J, Strain MC, Ignacio CC, Haubrich RH,

et al. The use of pooled viral load testing to identify antiretroviral treatment

failure. AIDS. 2009;23:2151�8.
62. van Zyl GU, Preiser W, Potschka S, Lundershausen AT, Haubrich R, Smith D.

Pooling strategies to reduce the cost of HIV-1 RNA load monitoring in a

resource-limited setting. Clin Infect Dis. 2010;52:264�70.
63. Hamers RL, Sawyer AW, Tuohy M, Stevens WS, de Wit TFR, Hill AM. Cost-

effectiveness of laboratory monitoring for management of HIV treatment in

sub-Saharan Africa: a model-based analysis. AIDS. 2012;26:1663�72.
64. World Health Organization, UNAIDS. The treatment 2.0 framework for

action: catalysing the next phase of treatment, care and support. Geneva:

20, avenue Appia; 2011.

65. Nicol D. Navigating the molecular diagnostic patent landscape. Expert Opin

Ther Pat. 2008;18:461�72.

Roberts T et al. Journal of the International AIDS Society 2012, 15:17324

http://www.jiasociety.org/index.php/jias/article/view/17324 | http://dx.doi.org/10.7448/IAS.15.2.17324

7

http://www.jiasociety.org/index.php/jias/article/view/17324
http://dx.doi.org/10.7448/IAS.15.2.17324

