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Hypergeometric functions seem to be ubiquitous in mathematics. In

this document, we present a couple of ways in which hypergeometric functions

appear in arithmetic geometry.

First, we show that the number of points over a finite field Fq on a cer-

tain family of hypersurfaces, NFq(λ), is a linear combination of hypergeometric

functions. We use results by Koblitz and Gross to find explicit relationships,

which could be useful for computing Zeta functions in the future.

We then study more geometric aspects of the same families. A con-

struction of Dwork’s gives a vector bundle of deRham cohomologies equipped

with a connection. This connection gives rise to a differential equation which is

known to be hypergeometric. We developed an algorithm which computes the

parameters of the hypergeometric equations given the family of hypersurfaces.
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Chapter 1

Introduction

Hypergeometric functions seem to be ubiquitous in mathematics, particularly

when studying arithmetic and geometric properties of certain varieties. As

we describe below, it is a classical result that both the number of points on

a certain family of curves over a finite field and the solutions to a differential

equation related to this family are related to the same hypergeometric function.

In this document, we present some results we have obtained while trying to

generalize these ideas to more varieties.

For each λ ∈ P1 − {0, 1,∞} we can define an elliptic curve

Eλ : y2 = x(x− 1)(x− λ).

These form the so-called Legendre family. For λ ∈ Z the number of

Fp-points on these curves modulo p, NFp(λ), is a hypergeometric function of

the parameter λ (modulo p). In fact, a simple computation shows that

NFp(λ) ≡ (−1)(p+1)/2

p−1
2
∑

r=0

(−1/2

r

)2

λr mod p

1



≡ (−1)(p−1)/2

p−1
2
∑

r=0

(1/2)r(1/2)r

r!r!
λr mod p,

where the last sum is the hypergeometric function

2F1

(

1

2
,
1

2
; 1

∣

∣

∣

∣

λ

)

truncated at p−1
2

.

There is a differential equation satisfied by the periods of these ellip-

tic curves known as the Picard-Fuchs differential equation, which happens to

be a hypergeometric differential equation. The surprising result is that the

holomorphic solution around zero is also

2F1

(

1

2
,
1

2
; 1

∣

∣

∣

∣

λ

)

.

Igusa was first to notice this, in [15]. Later, Manin proved a similar

result for higher genus curves by using the algebro-geometric version of the

Lefschetz fixed-point theorem on the Frobenius mapping. For more details on

all these ideas, see [31] or [5].

We have focused on generalizing these results to varieties of the form:

Xλ : xd
1 + · · ·+ xd

n − dλxh1
1 · · ·xhn

n = 0 (1.1)

where each hi ≥ 0 ∈ Z,
∑

hi = d and g.c.d.(d, h1, . . . , hn) = 1. To generalize

the situation described above, one must examine two questions:

2



1. Can we find a good formula for NFq(λ), for q a power of a prime p? If

so, is this function related to some version of a hypergeometric function

modulo p?

2. Can we find a differential equation related to the geometry of these

varieties? If so, is this a hypergeometric differential equation?

The final challenge would be to see how the two objects (NFq(λ) and

the differential equation) are related to each other, getting a result similar to

Igusa’s. Answering these questions would also be useful for computing Zeta-

and L-functions of these varieties Xλ, which have been interesting to physicists

working on string theory and mirror symmetry (cf. [4] and [7]).

We have obtained promising partial results and numerous examples

suggesting that the classical result can be extended to these varieties, which

are described in more detail in the upcoming chapters.

Chapter 2 contains preliminaries about the theory of hypergeometric

functions. We establish basic definitions and list all the important results

which will be used in the rest of the document.

The main goal of Chapters 3 and 4 is to establish the relationship

between the number of Fq-points of a family of hypersurfaces and hyperge-

ometric functions, both the finite field and general versions. These results

answer Question 1 for certain special cases.

Chapter 5 describes an algorithm we developed, and later implemented

in Pari-GP, which computes hypergeometric differential equations associated

3



to the geometry of certain families of varieties. The main tool used is a con-

struction of Dwork’s which gives a more manageable version of cohomology.

We give some tables which explicitly show our computations.

The first Appendix contains some background on Ordinary Differential

Equations which is mainly used in Chapter 5, and Appendix B contains all of

the GP scripts used in our algorithm.

4



Table 1.1: Notation

Fq finite field of q = pf elements

K∗ multiplicative group of a field K

Qp field of rational p-adic numbers

Cp p-adic completion of the algebraic closure of Qp

Pn n-dimensional complex projective space

vp(x) p-adic valuation of x

ω Teichmüller character from F∗
q → C∗

p

{x} fractional part of x = x− [x]

AT the transpose of the matrix or vector A

NFq(V ) the number of Fq-points on a variety V

µn the subgroup of C∗ of n-th roots of unity

char(G) the character group of an abelian group G

5



Chapter 2

Hypergeometric Functions

The series

∑

k≥0

(a)k(b)k

(c)k

zk

k!
, (2.1)

where we use the Pochhammer notation

(x)k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
,

is called the Gauss hypergeometric function.

The first person to use the term “hypergeometric” was John Wallis in

his work Arithmetica Infinitorum(1655). He used it to denote a series which

was beyond the ordinary geometric series

1 + x+ x2 + x3 + · · ·

It was in Gauss’ famous thesis, Disquisitiones generales circa seriem

infinitam(1812), that the brilliant mathematician defined the series (2.1) and

6



used the notation F (a, b; c|z) for it. He proved important summation theorems

and gave many relations between two or more of these series.

But it was Kummer, in 1836, who was the first to use the term “hyper-

geometric” for series of the type (2.1) only. For a more detailed history and a

great summary of all the basics, see [32].

Many variants of the definition of a hypergeometric function arose af-

terwards, a few of which will be used throughout this work. In this chapter,

we will introduce three versions of this function and present some of their most

important features and properties.

2.1 The generalized hypergeometric function

The most classical definition is the extension of Gauss’s hypergeometric func-

tion, with notation due to Barnes, as presented in [32].

Definition 2.1.1. Let, A,B ∈ Z and α1, . . . , αA, β1, . . . , βB ∈ Q, with all of

the βi ≥ 0. The generalized hypergeometric function is defined as the

series (taking z ∈ C)

AFB(α1, . . . , αA; β1, . . . , βB|z) =
∞
∑

k=0

(α1)k · · · (αA)kz
k

(β1)k · · · (βB)kk!
. (2.2)

The αi will be referred to as “numerator parameters” and the βi as

“denominator parameters”.

Notice that in this notation Gauss’s hypergeometric function becomes

2F1(α1, α2; β1|z).
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Sometimes we will use the shortened notation

AFB(α; β|z) = AFB(α1, . . . , αA; β1, . . . , βB|z).

2.1.1 Convergence

To understand the convergence of the series AFB(α; β|z), let unz
n denote the

n-th term of the series, so we have

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

|z| =
|α1 + n| · · · |αA + n||z|

|β1 + n| · · · |βB + n|(1 + n)

≤ |z|nA−B−1(1 + |α1|/n) · · · (1 + |αA|/n)

(1 + 1/n)(1 + |β1|/n) · · · (1 + |βB|/n)
.

If A ≤ B the above clearly tends to zero as n → ∞, so the series

converges for all z.

If A = B + 1, the series is convergent if |z| < 1. It also converges when

z = 1 if

Re

(

B
∑

ν=1

βν −
A
∑

ν=1

αν

)

> 0,

and when z = −1 if

Re

(

B
∑

ν=1

βν −
A
∑

ν=1

αν

)

> −1.

Finally, if A > B+1, the series never converges except for when z = 0.

Notice that in this case we could only define the function when the series

terminates, that is, one or more of the numerator parameters must be zero or

negative.

8



2.1.2 Differential Equations

Let θ denote the operator z
d

dz
. The series AFB(α; β|z) satisfies the differential

equation

{θ(θ + β1 − 1) · · · (θ + βB − 1) − z(θ + α1) · · · (θ + αA)} y = 0.

We will denote, as in [1],

D(α1, . . . , αA; β1, . . . , βB) = θ(θ+β1−1) · · · (θ+βB−1)−z(θ+α1) · · · (θ+αA).

If A = B + 1 this is a Fuchsian differential equation with regular sin-

gularities at z = 0, 1,∞. If A ≤ B, the equation has a regular singularity at

z = 0 and an irregular one at z = ∞.

To find the other series solutions (centered at 0) to this differential

equation, we use the method of Frobenius. Suppose y = zr
∑∞

n=0 anz
n is a

solution to the differential equation. Substituting, and using the fact that

P (θ)(zn) = P (n)zn, where P is a polynomial expression, we get that the

indicial equation is

r(r + β1 − 1)(r + β2 − 1) · · · (r + βB − 1) = 0,

which has solutions

r = 0, 1 − β1, . . . , 1 − βB.

9



The coefficients will satisfy a recurrence relation. For each r,

(r+n)(r+n+β1−1) · · · (r+n+βB−1)an = (r+n+α1−1) · · · (r+n+αA−1)an−1.

Hence

an =
(r + α)n

(r + β)n(r + 1)n
,

and so the complete set of solutions is given by

AFB(α; β|z), (the holomorphic solution around 0)

and the functions

z1−βi
AFB(1 + α1 − βi, . . . , 1 + αA − βi; 1 + β1 − βi, ˇ. . ., 1 + βB − βi, 2 − βi|z),

where ˇ denotes the omission of 1 + βi − βi (in fact, this term becomes the

factorial term in the series).

As before, the radius of convergence of the resulting series solutions is

0,1, or ∞, depending on whether A > B + 1, A = B + 1, A ≤ B respectively.

Notice that the parameters αi, βi completely characterize the hyperge-

ometric function and its corresponding differential equation.

10



2.1.3 The Monodromy Group of nFn−1

Let H be the fundamental group π1(P
1 \ {0, 1,∞}, z0) where z0 is some fixed

base point, for example z0 = 1
2
. Then clearly H is generated by g0, g1, g∞ with

the relation g∞g1g0 = 1, as pictured below.

z0

0 1

g0 g1

g∞

Figure 2.1: The generators of π1(P
1 \ {0, 1,∞}, z0)

Recall that the differential equation for a hypergeometric function of

the form nFn−1(α; β|z) is Fuchsian with regular singular points 0, 1,∞. Around

a regular point, for example z0 = 1
2
, there are n linearly independent analytic

solutions with a non-zero radius of convergence.

Take f1, . . . , fn to be n linearly independent solutions to the differen-

tial equation, and let V be the space of solutions. For any fi, we can take

its analytic continuation along a path γ in π1(P
1 \ {0, 1,∞}, z0). Analytic

continuation along a homotopically trivial loop yields the same function, but

along a non-trivial loop we may get a different function (we have moved to a

different branch). So fi 7→ Fi by analytic continuation along γ not trivial. For

11



example, take γ = g0.

The coefficients of the differential equation are unaltered by letting the

variable z describe this circuit around 0, so the functions F1, . . . , Fn are also

solutions. Hence we can express the Fi in terms of the basis of the space of

solutions as

F1 = a11f1 + · · · + a1nfn

F2 = a21f1 + · · · + a2nfn

...

Fn = an1f1 + · · ·+ annfn.

And so in fact, we can associate to g0 the matrix B = (aij). The same is

true for the other generators. Let A,B,C ∈ GL(V ) be determined by analytic

continuation, so that

A ↔ g∞
B ↔ g0

C ↔ g1

The group Γ ⊂ GL(V ) generated by A,B,C with the relation ACB = I

is called the monodromy group, and the map

H → GL(V )

g∞, g0, g1 7→ A,B,C,

12



is a representation of H .

In Chapter 5, we will use a certain property of monodromy groups

in order to relate them to hypergeometric functions. First, we need some

definitions from [1].

Definition 2.1.2. Let V be a finite dimensional complex vector space. A

linear map g ∈ GL(V ) is called a reflection if g − Id has rank one. The

determinant of a reflection is called the special eigenvalue of g.

Definition 2.1.3. Suppose a1, . . . , an, b1, . . . , bn ∈ C∗ with aj 6= bk for all

j = 1, . . . , n. A hypergeometric group with numerator parameters a1, . . . , an

and denominator parameters b1, . . . , bn is a subgroup of GL(n,C) generated

by elements h0, h1, h∞ ∈ GL(n,C) such that h∞h1h0 = Id,

det(z − h∞) =

n
∏

i=1

(z − aj)

det(z − h−1
0 ) =

n
∏

j=1

(z − bj),

and h1 is a reflection in the sense of Definition 2.1.2.

Then we have the following useful result.

Proposition 2.1.1. Suppose a1, . . . , an, b1, . . . , bn ∈ C∗ with aj 6= bk for all

j, k = 1, . . . , n and assume bn = 1. Let α1, . . . , αn, β1, . . . , βn−1 ∈ C be such

that aj = e2πiαj for j = 1, . . . , n and bk = e2πiβk for k = 1, . . . , n − 1 . Then

the monodromy group of the hypergeometric equation

D(α1, . . . , αn; β1, . . . , βn−1)y = 0

13



is a hypergeometric group with parameters a1, . . . , an, b1, . . . , bn.

The most important consequence of this result is that if we have a

hypergeometric group Γ in the sense of the Definition 2.1.3, we can find a

hypergeometric differential equation whose monodromy group is Γ.

2.2 Hypergeometric weight systems

One can think of (2.2) in terms of ratios of factorials (rather than Pochham-

mer symbols). In [28], Rodŕıguez-Villegas defines a hypergeometric weight

system as a formal linear combination

γ =
∑

ν≥1

γν [ν], ν ∈ Z, (2.3)

where the γν ∈ Z are zero for all but finitely many ν, satisfying the following

conditions:

1.
∑

ν≥1 νγν = 0

2. d = d(γ) := −
∑

ν≥1 γν > 0

We refer to condition (1) as the regularity of γ and d is the dimension

of γ.

To γ we can associate the formal power series

u(λ) :=
∑

n≥0

unλ
n

where

un =
∏

ν≥1

(νn)!γν .

14



Lemma 2.2.1. u is a hypergeometric function, that is, for some minimal r

we have

u(λ) = rFr−1

(

α1, . . . , αr; β1, . . . , βr−1

∣

∣

∣

∣

λ

λ0

)

where λ−1
0 =

∏

ν≥1 ν
νγν and α1, . . . , αr, β1, . . . , βr−1 are rational numbers.

Proof. Recall that we can write the Pochhammer symbol in terms of the Γ

function as follows:

(x)n =
Γ(x+ n)

Γ(x)

Using the Gauss-Legendre multiplication formula, we obtain

ν−1
∏

k=1

(

k

ν

)

n

=

∏d−1
k=1 Γ

(

k
ν

+ n
)

∏d−1
k=1 Γ

(

k
ν

)

=

∏d−1
k=1 Γ

(

k+νn
ν

)

∏d−1
k=1 Γ

(

k
ν

)

= ν1−νn Γ(νn)

Γ(n)

= ν−νn Γ(νn + 1)

Γ(n+ 1)

= ν−νn (νn)!

n!
.

Therefore we can write

(νn)! = n! · ννn ·
ν−1
∏

k=1

(

k

ν

)

n

.

15



And so

∏

ν≥1

(νn)!γν =
∏

ν≥1

[

(n!)γν (ννγν )n
ν−1
∏

n=1

(

k

ν

)γν

n

]

= (n!)
∑

γν
∏

ν≥1

[

(ννγν )n

ν−1
∏

n=1

(

k

ν

)γν

n

]

= (n!)−d

(

∏

ν≥1

(ννγν )

)n
∏

ν≥1

ν−1
∏

n=1

(

k

ν

)γν

n

.

So we can let our αi be the
k

ν
for the γν > 0, where we repeat an αi if

γν > 1, and βi to be the
k

ν
for the γν < 0, and 1 for d − 1 of the n! terms.

There will be the same number of elements in each set of parameters because

of the regularity condition. In other words, there are (ν − 1)γν of the αi, and

(ν − 1)γν + d of the βi, and we know:

∑

ν≥1

(ν − 1)γν =
∑

ν≥1

νγν −
∑

ν≥1

γν = 0 + d = d,

and by splitting into positives and negatives we get what we want.

If different ν’s share common factors, we could cancel some of these

terms out, but that wouldn’t change the number we have on the numerator

versus the number we have on the denominator. So the minimal r is the

number of numerator parameters that survive after cancelation.

Finally, if instead of λ we substitute
∏

ν≥1(ν
νγν ) · λ, we get the desired

result.

16



This lemma gives us a method for going from a hypergeometric weight

system to a hypergeometric function. To go from a hypergeometric function

to a hypergeometric weight system, we first need there to be complete sets of

fractions for each denominator, i.e., if 1/5 is one of the αi’s, then 2/5, 3/5, 4/5

should also be numerator parameters, otherwise the method described above

fails. Thus, we can think of a hypergeometric function as being associated to a

hypergeometric weight system and viceversa, provided that certain conditions

are satisfied.

There is a useful function associated to a hypergeometric weight system

which we will now define. Most of this is taken from [28].

Definition 2.2.1. The Landau function associated to γ is defined by

L(x) = Lγ(x) := −
∑

ν≥1

γν{νx}, x ∈ R

where {x} denotes the fractional part of x. This function is periodic of period

1.

The Landau function is useful for checking whether the coefficients of

the series u(z) are integers.

Proposition 2.2.2 (Landau). un ∈ Z for all n ≥ 0 if and only if L(x) ≥ 0

for all x ∈ R.

There is a complete proof of this proposition in [28]. We want to point

out a crucial step of the proof because it will be used later , and that is the

following
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Lemma 2.2.3. Let p be a prime and let vp(x) denote the p-adic valuation of

x.

vp(un) =
∑

k≥1

L

(

n

pk

)

So the Landau function encodes information about the p-adic valuation

of the coefficients of the series.

This function has many other properties as listed in [28]. Here we list

a few which will be useful in some of our computations later on.

Proposition 2.2.4. 1. The regularity condition is equivalent to L being

locally constant.

2. L is right continuous with discontinuity points exactly at x ≡ αi mod 1

or x ≡ βi mod 1 for some i = 1, . . . , r. More precisely,

L = #{j|αi ≤ x} − #{j|0 < βj ≤ x}.

3. L takes only integer values.

4.
∫ 1

0

L(x)dx =
1

2
d, lim

x→1−
L(x) = d, lim

x→0+
L(x) = 0.

In particular, for a general non-zero γ =
∑

ν≥1 γν[ν], integrality implies

positive dimension.
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5. Away from the discontinuity points of L we have

L(−x) = d− L(x)

and, in particular, for all x

L(x) ≤ d, if un ∈ Z for all n.

2.3 The finite field analog

2.3.1 Gauss and Jacobi sums

Let χ1/(q−1) : F∗
q → K∗ be a fixed generator of the character group of F∗

q with

values in an algebraically closed field K of characteristic zero (such as C or

Cp).

Examples:

1. If K = C fix a primitive root of F∗
q and determine χ1/(q−1) by taking that

root to e2πi/(q−1).

2. If K = Cp it’s natural to take χ1/(q−1) to be the Teichmüller character.

Recall that ω : F∗
q → C∗

p is the Teichmüller character where ω(x) is

defined as the unique element of C∗
p which is a (q − 1)-st root of unity

and such that ω(x) ≡ x mod p.

For s ∈ 1
q−1

Z/Z we let χs =
(

χ1/(q−1)

)s(q−1)
, and for any s set χs(0) = 0.

Let ψ : Fq → K∗ be a (fixed) additive character.
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Definition 2.3.1. For s ∈ 1
(q−1)

Z/Z we let g(s) denote the Gauss sum

g(s) =
∑

x∈Fq

χs(x)ψ(x)

Lemma 2.3.1. Gauss sums satisfy the following properties:

1. g(s)g(−s) = qχs(−1) if s 6= 0, and g(0) = −1.

2. If d|q − 1,
d−1
∏

j=0

g

(

s+
j

d

)

= χ−ds(d)g(ds)

d−1
∏

j=1

g

(

j

d

)

Definition 2.3.2. If s1, . . . , sr ∈ 1

q − 1
Z/Z and

∑

si 6≡ 0 mod Z, we define

the Jacobi sum

J(s1, . . . , sr) =
∑

x1,...,xr∈Fq
x1+···+xr=1

χs1(x1) · · ·χsr(xr), r > 1; J(s1) = 1.

Jacobi sums can be expressed in terms of Gauss sums as follows:

J(s1, . . . , sr) =
g(s1) · · · g(sr)

g(s1 + · · · + sr)
.

2.3.2 Katz’s hypergeometric functions

There is a finite field analog of the hypergeometric function which was defined

by Katz [20].
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Definition 2.3.3. Let t ∈ F∗
q. Define the set

Vt =
{

x ∈ (F∗
q)

n, y ∈ (F∗
q)

m|x1 · · ·xn = ty1 · · · ym

}

Also, let ψ : Fq → K∗, be a (fixed) additive character where K is

an algebraically closed field (like C or Cp), let χ denote, as in the previous

section, a generator of the character group of F∗
q, and α1, . . . , αn, β1, . . . , βm ∈

1

q − 1
Z/Z so that χα1 , . . . , χαn , χβ1, . . . , χβm : F∗

q → K∗ are multiplicative

characters. Then we define the finite field version of a hypergeometric function

as

H(α; β|t) : =
∑

x,y∈Vt

ψ(x1 + · · ·+ xn − (y1 + · · · + ym))χα1(x1) · · ·χαn(xn)

·χβ1
(y1) · · ·χβm

(ym)

It is natural to wonder what field H is defined over. First of all, since

ψ is an additive character on Fq and χ is a multiplicative character on F∗
q , we

know that

H(α; β|t) ∈ Q(ξ(q−1)q) = L

where ξ(q−1)q is a (q−1)q-th root of unity. Let l be such that gcd(l, (q−1)q) = 1,

and define the following endomorphism of L:
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σl : L→ L

ξ 7→ ξl

H(α; β|t) must lie in some subextension of L. We want to find l such

that H(α; β|t)σl = H(α; β|t).

H(α; β|t)σl =
∑

x,y∈Vt

ψ(l(x1 + · · · + xn) − l(y1 + · · ·+ ym))χα1(x
l
1) · · ·χαn(xl

n)

·χβ1
(yl

1) · · ·χβm
(yl

m).

And by definition x1 · · ·xn = ty1 · · · ym. Define x′i = lxi, y
′
i = lyi so that

x′1 · · ·x′n = lm−nty′1 · · · y′m. Therefore

H(α; β|t)σl = H(α1 + l, . . . , αn + l; β1 + l, . . . , βm + l|lm−nt)

·χα1 · · ·χαnχβ1 · · ·χβm(ll)

We want the above to be equal to H(α; β|t), and so this restricts the

possibilities for our choices of characters as well. If m = n and taking l-th

powers of the multiplicative characters only permutes them, i.e. {χα1 , . . . , χαn}

and {χβ1, . . . , χβn} are complete sets of characters, then we get that

H(α; β|t)σl = H(α; β|t)χα1 · · ·χαnχβ1 · · ·χβm(ll)
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Conjugating also just permutes the characters in each set, so

χα1 · · ·χαnχβ1 · · ·χβm

is either trivial or a quadratic character. Therefore H(α; β|t) ∈ Q or Q(
√
p).

It will be convenient to think of this definition in a different form which

is given by its Fourier series expansion.

Lemma 2.3.2. The Fourier series expansion of H(α; β|t) is

H(α; β|t) =
1

q − 1

∑

s∈ 1
q−1

Z/Z

g(s+α1) · · · g(s+αn)g(−s−β1) · · · g(−s−βm)χs(t)

Proof. The Fourier series expansion of H(α; β|t) is given by

H(α; β|t) =
∑

s∈ 1
q−1

Z/Z

c(s)χs(t),

where c(s) = 1
q−1

∑

t∈K∗ H(α; β|t)χs(t). By definition of Vt, we get that t =

x1 · · ·xny
−1
1 · · · y−1

m , and we can do the following computation:

∑

t∈K∗

H(α; β|t)χs(t) =
∑

t∈K∗

∑

x,y∈Vt

ψ(x1 + · · · + xn − (y1 + · · ·+ ym))

·χα1(x1) · · ·χαn(xn)

χβ1(y1) · · ·χβm(ym)
χs(t)

=
∑

x∈(K∗)n

y∈(K∗)m

ψ(x1 + · · ·+ xn − (y1 + · · · + ym))

·χα1(x1) · · ·χαn(xn)

χβ1(y1) · · ·χβm(ym)
λ(x1 · · ·xny

−1
1 · · · y−1

m )
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=
∑

x,y

ψ(x1) · · ·ψ(xn)

ψ(y1) · · ·ψ(ym)

χα1(x1) · · ·χαn(xn)

χβ1(y1) · · ·χβm(ym)

χs(x1) · · ·χs(xn)

χs(y1) · · ·χs(ym)

=
∑

x,y

(χs+α1)(x1)ψ(x1) · · · (χs+αn)(xn)ψ(xn)

·(χs+β1)(y1)ψ(y1) · · · (χs+βm)(ym)ψ(ym)

=

(

∑

x1∈K∗

(χs+α1)(x1)ψ(x1)

)

· · ·
(

∑

xn∈K∗

(χs+αn)(xn)ψ(xn)

)

·
(

∑

y1∈K∗

(χs+β1)(y1)ψ(y1)

)

· · ·
(

∑

ym∈K∗

(χs+βm)(ym)ψ(ym)

)

= g(s+ α1) · · · g(s+ αn)g(−(s+ β1)) · · · g(−(s+ βm))
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Chapter 3

The number of Fq-points of a family of

hypersurfaces

This chapter shows a first approach to establishing a relationship between the

number of points and hypergeometric functions.

First, let us define the families we will be working with for the rest of

this document. A family of monomial deformations of diagonal hypersurfaces

will be a family of varieties of the form:

Xλ : xd
1 + · · ·+ xd

n − dλxh1
1 · · ·xhn

n = 0 (3.1)

where
∑

hi = d, g.c.d.(d, h1, . . . , hn) = 1. For λ ∈ Z, let NFq(λ) denote the

number of points on the hypersurface in Pn−1
Fq

.

The first two sections in this chapter are mostly a summary of a paper

by Koblitz ([22]). In this paper, Koblitz gives formulas for the number of points

on monomial deformations of diagonal hypersurfaces, in terms of Gauss and

Jacobi sums. Much of the work is a generalization of the proofs and ideas in

Weil’s famous paper [34]. The last section in the chapter is devoted to showing
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an explicit relationship between NFq(λ) and Katz’s finite field hypergeometric

function.

3.1 Weil’s theorem

Suppose we have an algebraic variety V defined over a finite field Fq and we

want to determine the number NFq(V ) of Fq-points on it. Since these points are

the Fq-points of V fixed by the q-th power Frobenius map F : (. . . , Xi, . . . ) 7→

(. . . , Xq
i , . . . ), it follows that

NFq(V ) = #{X ∈ V |F (X) = X}.

If we have a group G acting on V , then it is convenient to split up

NFq(V ) into pieces NFq(V, χ), where χ : G→ K∗ is a character with values in

an algebraically closed field K of characteristic zero. NFq(V, χ) is defined as

follows:

NFq(V, χ) =
1

#G

∑

ξ∈G

χ−1(ξ)#{X ∈ V |F ◦ ξ(X) = X}.

In all of our examples, G will be abelian, so the only irreducible rep-

resentations will be one-dimensional characters χ. In that case, we have the

following lemma, which follows immediately from the previous definitions

Lemma 3.1.1.

NFq(V ) =
∑

χ∈char(G)

NFq(V, χ).
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The simplest example of a variety V with a large group action is the

diagonal hypersurface of degree d in Pn−1
Fq

, where we assume d|q − 1:

Dd,n : xd
1 + · · ·+ xd

n = 0

The group µn
d of n-tuples of d-th roots of unity in F∗

q acts on Dd,n by

ξ = (ξ1, . . . , ξn) taking the point (x1, . . . , xn) to (ξ1x1, . . . , ξnxn). Let ∆ be the

diagonal elements of µn
d , i.e. elements of the form (ξ, · · · , ξ). Notice that ∆

acts trivially on Dd,n and µn
d/∆ acts faithfully. The character group of µn

d/∆

is in one-to-one correspondence with the n-tuples

w = (w1, . . . , wn), 0 ≤ wi < d, for which
∑

wi ≡ 0 mod d,

where

χw(ξ) := χ(ξw), ξw = ξw1
1 · · · ξwn

n

and χ is a fixed primitive character of µd, which we can get for example by

restricting χ1/(q−1) to µd. In [34], Weil proves:

Theorem 3.1.2 (Weil).

NFq(Dd,n, χw) =



















0 if some but not all wi = 0
qn−1 − 1

q − 1
if all wi = 0

−1

q
J
(w1

d
, . . . ,

wn

d

)

if all wi 6= 0
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3.2 Koblitz’s formula

The goal of Koblitz’s paper is to use Weil’s result and similar methods to

find the number of points on the monomial deformation (3.1). Notice that

these hypersurfaces allow an action of the subgroup G ⊂ µn
d/∆, consisting of

elements which preserve the monomial xh = xh1
1 · · ·xhn

n , that is,

G = {ξ ∈ µn
d |ξh = 1}/∆.

The characters χw of µn
d/∆ which act trivially on G are precisely powers

of χh. Thus, char(G), the character group of G, corresponds to equivalence

classes of w in

W = {(w1, . . . , wn)|0 ≤ wi < d,
∑

wi ≡ 0 mod d},

where w′ ∼ w if w − w′ is a multiple (mod d) of h. Notice each equivalence

class contains d n-tuples w′ because g.c.d(d, h1, . . . , hn) = 1.

We are now ready to state the main theorem of the paper.

Assume d|q− 1 and let NFq(0) be the number of Fq-points on the diag-

onal hypersurface Dd,n.

Theorem 3.2.1 (Koblitz).

NFq(λ) = NFq(0) +
1

q − 1

∑

s∈ d
q−1

Z/Z

w∈W

g

(

w + sh

d

)

g(s)
χs(dλ),

where we denote g

(

w + sh

d

)

=
∏

i g

(

wi + shi

d

)

.
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3.3 The relation to Katz’s hypergeometric function

In this section, we will see that NFq(λ) − NFq(0) is related to the finite field

version of a hypergeometric function by a method similar to one described in

Koblitz’s paper.

First, consider for some fixed w the sum

∑

s∈ d
q−1

Z/Z

w′∼w

g

(

w + sh

d

)

g(s)
χs(dλ). (3.2)

It is not hard to check that if we replace d by ds and sum over s ∈
1

(q−1)
Z/Z we obtain

(3.2) =
∑

s∈ 1
q−1

Z/Z

g
(

hs+
w

d

)

g(ds)
χds(dλ). (3.3)

Using property 2 of Gauss sums stated earlier, we can rewrite the pre-

vious statement as

(3.3) =
d−1
∏

j=1

g

(

j

d

)

∑

s

g
(

h1s+
w1

d

)

· · · g
(

hns+
wn

d

)

g(s)g

(

s+
1

d

)

· · · g
(

s+
d− 1

d

)χds(λ). (3.4)

For each i, notice that we can use property (2) again, but we need

to assume dhi|q − 1 for all i. Basically, this means that all of our upcoming

computations will make sense for a large enough q.
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g
(

his+
wi

d

)

= g

(

hi

(

s+
wi

dhi

))

=

∏hi−1
j=0 g

(

s+
wi

dhi
+

j

hi

)

χ−(his+
wi
d

)(hi)
∏hi−1

j=1 g

(

j

hi

) .

Combining, we get that for a fixed w,

(3.4) =
c

q − 1

∑

s∈ 1
q−1

Z/Z

∏n
i=1

∏hi−1
j=0 g

(

s+
wi + dj

dhi

)

g(s)g

(

s+
1

d

)

· · · g
(

s+
d− 1

d

)χs

(

∏

i

hhi
i λ

d

)

,

(3.5)

where

c =

∏d−1
j=1 g

(

j

d

)

∏n
i=1

∏hi−1
j=1 g

(

j

hi

) .

Notice that over 1
q−1

Z/Z, g(−s) = g(1 − s), and so property (1) of

Gauss sums can be rewritten as

g(s)g(1− s) = qχs(−1).

Using this, we can rewrite the products above as

d−1
∏

j=1

g

(

j

d

)

= q
d−1
2 ξ1
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and

n
∏

i=1

hi−1
∏

j=1

g

(

j

hi

)

= q
∑ hi−1

2 ξ2 = q
d−n

2 ξ2,

where ξ1, ξ2 are q − 1 roots of unity. And so c becomes much simpler,

c = ξq
n−1

2 ,

where ξ is some root of unity which depends on d, n, hi.

We want to relate this last expression to Katz’s hypergeometric func-

tion. Notice that it is almost in the same form, except that we need to add

over χs = χ−s, but we can change variables in the sum, so that we get

(3.5) =
ξq

n−1
2

q − 1

∑

s∈ 1
q−1

Z/Z

∏n
i=1

∏hi−1
j=0 g

(

−s +
wi + dj

dhi

)

g(−s)g
(

−s +
1

d

)

· · · g
(

−s+
d− 1

d

)χ−s

(

∏

i

hhi
i λ

d

)

=
ξq

n−1
2

q − 1

∑

s∈ 1
q−1

Z/Z

∏n
i=1

∏hi−1
j=0 g

(

−
(

s− wi + dj

dhi

))

g(−s) · · · g
(

−
(

s− d− 1

d

)) χs

(

∏

i

hhi
i λ

d

)

. (3.6)

Now we can use property (1) of Gauss sums to change from expressions

involving g(−s) to expressions involving g(s) and viceversa by

g(−s) =
qχs(−1)

g(s)
,

to get
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(3.6) =
c′

q − 1

∑

s∈ 1
q−1

Z/Z

g(s)g

(

s− 1

d

)

· · · g
(

s− d− 1

d

)

·
n
∏

i=1

hi−1
∏

j=0

g

(

−
(

s− wi + dj

dhi

))

χ−s

(

(−1)d
∏

i

hhi
i λ

d

)

=
c′

q − 1

∑

s∈ 1
q−1

Z/Z

g(s)g

(

s+ 1 − 1

d

)

· · · g
(

s+ 1 − d− 1

d

)

·
n
∏

i=1

hi−1
∏

j=0

g

(

−
(

s + 1 − wi + dj

dhi

))

χ−s

(

(−1)d
∏

i

hhi
i λ

d

)

= c′H

(

0,
1

d
, . . . ,

d− 1

d
; . . . , 1 − wi + dj

dhi
, . . .

∣

∣

∣

∣

n
∏

i=1

hhi
i (−λ)d

)

,

where the lower exponents run through the hi values wi+dj
dhi

, j = 0, . . . , hi − 1

for each i, and no exponent appears if hj = 0, and modulo some cancelation

if some of the numerator and denominator terms are the same. Notice that

there will be the same number of upper and lower exponents, since we required
∑

hi = d. The constant term is now

c′ = ξq
n−1

2 ·
χ d−1

2
(−1)

qd
= ξq

n−2d−1
2 ,

where ξ still denotes a q − 1 root of unity.

To get the total number of points we would need to add over equivalence

class representatives, and so
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NFq(λ) −NFq(0) = ξq
n−2d−1

2 ·
∑

[w]∈W/∼

H

(

0,
1

d
, . . . ,

d− 1

d
; . . . , 1 − wi + dj

dhi
, . . .

∣

∣

∣

∣

n
∏

i=1

hhi
i (−λ)d

)

.

Remark 3.3.1. Notice that the above formula implies that the hypergeometric

function is independent of the choice of representative w. This is because the

characters that define H were defined modulo integer powers, and w′ ∼ w

means that w′
i ≡ wi + khi mod d, so substituting by an equivalent w gives the

same characters for H .

3.3.1 Examples

THE 0-DIMENSIONAL CASE

The easiest example is the 0-dimensional family defined by

Zλ : xd
1 + xd

2 − dλx1x
d−1
2 = 0.

Notice that to put this in the situation of Koblitz’s theorem in the

previous section, we have to assume d(d−1)|q−1, and we have h = (1, d−1).

Also, we can see that W = {(0, 0), (1, d− 1), . . . , (d − 1, 1)}, so in particular

there is only one equivalence class, that of (0, 0). So using the last equation,

we get that
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NFq(λ) −NFq(0) = ξq
3−2d

2 ·

H

(

1

d
, . . . ,

d− 1

d
; 0,

1

d− 1
, . . . ,

d− 2

d− 1

∣

∣

∣

∣

− (d− 1)(d−1)(−λ)d

)

.

In the case d = 3, the number of points is

NFq(λ) −NFq(0) = ξq−
3
2H

(

1

3
,
2

3
; 0,

1

2

∣

∣

∣

∣

22λ3

)

.

THE DWORK FAMILY OF HYPERSURFACES

The Dwork family is a family of the type (3.1) with n = d and hi = 1

for all i. That is, the family

Yλ : xd
1 + · · ·+ xd

d − dλx1 · · ·xd = 0.

The cases d = 3, 4 were studied extensively by Dwork while he was

studying the rationality of the zeta function, for example in [10].

In this case, for each equivalence class we get that

∑

s∈ 1
q−1

Z/Z

g
(

hs+
w

d

)

g(ds)
χds(dλ) =

d−1
∏

j=1

g

(

j

d

)

∑

s

g
(

h1s+
w1

d

)

· · · g
(

hns+
wn

d

)

g(s)g

(

s+
1

d

)

· · · g
(

s+
d− 1

d

)χds(λ)
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=

d−1
∏

j=1

g

(

j

d

)

∑

s∈ 1
q−1

Z/Z

g
(

s+
w1

d

)

· · · g
(

s+
wn

d

)

g(s)g

(

s+
1

d

)

· · · g
(

s+
d− 1

d

)χs(λ
d).

There will be cancelation when the wi coincide with 0, 1, . . . , d − 1.

Again, we replace s by −s and get that

NFq(λ) −NFq(0) = ξq
−d−1

2 ·
∑

[w]∈W/∼

H

(

0,
1

d
, . . . ,

d− 1

d
; 1 − w1

d
, . . . , 1 − wn

d

∣

∣

∣

∣

(−λ)d

)

.

Let d = 3 (the family is actually a family of elliptic curves). In other

words, the family with d = 3 = n, h = (1, 1, 1).

We can see that

W = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (1, 2, 0), (2, 0, 1),

(0, 1, 2), (2, 1, 0), (0, 2, 1), (1, 0, 2)}.

And, in fact, there are three equivalence class representatives, (0, 0, 0), (1, 2, 0),

(2, 1, 0), but the latter two are of the same “type”, i.e., one is the permutation

of the other. Therefore, we obtain

NFq(λ) −NFq(0) = ξq−1H

(

1

3
,
2

3
; 1, 1

∣

∣

∣

∣

λ3

)

+
2ξq

(q − 1)

∑

s∈ 1
q−1

Z/Z

χs(λ
3).

For the terms corresponding to the “type” (1, 2, 0), the wi’s completely

cancel out with the list 0, 1, 2, which means we have an empty parameter set.
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This also means that H is the sum over all multiplicative characters of χs(λ
3),

for λ ∈ F∗
q, which is zero unless λ3 = 1 in F∗

q, in which case we get (q − 1).

Remark 3.3.2. We will see in Chapter 5 that the λ’s that make Yλ non-singular

are exactly the non d-th roots of unity. And so for all λ such that Yλ is non-

singular, the second term in the above sum is zero, and we get that the number

of points is written in terms of a hypergeometric function.
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Chapter 4

A p-adic approach

The main goal of this chapter is to develop a p-adic version of Koblitz’s formula

for NFp(λ), where p is prime, so that we can find the relation between the

number of solutions over Fp and generalized hypergeometric functions. We

will first summarize the main ideas of the Gross-Koblitz formula, and then

restrict our attention to two special examples.

4.1 The Gross-Koblitz Formula

The Gross-Koblitz formula was developed as a way of relating Gauss sums to

the p-adic version of the Γ function. Most of this background follows a chapter

in [26].

First, we will need to recall the following definition by Morita:

Definition 4.1.1. The p-adic gamma function is the continuous function

Γp : Zp → Zp

that extends
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f(n) := (−1)n
∏

1≤j<n,p 6|j

j (n ≥ 2).

This is well-defined because the function a 7→ f(a) : N − {0, 1} →

Z is uniformly continuous for the p-adic topology and hence has a unique

continuous extension Zp → Zp.

This function has properties that are reminiscent of those of the classical

gamma function.

Proposition 4.1.1. Let p be an odd prime.

1. Γp(0) = 1, Γp(1) = −1, Γp(2) = 1,

Γp(n+ 1) = (−1)n+1n! (1 ≤ n < p).

2. Γp(x+ 1) =

{

−xΓp(x) if x ∈ Z∗
p,

−Γp(x) if x ∈ pZp

3. Γp(x)Γp(1−x) = (−1)R(x), where R(x) ∈ {1, 2, . . . , p}, R(x) ≡ x mod p.

4. (Gauss multiplication formula) Let m ≥ 1 be an integer prime to p. Then

∏

0≤j<m

Γp

(

x+
j

m

)

= ǫm ·m1−R(mx) · (mp−1)s(mx) · Γp(mx),

where

ǫm =
∏

0≤j<m

Γp

(

j

m

)

,

R(y) ∈ {1, . . . , p}, R(y) ≡ y mod p,
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s(y) =
R(y) − y

p
∈ Zp.

Let s =
a

q − 1
∈ 1

q − 1
Z/Z, ω be the Teichmüller character and ψ be

an additive character of Fq, as before. Consider now the Gauss sum

g(s) =
∑

06=x∈Fq

ω(x)−s(q−1)ψ(x),

Suppose q = pf . Let π ∈ Cp be a root of πp−1 = −p. Define for

0 ≤ a

q − 1
= s < 1, the sum Sp(a) =

∑

0≤j<f aj to be the sum of the digits

in the p-adic expansion of a, and the integers a(i) as having p-adic expansions

obtained from the cyclic permutations from the expansion of a (denoted a(0)).

Theorem 4.1.2 (Gross-Koblitz). Let 0 ≤ s =
a

q − 1
< 1. The value of the

Gauss sum g(s) is explicitely given by

g(s) = −πSp(a)
∏

0≤j<f

Γp

(

a(j)

q − 1

)

.

Over Fp, i.e. if we assume f = 1, the formula becomes much simpler,

yielding

g(s) = −πaΓp

(

a

p− 1

)

= −πs(p−1)Γp(s) = −(−p)sΓp(s).

There is a very nice and straightforward proof of this theorem in [27].

Our intention is to use this theorem to produce new formulas which are

computationally more manageable and will allow us to elucidate the relation

between the number of points and generalized hypergeometric functions.
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4.2 Special cases

For the rest of this chapter, we will be restricting ourselves to Fp rather than

the more general finite fields.

4.2.1 The 0-dimensional example

As seen at the end of the previous chapter, the easiest example to deal with

is the 0-dimensional variety

Zλ : xd
1 + xd

2 − dλx1x
d−1
2 = 0.

Recall that Koblitz’s theorem gives, in this case, that

NFp(λ) −NFp(0) =
1

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)g((d− 1)s)

g(ds)
χds(λ).

Assume that the generator of the multiplicative character group is ω−1

and p is a prime such that d(d − 1)|p − 1. Using the Gross-Koblitz formula

yields

Lemma 4.2.1.

NFp (λ) = NFp (0) +
−1

p − 1

p−2
∑

a=0

(−p)

(

a
p−1

+{
(d−1)a

p−1
}−{ da

p−1
}
)

Γp

(

a

p − 1

)

Γp

({

(d − 1)a

p − 1

})

Γp

({

da

p − 1

}) ω(dλ)−da

Proof. First, notice that we can rewrite NFp(λ)−NFp(0) by changing its sum-

mation indices as follows:
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∑

s∈ 1
p−1

Z/Z

g(s)g((d − 1)s)

g(ds)
ω(dλ)−ds(p−1) =

p−2
∑

a=0

g

({

(d − 1)a

p − 1

})

g

(

a

p − 1

)

g

({

da

p − 1

}) ω(dλ)−da .

Now we are free to use the simpler version of the formula. Combining

like terms, we get

NFp (λ) − NFp (0) =
−1

p − 1

p−2
∑

a=0

(−p)

({

(d−1)a
p−1

})

Γp

({

(d − 1)a

p − 1

})

(−p)

(

a
p−1

)

Γp

(

a

p − 1

)

(−p)

({

da
p−1

})

Γp

({

da

p − 1

}) ω(dλ)−da

=
−1

p − 1

p−2
∑

a=0

(−p)
( a

p−1
+{

(d−1)a
p−1

}−{ da
p−1

})
Γp

(

a

p − 1

)

Γp

({

(d − 1)a

p − 1

})

Γp

({

da

p − 1

}) ω(dλ)−da

Suppose the have a hypergeometric weight system given by γ = [d] −

[1]−[d−1]. This is clearly related to the power series with binomial coefficients
(

dn
n

)

. The Landau function associated to this system is

L(x) = {x} + {(d− 1)x} − {dx}.

Notice that the power of p that appears in the lemma is exactly deter-

mined by L

(

a

p− 1

)

. But this means that the valuation of the terms of the

previous sum is very similar to the valuation of the terms in the hypergeometric

series with coefficients
(

dn
n

)

.

Notice that
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∑

n≥0

(

dn

n

)

zn = d−1Fd−2

(

1

d
, . . . ,

d− 1

d
;

1

d− 1
, . . . ,

d− 1

d− 2

∣

∣

∣

∣

(d− 1)(d−1)

dd
z

)

.

The discontinuities of L are therefore the αi and βi parameters. In fact,

it is clear that the parameters interlace, that is, 0 < 1
d
< 1

d−1
< · · · < d−2

d−1
<

d−1
d
< 1. By property (2) of the Landau function we get that L

(

a

p− 1

)

= 1

for (p−1)αi ≤ a < (p−1)βi and 0 on the other intervals. Therefore the terms

with (p − 1)βi = (p−1)i
d−1

≤ a < (p − 1)αi+1 = (p−1)(i+1)
d

are the only ones that

survive mod p. There are d− 1 of these intervals. For a fixed i,

(p−1)(i+1)
d

−1
∑

a=
(p−1)i

d−1

(−p)( a
p−1

+{
(d−1)a

p−1
}−{ da

p−1
})Γp

(

a

p− 1

)

Γp

({

(d− 1)a

p− 1

})

Γp

({

da

p− 1

}) ω(dλ)−da

=

(p−1)(i+1)
d

−1
∑

a= (p−1)i
d−1

Γp

(

a

p− 1

)

Γp

({

(d− 1)a

p− 1

})

Γp

({

da

p− 1

}) ω(dλ)−da

=

(p−1)(i+1)
d

−1
∑

a=
(p−1)i

d−1

Γp

(

a

p− 1

)

Γp

(

(d− 1)a

p− 1
− i

)

Γp

(

da

p− 1
− i

) ω(dλ)−da

≡
(p−1)(i+1)

d
−1

∑

a=
(p−1)i

d−1

Γp(−a)Γp(−(d− 1)a− i)

Γp(−da− i)
(dλ)−da mod p

≡
(p−1)(i+1)

d
−1

∑

a=
(p−1)i

d−1

Γp(da+ i+ 1)

Γp(a + 1)Γp((d− 1)a+ i+ 1)
(dλ)−da mod p (⋆)
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≡
(p−1)(i+1)

d
−1

∑

a=
(p−1)i

d−1

(da+ i)!

a!((d− 1)a+ i)!
(dλ)−da mod p

≡
(p−1)(i+1)

d
−1

∑

a=
(p−1)i

d−1

(

da+ i

a

)

(dλ)−da mod p.

At step (⋆) we used property (3) of the p-adic gamma function. And

we have just shown that

NFp(λ) −NFp(0) ≡
d−2
∑

i=0

(p−1)αi+1−1
∑

a=(p−1)βi

(

da+ i

a

)

(dλ)−da mod p.

Notice that, for a fixed i,

(

da+ i

a

)

=
(da+ i)(da+ i− 1) · · · (da+ 1)

((d− 1)a+ i)((d− 1)a+ i− 1) · · · ((d− 1)a+ 1)

(

da

a

)

=
(da+ i) · · · (da+ 1)

((d− 1)a+ i) · · · ((d− 1)a+ 1)
· dda(1

d
)a · · · (d−1

d
)a

(d− 1)(d−1)aa!( 1
d−1

)a · · · (d−2
d−1

)a

=
di(a+ i

d
) · · · (a+ 1

d
)

(d− 1)i(a+ i
d−1

) · · · (a+ 1
d−1

)
· dda(1

d
)a · · · (d−1

d
)a

(d− 1)(d−1)aa!( 1
d−1

)a · · · (d−2
d−1

)a

,

and we can combine the products so that the last expression equals

=
di 1

d
· · · i

d

(d− 1)i 1
d−1

· · · i
d−1

· dda(1
d

+ 1)a · · · ( i
d

+ 1)a(
i+1
d

)a · · · (d−1
d

)a

(d− 1)(d−1)a( 1
d−1

+ 1)a · · · ( i
d−1

+ 1)a(
i+1
d−1

)a · · · (d−2
d−1

)a

.

We have just proved:
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Theorem 4.2.2. Let α(0) =
(

1
d
, . . . , d−1

d

)

and β(0) =
(

1
d−1

, . . . , d−2
d−1

)

.

NFp(λ) −NFp(0) ≡
d−2
∑

i=0

[

dFd−1(α
(i); β(i)|(d− 1)−(d−1)λ−d)

]

(i+1)(p−1)
d

−1
i(p−1)

d−1

mod p,

where α(i) = (α1 + 1, . . . , αi + 1, αi+1, . . . , αd−1), and β(i) = (β1 + 1, . . . , βi +

1, βi+1, . . . , βd−2), that is we add 1 to the numerator and denominator param-

eters up to the i-th place.

Notation. [(u(z)]ji denotes the polynomial which is the truncation of a series

u(z) from n = i to j.

So for example in the case d = 3 we get that

NFp(λ) −NFp(0) ≡
[

2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

1

22λ3

)]
p−1
3

−1

0

+

[

2F1

(

4

3
,
2

3
;
3

2

∣

∣

∣

∣

1

22λ3

)]
2(p−1)

3
−1

p−1
2

mod p.

From [32], we know that adding integers to the numerator and de-

nominator parameters of a Gauss hypergeometric function is akin to taking a

derivative. More specifically, we have the following

Lemma 4.2.3.

d

dz

{

(1 − z)a+n−1
2F1(a, b; c|z)

}

=
(a)n(c− b)n

(−1)n(c)n

(1 − z)a−1
2F1(a+ n, b; c + n|z).

In particular, we can rewrite the second term in the expression for

NFp(λ) −NFp(0) above. Specifically,
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2F1

(

4

3
,
2

3
;
3

2

∣

∣

∣

∣

1

22λ3

)

= 9(1 − λ)
2
3
d

dλ

{

(1 − λ)
1
3 2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

1

22λ3

)}

.

And finally, we can write

NFp(λ) −NFp(0) ≡
[

2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

1

22λ3

)]
p−1
3

−1

0

+

[

9(1 − x)
2
3
d

dλ

{

(1 − λ)
1
3 2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

1

22λ3

)}]
2(p−1)

3
−1

p−1
2

mod p.

The advantage of writing it in this form is that it makes it clear, in this

particular example, that the number of points is actually related to only one

hypergeometric function and its derivatives.

This is not so easy to do for a general d because there are no known

formulas for generalized hypergeometric functions like the one in the lemma,

although we expect that a similar relation does exist in general.

Remark 4.2.1. Notice the difference between Theorem 4.2.2 and Igusa’s result:

in our situation, more than one hypergeometric function appears. As far as we

know, all of the known examples that have been computed have coincided with

Igusa in the sense that only one hypergeometric function appears modulo p.

In the next example (the Dwork family), we will show a known computation

using our methods, in which only one hypergeometric function appears.

4.2.2 The Dwork family

We want to use the Gross-Koblitz formula in the same way as before, to find

a formula that will more easily produce the relationship between the number
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of points and hypergeometric functions. We will focus on two examples, the

cases d = 3, 4.

d = 3 The elliptic curve case

Recall that we have three equivalence classes, (0, 0, 0), (1, 2, 0), (2, 1, 0),

and so we can split the sum into three sums (although since the last two are

permutations of each other the sums will be the same), so we get:

NFp(λ) −NFp(0) =
1

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)3

g(3s)
χ3s(3λ)

+
2

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)g
(

s+ 1
3

)

g
(

s+ 2
3

)

g(3s)
χ3s(3λ)

Again, before using the formula it is convenient to change the summa-

tion into something more manageable:

NFp(λ) −NFp(0) =
1

p− 1

p−2
∑

s=0

g
(

s
p−1

)3

g
({

3s
p−1

})ω(3λ)−3s+

+
2

p− 1

p−2
∑

s=0

g
(

s
p−1

)

g
({

s
p−1

+ 1
3

})

g
({

s
p−1

+ 2
3

})

g
({

3s
p−1

}) ω(3λ)−3s

Substituting and simplifying, we get that

NFp(λ) −NFp(0) =
1

p− 1

p−2
∑

s=0

(−p)( 3s
p−1

−{ 3s
p−1})Γp

(

s
p−1

)3

Γp

({

3s
p−1

}) ω(3λ)−3s +

+
2

p− 1

p−2
∑

s=0

(−p)γ(x)Γp

(

s
p−1

)

Γp

({

s
p−1

+ 1
3

})

Γp

({

s
p−1

+ 2
3

})

Γp

({

3s
p−1

}) ω(3λ)−3s,
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where γ(x) =
(

s
p−1

+
{

s
p−1

+ 1
3

}

+
{

s
p−1

+ 2
3

}

−
{

3s
p−1

})

.

Once more, the power of p in the first part of the sum is determined by

L

(

a
p−1

)

where L(x) is the Landau function associated to the hypergeometric

weight system [3] − 3[1]. The discontinuities are 0, 1/3, 2/3 and the function

is zero only when 0 ≤ x < 1/3.

The function γ(x) is always equal to one, so modp we get

NFp(λ) −NFp(0) ≡ −
p−1
3

−1
∑

s=0

Γp(−s)3

Γp(−3s)
(3λ)−3s mod p

≡ −
p−1
3

−1
∑

s=0

Γp(1 + 3s)

Γp(1 + s)3
(3λ)−3s mod p

≡ −
p−1
3

−1
∑

s=0

(3s)!

s!3
(3λ)−3s mod p

≡ −
[

2F1

(

1

3
,
2

3
; 1

∣

∣

∣

∣

λ−3

)]
p−1
3

−1

0

mod p.

d = 4 The K3-surface case

This is the case

Xλ : x4
1 + x4

2 + x4
3 + x4

4 − 4λx1x2x3x4 = 0

In other words, the family with d = 4 = n, h = (1, 1, 1, 1).

The set W is made up of 64 vectors, but we can split them up into 16

orbits, and of those there are only three ”types”. These are

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)
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(0, 1, 1, 2), (1, 2, 2, 3), (2, 3, 3, 0), (3, 0, 0, 1)

(0, 0, 2, 2), (1, 1, 3, 3), (2, 2, 0, 0), (3, 3, 1, 1)

The rest are permutations of these. So there is one orbit of the first

type, 12 orbits of the second type, and 3 orbits of the third type.

This makes the formula look as follows:

NFp(λ) −NFp(0) =
1

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)4

g(4s)
χ4s(4λ) (S1)

+
12

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)g(s+ 1
4
)2g(s+ 1

2
)

g(4s)
χ4s(4λ) (S2)

+
3

p− 1

∑

s∈ 1
p−1

Z/Z

g(s)2g(s+ 1
2
)2

g(4s)
χ4s(4λ). (S3)

Let’s focus on the first term of the sum, denoted by S1. Using Gross-

Koblitz we get

S1 =
1

p− 1

p−2
∑

s=0

(−p)( 4s
p−1

−{ 4s
p−1})Γp

(

s
p−1

)4

Γp

({

4s
p−1

}) ω(4λ)−4s

By inspecting the power of −p we can see that again it is determined

by Lγ where γ = [4]−4[1]. Thus, the only terms that survive mod p are those

for which 0 ≤ s < p−1
4

. So

S1 ≡ −
p−1
4

−1
∑

s=0

Γp(−s)4

Γp(−4s)
(4λ)−4s mod p
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≡
p−1
4

−1
∑

s=0

Γp(1 + 4s)

Γp(1 + s)4
(4λ)−4s mod p

≡
p−1
4

−1
∑

s=0

(4s)!

(s!)4
(4λ)−4s mod p

≡
[

3F2

(

1

4
,
1

2
,
3

4
; 1, 1

∣

∣

∣

∣

λ−4

)]
p−1
4

−1

0

mod p.

Inspection shows that S2 and S3 are both zero modulo p.

Notice that in both examples, the only terms to survive mod p are the

ones related to the class of (0, . . . , 0). Clearly some information is lost that

might not be lost if we studied these cases modulo other powers of p. One

of our future plans is to try using the Gross-Koblitz formula for the more

general finite fields to compute these examples. In the case of the elliptic

curve, we believe p3 will be the right power, and we expect that for any d, we

should study the number of solutions modulo pd. This was actually checked

by Rodŕıguez-Villegas, Candelas and de la Ossa for d = 5 in [8].
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Chapter 5

Gauss-Manin connections and Differential

Equations

In his work studying the Zeta functions of families of hypersurfaces, Dwork

constructed certain modules which were essentially the middle deRham coho-

mology, equipped with an integrable connection equivalent to the Gauss-Manin

connection. The upshot is that this connection is equivalent to differentiating

with respect to the parameter, which gives us a system of differential equations.

We developed an algorithm which is quite similar to finding the rational

canonical form of a matrix, using basic ideas from the theory of ordinary differ-

ential equations and some results by Brieskorn [3] and Beukers and Heckman

[1], to convert the differential systems obtained from the connection into dif-

ferential systems which were companion matrices to a higher order differential

equation.

The main goal of this chapter is to describe the algorithm we imple-

mented in Pari-GP, which takes as input a particular element in the cohomol-

ogy and outputs the parameters of the hypergeometric differential equation

which has that element as a “solution”. The actual code can be found in Ap-

pendix B, and a summary of the ideas that we use from the theory of ODE’s
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can be found in Appendix A.

5.1 Background

This section is mostly a summary of some ideas in lecture notes by Kiran

Kedlaya [11].

5.1.1 Algebraic deRham cohomology

This construction was originally introduced by Grothendieck based on ideas

of Atiyah and Hodge.

Let X be a smooth affine variety over a field K of characteristic 0.

Since X is affine, we can think of it as X = SpecA where A ⊆ K[x1, . . . , xn].

The module of Kähler differentials, or Ω1
A/K , is the A-module generated

by symbols da, a ∈ A, modulo the relations

1. da, a ∈ K (i.e. the derivative of a constant is zero.)

2. d(ab) − adb− bda, a, b,∈ A (i.e. the product rule.)

Now define Ωi
A/K = ∧iΩ1

A/K , that is, Ωi
A/K is the i-th alternating power

of Ω1
A/K over A. Also, we can think of A = Ω0

A/K . There are maps

di+1 : Ωi
A/K → Ωi+1

A/K

fdx1 ∧ · · · ∧ dxi 7→ df ∧ dx1 ∧ · · · ∧ dxi
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In the same way as this was done in differential topology, we know that

d ◦ d = 0. The Ω·
A/K form a complex, and so we define

H i
dR(X) = Kerdi+1/Imdi = “closed forms”/“exact forms”

to be the i-th algebraic deRham cohomology of X.

Suppose X is a hypersurface defined over Pn, and so it is n−1 complex

dimensional. The middle deRham cohomology will be the n−1-st cohomology.

(Notice that there are 2(n− 1) cohomology spaces, so it makes sense to call it

the middle one. )

It is a classical result that the i-th deRham cohomology of a hypersur-

face, for i 6= n− 1, is identical to the i-th deRham cohomology of Pn−1. So in

fact, the middle cohomology is the only “interesting” one.

5.1.2 Connections in general

Let V be a vector bundle over T . A connection on V is a bundle map ∇ :

V → V ⊗ Ω1
T that satisfies the Leibniz rule, that is, for any U ⊆ T open, and

any f ∈ OT (U) (a regular function on U) and s a bundle section (a “rule” that

assigns to every point of U a vector from the attached vector space), we have

∇(fs) = f∇(s) + s⊗ df.

A section s is said to be horizontal if ∇(s) = 0.
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Let ∇1 : V ⊗ Ω1
T → V ⊗ Ω2

T be the map which takes s ⊗ ω 7→ ∇(s) ∧

ω + s ⊗ dω, where the wedge denotes the map given by wedging the second

and third factors. The curvature of V is the map ∇1 ◦ ∇ : V → V ⊗ Ω2
T . If

the curvature vanishes, we say the connection is integrable. (This is automatic

if dim(T ) = 1.)

Remark 5.1.1. There is another way to think about the integrability of a

connection. Let z1, . . . , zn be local coordinates for T at a point t. Then

dz1, . . . , dzn form a basis of the cotangent bundle Ω1
T on some neighborhood

of t, and so it admits a dual basis ∂
∂z1
, . . . , ∂

∂zn
of tangent vector fields. We can

contract ∇ with the vector field ∂
∂zi

to obtain a map from V to itself satisfying

the Leibniz rule with respect to ∂
∂zi

, which one can think of as an action of ∂
∂zi

on sections of V . In other words, we have a map

∂

∂zi
: Sections of V → Sections of V

fs 7→ ∂

∂zi
(f)s+ f

∂

∂zi
(s)

Then ∇ is integrable if and only if the ∂
∂zi

commute with each other. Again,

this makes it obvious that if T is one-dimensional then ∇ is integrable.

The most important idea that we will use later is the fact that, if T

is one-dimensional, having a connection ∇ on a vector bundle V is equivalent

to having an action of the derivative with respect to z, the local coordinate

around a point t ∈ T .
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5.1.3 Gauss-Manin connections

Let π : X → S be a smooth proper morphism between smooth algebraic

varieties over a field of characteristic zero. We define the relative deRham

cohomology H i
dR(X/S) as the higher direct images RiΩ·

X/S of the complex of

relative differentials. Ω1
X/S is the quotient of Ω1

X/A by the pullback of Ω1
S/A. Ba-

sically, these turn out to be vector bundles on S whose fibers can be identified

with the cohomology of the fibers Xb.

Notice that this construction of the relative deRham cohomology throws

away some information. This means that given a relative i-form ω ∈ Ω1
X/S ,

if one lifts ω to an absolute i-form ω̃ ∈ Ωi
X/A and differentiates the result, we

may get something nonzero even if ω was closed. If we project this lift into

Ωi
X/S ⊗ Ω1

S/A we have essentially constructed the Gauss-Manin connection.

This was defined more formally by Katz and Oda in [25].

5.2 Dwork’s construction

Most of this section is a summary of a section in [19]. Recall the Dwork family

of hypersurfaces defined by

Yλ : xn
1 + · · ·+ xn

n − nλx1 · · ·xn = 0.

Let Fλ(x1, . . . , xn) := xn
1 + · · ·+ xn

n − nλx1 · · ·xn.

The cases n = 3, 4 have been studied extensively by Dwork, and the

n = 5 family of Calabi-Yau threefolds was studied by Rodŕıguez-Villegas,

Candelas and de la Ossa [7].
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Lemma 5.2.1. Xλ is not smooth if and only if λ is an n-th root of unity.

Proof. Recall that a variety is not smooth if its Jacobian does not have full

rank. In this case, since we have only one polynomial, namely Fλ, defining

our variety, we have to find the λ’s for which all of the partial derivatives ∂
∂xi

vanish, i.e. we want to solve the following equations simultaneously:

nxn−1
i − nλx1

∧· · · xn = 0, for each i

where ∧ denotes the omission of xi.

Clearly, this means

nxn−1
i = nλx1

∧· · · xn,

and so

xn−1
i = λx1

∧· · · xn.

Multiplying all the left- and right-hand sides together, we get the equa-

tion

xn−1
1 · · ·xn−1

n = λnxn−1
1 · · ·xn−1

n ,

and this implies that λn = 1.

This argument can easily be followed in reverse, and so we are done.
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Let T = C− µn. It follows from the lemma that Xλ is non singular for

λ ∈ T . Dwork constructed modules over C isomorphic to the relative deRham

cohomology Hn−2
dR (Xλ/T ), which are quite combinatoric in nature. Recall,

from the previous section, that this is the only “interesting” cohomology space.

Let L be the free module (over C) generated by the monomials

xw1
1 · · ·xwn

n = xw,

with all the wi ≥ 0 and
∑n

i=1wi ≡ 0 mod n.

Let L
S be the submodule generated by monomials xw with all wi ≥ 1.

Let Di be the T -linear mapping defined by

Di : L → L, Di(x
w) = wix

w + xi
∂Fλ

∂xi

xw.

Define

W = L
S/LS

⋂

(

n
∑

i=1

DiL

)

.

W is a vector bundle over T equipped with an integrable connection ∇

defined by

∇(f(λ)xw) =
∂

∂λ
f(λ)xw + f(λ)

∂

∂λ
Fλx

w.

Let Wλ be the vector space associated to λ ∈ T .

Proposition 5.2.2. Wλ is generated over C by the set of monomials
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B =
{

xw1
1 · · ·xwn

n = xw|1 ≤ wi ≤ n− 1,
∑

wi ≡ 0 mod n
}

.

The basic idea for the proof is that every time one encounters a mono-

mial xw where some of the wi ≥ n, we can use the relations given by the Di

to write it in terms of monomials with all of their powers less than or equal to

n− 1. In fact, this idea will be crucial in a moment.

It is not hard to see from the proposition that Wλ has dimension

(n− 1)(n−1) − (n− 1)(n−2) + (n− 1)(n−3) − · · · ± (n− 1).

Notation. We will frequently represent a monomial xw by its exponent w.

For example, if n = 6, for λ ∈ T we have

Wλ =
〈

xw|1 ≤ wi ≤ 5,
∑

wi ≡ 0 mod 6
〉

,

and Wλ has dimension 55 − 54 + 53 − 52 + 5 = 2605.

Theorem 5.2.3 (The Comparison Theorem). Let w0 = 1
n

∑n
i=1wi. There is

a T -linear map R : L
S → Hn−1

dR (Pn −Xλ/T ) given by

R : xw 7→ (−1)w0(w0 − 1)!
xw

Fw0
λ

d(x1/xn)

x1/xn
∧ · · · ∧ d(xn−1/xn)

xn−1/xn
.

By the residue map (cf. [14]) we can also define a map
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Θ : L
S R→ Hn−1

dR (Pn −Xλ/T )
∼→ Hn−2

dR (X/T ).

And we have the following:

Theorem 5.2.4. The map Θ induces, by passage to quotients, an isomorphism

Θ : W
∼→ Hn−2

dR (Xλ/T ),

which is compatible with the connection.

Θ transforms ∇ into the Gauss-Manin connection. Hence the space W

obtained through Dwork’s construction is isomorphic to the middle (relative)

deRham cohomology.

5.3 Computing the connection matrix

We first need the following basic

Proposition 5.3.1. The action of

G = {ξ ∈ µn
n|ξ1 · · · ξn = 1}/∆

on a fiber Wλ, gives

Wλ =
⊕

χ∈char(G)

Wλ(χ),

where Wλ(χ) is an eigenspace with basis
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{w,w + 1(modn), . . . , w + n− 1(modn)},

but we exclude adding any vector m such that m+ wi ≡ 0 mod n for some i.

Proof. Recall that the group

G = {ξ ∈ µn
n|ξh = 1}/∆

acts on the points on the hypersurface. Let ξ be a primitive nth root of

unity. Notice that we can also represent elements ξm = (ξm1, . . . , ξmn) ∈ G by

m = (m1, . . . , mn) such that
∑

mi ≡ 0 mod n.

G acts on Wλ in the same fashion, that is, ξm acts on xw by

ξm · xw = (ξm1, . . . , ξmn) · xw1
1 · · ·xwn

n

= (ξm1x1)
w1 · · · (ξmnxn)wn

= ξm1w1+···mnwnxw

= χw(ξm)xw,

where χ is a generator of the character group char(G).

But we know χw is equivalent to χw′ if and only if w−w′ is a multiple

of h modulo n. That is if w − w′ ≡ α(1, . . . , 1) mod n, where 1 ≤ α ≤ n− 1.

Therefore w′
j = α+wj mod n, for j = 1, . . . , n. The number of such w′

is then
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= #{{1, 2, . . . , n} \ {w1, . . . , wn}},

since every time we add n − wi + wi = n ≡ 0 mod n and if any of the wi ≡

0 mod n then xw can be reduced in Wλ.

For example, for n = 6, take w = (1, 1, 1, 2, 2, 5). The number of entries

that coincide with one of the numbers in the list {1, 2, 3, 4, 5, 6} is 3, so the

dimension of the eigenspace related to w is 3. This is the eigenspace of Wλ for

λ ∈ T generated by

B(1,1,1,2,2,5) = {(1, 1, 1, 2, 2, 5), (3, 3, 3, 4, 4, 1), (4, 4, 4, 5, 5, 2)}.

Notice that the basis doesn’t change while changing λ, so we can think

of W as a C(λ)-module with basis B as described earlier. To understand ∇’s

effect on W, it suffices to know what it does to elements in B. From the

definition of ∇ we see that

∇(xw) =
∂

∂λ
Fλx

w = −nxw+1

where w + 1 = (w1 + 1, . . . , wn + 1).

Applying ∇ to a monomial adds one to all of its powers. If this process

gives us a monomial which is outside the basis we can actually write that
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monomial in terms of the other basis vectors because of the relations on W.

Thus, the proposition implies that ∇ preserves eigenspaces.

Recall that the goal of this section is to compute the connection ∇ as a

matrix. Because of the way in which ∇ preserves eigenspaces, the connection

matrix will have blocks on its diagonal for each set of basis vectors of an

eigenspace.

We have written an algorithm in Pari-GP (included in the Appendix)

that takes any vector of integers as an input and outputs the block of the

connection matrix that corresponds to that vector’s eigenspace generators.

The main idea of the algorithm is to use the relations on W to method-

ically reduce the powers of the monomial until it is written in terms of basis

vectors. This will be most easily described using an example.

5.3.1 Example with n = 6 and w = (1, 1, 1, 2, 2, 5)

Here is an example of the algorithm for computing the block in the matrix

representation of ∇ for n = 6 and the eigenspace corresponding to the mono-

mial (1, 1, 1, 2, 2, 5), with basis denoted earlier by B(1,1,1,2,2,5). I will denote this

block by ∇B(1,1,1,2,2,5)
.

1. Apply ∇(1, 1, 1, 2, 2, 5) = −6(2, 2, 2, 3, 3, 6). Using the relations we can

write this last monomial in terms of the monomials in B(1,1,1,2,2,5). We

can represent the process of reducing the exponents using the relations

graphically, as shown below:
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(2, 2, 2, 3, 3, 6)
0

yyrrrrrrrrrr
λ

&&
LLLLLLLLLL

(2, 2, 2, 3, 3, 0) (3, 3, 3, 4, 4, 1)

This means that (2, 2, 2, 3, 3, 6) = λ(3, 3, 3, 4, 4, 1) + 0 · (2, 2, 2, 3, 3, 0),

which is a monomial in B(1,1,1,2,2,5). Thus, in the matrix representation

of ∇B(1,1,1,2,2,5)
, there will be a −6λ as the (2, 1) entry.

2. We repeat this process for the next monomial in the basis, (3, 3, 3, 4, 4, 1).

Applying the connection we get ∇(3, 3, 3, 4, 4, 1) = −6(4, 4, 4, 5, 5, 2).

Since this monomial is already in B we write −6 in the (3, 2) position in

the block matrix.

3. Take ∇(4, 4, 4, 5, 5, 2) = −6(5, 5, 5, 6, 6, 3). We have to do the reduction

process again, represented below.
(5, 5, 5, 6, 6, 3)

0

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(5, 5, 5, 0, 6, 3) (6, 6, 6, 1, 7, 4)

−1/6

||xxx
xxx

xx
λ

""
FF

FF
FF

FF

(6, 6, 6, 1, 1, 4)

0

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(7, 7, 7, 2, 2, 5)

−1/6

||xxx
xxx

xx
λ

""
FF

FF
FFF

F

(0, 6, 6, 1, 1, 4) (1, 7, 7, 2, 2, 5)

−1/6

||xxx
xxx

xx
λ

""
FF

FF
FF

FF
(2, 8, 8, 3, 3, 6)

−2/6

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(1, 1, 7, 2, 2, 5)

−1/6

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(2, 2, 8, 3, 3, 6)

−2/6

||xxx
xxx

xx
λ

""
FF

FF
FFF

F
(3, 3, 9, 4, 4, 7)

−3/6

||xx
xx

xxx
x

λ

""
FFF

FF
FFF

(1, 1, 1, 2, 2, 5) (2, 2, 2, 3, 3, 6)

0

||xxx
xxx

xx
λ

""
FF

FF
FF

FF
(3, 3, 3, 4, 4, 7)

−1/6

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(4, 4, 4, 5, 5, 8)

−2/6

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(2, 2, 2, 3, 3, 0) (3, 3, 3, 4, 4, 1) (4, 4, 4, 5, 5, 2) (5, 5, 5, 6, 6, 3)

This is a bit harder to unravel than the other cases, but it works in

exactly the same way. The diagram shows us that
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(5, 5, 5, 6, 6, 3) = − λ2

108
(1, 1, 1, 2, 2, 5) +

17λ4

36
(3, 3, 3, 4, 4, 1)

−3λ5

2
(4, 4, 4, 5, 5, 2) + λ6(5, 5, 5, 6, 6, 3)

And solving for (5, 5, 5, 6, 6, 3) we get that

∇(4, 4, 4, 5, 5, 2) = −6(5, 5, 5, 6, 6, 3)

= − λ2

18(λ6 − 1)
(1, 1, 1, 2, 2, 5) +

17λ4

6(λ6 − 1)
(3, 3, 3, 4, 4, 1)

− 9λ5

λ6 − 1
(4, 4, 4, 5, 5, 2)

4. Combining all of these steps, we can write ∇B(1,1,1,2,2,5)
as

∇B(1,1,1,2,2,5)
=

















0 0 − λ2

18(λ6 − 1)

−6λ 0
17λ4

6(λ6 − 1)

0 −6 − 9λ5

λ6 − 1

















.

5.4 The differential equation associated to the connec-

tion

In this section, we will show, for a few examples, that the differential equation

associated to the connection ∇ is a hypergeometric differential equation. Ba-

sically, we wrote an algorithm in Pari-GP which outputs the parameters α, β

given the degree n, for each block representative. This has been checked by
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Dwork for n = 3, 4 [10] and by Candelas, de la Ossa, and Rodŕıguez-Villegas

for n = 5 [7]. We have included, in Table 1, all of the possibilities for n = 6.

A more general result was recently proved by Nicholas Katz in [21],

and Daqing Wan and Antonio Rojas-Leon in [30]. They use powerful alge-

braic geometry tools and l-adic methods. Our approach is more direct and

computational in nature.

First, we should explain how a system of first order differential equa-

tions arises from the connection. Recall from Section 5.1 that, on a vector

bundle, being equipped with a connection ∇ is equivalent to being equipped

with an action of
d

dλ
. In short, we have a first-order system defined by

d

dλ
y = Ay,

where A is actually the transpose of the matrix we found in the previous

section. In fact, each block defines its own differential system. Notice that the

system

d

dλ
y =









0 −6λ 0
0 0 −6

− λ2

18(λ6 − 1)

17λ4

6(λ6 − 1)
− 9λ5

λ6 − 1









y,

which we found earlier, is equivalent to solving the three simultaneous equa-

tions, for y = (y1, y2, y3)
T ,
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d

dλ
y1 = −6λy2,

d

dλ
y2 = −6y3,

d

dλ
y3 = − λ2

18(λ6 − 1)
y1 +

17λ4

6(λ6 − 1)
y2 −

9λ5

λ6 − 1
y3.

The vector with

y1 = (1, 1, 1, 2, 2, 5), y2 = (3, 3, 3, 4, 4, 1), y3 = (4, 4, 4, 5, 5, 2)

is a solution.

From the Cyclic Vector Lemma (see Appendix A), we know that any

first order system is equivalent to a system which comes from a differen-

tial equation. This means that if y = (y1, y2, . . . , yn)
T is a solution for the

system, we can find an equivalent system with solutions of the form z =
(

z1,
dz1
dλ

, . . . ,
dn−1z1
dλn−1

)T

. In fact, using the system, we can represent the deriva-

tives z
(k)
1 as a linear combination of y1, . . . , yn. This determines a matrix S

such that Sy = z.

The vector Sy = z satisfies a differential system of the form

d

dλ
z =

(

SAS−1 +
dS

dλ
S−1

)

z,

and this last system is the companion matrix to a higher order differential

equation. In our situation, since the basis vectors are basically already deriva-
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tives of each other, any vector in the basis, for example y1, is a cyclic vector,

and so S is easy to determine.

Our algorithm starts with the transpose of the connection matrix ∇,

A, corresponding to a basis monomial, and then computes the matrix S. In

our running example, the matrix S such that

S





y1

y2

y3



 =





y1

y′1
y′′1



 ,

is

S =





1 0 0
0 −6λ 0
0 −6 36λ



 .

The algorithm then computes

(

SAS−1 +
dS

dλ
S−1

)

. For (1, 1, 1, 2, 2, 5),

(

SAS−1 +
dS

dλ
S−1

)

=









0 1 0
0 0 1

2λ3

1 − λ6

10λ6 − 2

λ2(1 − λ6)

7λ6 + 2

λ(1 − λ6)









,

which, as we expected, is the companion matrix for an order 3 differential

equation. Solving high order differential equations is not a simple task, but

all we need are the defining parameters to know exactly which differential

equation it is (and what the holomorphic solution around 0 will be.) Therefore,

we will invoke some results that will save us the trouble of actually solving the

differential equation written above.
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First, there is an algorithm by Brieskorn which relates Gauss-Manin

connections to monodromy group generators [3]. Let A be the matrix repre-

sentation of the connection. The algorithm uses the fact that if A has a simple

pole around a given point, i.e. can be written as

A = A−1(z − z0)
−1 + A0 + A1(z − z0) + · · ·

then h0 = e2πiA−1 gives the monodromy around z0. So if we can write the

connection so that it has a pole at 0, we can get the monodromy around zero.

Notice that the monodromy group described by Beukers and Heckman in [1]

is generated by the monodromy matrices around zero, one, and infinity, and

the parameters are determined by the eigenvalues of these matrices. In fact,

we can get the parameters of the hypergeometric differential equation directly

from A−1, the residue around zero, and Ã−1, where Ã is the system at ∞. The

eigenvalues of A−1 will be the β’s and the eigenvalues of Ã−1 will be the α’s.

The challenge is to get the system to have just a simple pole at zero.

This can be done by changing the basis of solutions again slightly, as explained

in Appendix A. So, in our example, we get that the system is equivalent to

d

dλ
y =

1

λ









0 1 0
0 1 1

2λ6

1 − λ6

10λ6 − 2

1 − λ6
2 − 7λ6 + 2

1 − λ6









y.

Notice we can change variables by setting z = λ6. The change of

variables leaves us with a system
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d

dλ
y =

1

z









0 1/6 0
0 1/6 1/6
z

3(1 − z)

5z − 1

3(1 − z)

5z + 4

6(1 − z)









y.

Notice that this last system has regular singular points at 0, 1,∞ and

no other singularities, and so it is Fuchsian, as we expected.

The residue at zero is

A−1 =





0 1/6 0
0 1/6 1/6
0 −1/3 2/3



 ,

which has eigenvalues 0, 1/2, 1/3. Let h0 = e2πiA−1 .

To study the system at ∞, we change variables from z to 1/ζ . The

associated system is, as explained in Appendix A,

dỹ

dζ
= −Ã(ζ)

ζ2
ỹ.

In the example,

dỹ

dζ
=

1

ζ









0 −1/6 0
0 −1/6 −1/6
1

3(1 − ζ)

5 − ζ

3(1 − ζ)

5 + 4ζ

6(1 − ζ)









ỹ,

which has residue (at ζ = 0) of

Ã−1 =





0 −1/6 0
0 −1/6 −1/6

1/3 5/3 5/6



 ,
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and thus yields the eigenvalues 1/3, 1/6, 1/6. Let h∞ = e2πiÃ−1 .

Finally, we can look at the residue at 1 of 1
z
A, which is

D =





0 0 0
0 0 0

−1/3 −4/3 −3/2



 .

The matrix h1 = e2πiD is clearly a reflection in the sense described

by Beukers and Heckman. Therefore, the matrices h∞, h1, h0 generate a hy-

pergeometric group. This group is the monodromy group of the differential

equation

D

(

1

6
,
1

6
,
1

3
;
1

2
,
2

3

)

y = 0.

To sum it up, the block of the matrix ∇ corresponding to the eigenspace

of (1, 1, 1, 2, 2, 5) gives rise to the hypergeometric differential equation which

has

2F3

(

1

6
,
1

6
,
1

3
;
1

2
,
2

3

∣

∣

∣

∣

z

)

as its holomorphic solution around 0.

Table 1 below shows some numerical examples for n = 6. Notice that

given a vector (w1, w2, . . . , wn), if we cancel out the numbers which it has in

common with the list (0, 1, 2, . . . , n−1), then αi =
wj

n
for each wj that survives

the cancelation, and βi = k
n

for each k that survives in the second vector.
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Table 5.1: Parameters for n = 6

Vector αi βi

[1, 1, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6
,
1

6
,
1

6

] [

1

2
,
2

3
,
5

6
,
1

3

]

[5, 3, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6

] [

2

3
,
1

3

]

[4, 4, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6
,
2

3

] [

1

3
,
1

2
,
5

6

]

[5, 2, 2, 1, 1, 1]

[

1

3
,
1

6
,
1

6

] [

1

2
,
2

3

]

[4, 3, 2, 1, 1, 1]

[

1

6
,
1

6

] [

5

6

]

[3, 3, 3, 1, 1, 1]

[

1

2
,
1

2
,
1

6
,
1

6

] [

2

3
,
5

6
,
1

3

]

[4, 2, 2, 2, 1, 1]

[

1

3
,
1

3
,
1

6

] [

1

2
,
5

6

]

[3, 3, 2, 2, 1, 1]

[

1

2
,
1

3
,
1

6

] [

2

3
,
5

6

]

[3, 2, 2, 2, 2, 1]

[

1

3
,
1

3
,
1

3

] [

2

3
,
5

6

]

[5, 5, 3, 3, 1, 1]

[

1

6
,
1

2
,
5

6

] [

1

3
,
2

3

]

[5, 5, 4, 2, 1, 1]

[

1

6
,
5

6

] [

1

2

]

[5, 4, 4, 3, 1, 1]

[

1

6
,
2

3

] [

1

3

]

[5, 4, 3, 3, 2, 1]

[

1

2

]

[]

[4, 4, 4, 3, 2, 1]

[

2

3
,
2

3

] [

5

6

]
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Appendix A

Ordinary Differential Equations

Before we describe the algorithm, it would be useful to summarize some of the

key ideas from the theory of ordinary differential equations that we will use.

These ideas come mainly from [2], [6] and [16], and most of the proofs will be

omitted.

Consider the nth order equation

n
∑

m=0

an−m(z)y(m) = 0, (a0(z) ≡ 1) (A.1)

where the ak(z) are single-valued and analytic in a punctured neighborhood

of a point z0. Recall that if any of the ak have a singularity at z0, then z0 is

called a singular point for (A.1), otherwise it is called an analytic point. z0 is

a regular singular point if

ak(z) = (z − z0)
−kbk(z), (k = 1, . . . , n),

where bk is analytic at z0.
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A system of n first order equations over C(z) has the form

y′ = Ay (A.2)

in the unknown column vector y = (y1, . . . , yn)
T and where A is an n × n-

matrix with entries in C(z). The entries are assumed to be single-valued and

analytic at a neighborhood of a point z0, and will at most have a pole at that

point.

If A has a singularity at z0, then z0 is a singular point for the system

(A.2). z0 is a regular singular point if

A(z) = (z − z0)
−1Ã(z)

where Ã is analytic for a neighborhood of z0 (including z0), and Ã(z0) 6= 0.

A differential system or a differential equation for which all singularities

are regular is called Fuchsian.

Notice that if we replace y by Sy in (A.2), where S ∈ GL(n,C(z)), we

obtain a new system for the new y,

y′ = (SAS−1 + S ′S−1)y,

where S ′ denotes the matrix of derivatives of each entry in S. Two n × n

systems with matrices A,B are called equivalent over C(z) is there exists an

S such that B = SAS−1 + S ′S−1.
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It is not difficult to see that a differential equation like (A.1) can be

rewritten as a system by setting y1 = y, y2 = y′, . . . , yn = y(n−1). Notice that

this means y′1 = y2, y
′
2 = y3, . . . , y

′
n−1 = yn, and y′n is given by the differential

equation. So the differential system is determined by a companion matrix, as

follows:

d

dz











y1

y2
...
yn











=











0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−an −an−1 −an−2 · · · −a1





















y1

y2
...
yn











. (A.3)

The converse is, surprisingly, also true.

Theorem A.0.1 (Cyclic vector Lemma). Any system of linear first order

differential equations is equivalent to a system which comes from a differential

equation.

Basically, this theorem says that in the space of solutions of a system

(A.2) there is a cyclic vector, that is, a vector such that v, Av, A2v, . . . , An−1v

is a basis. This means that the matrix S mentioned earlier would be a change

of basis matrix.

We now have a way of changing from a differential equation to a system

and viceversa, but a regular singular point of (A.1), z0, may not be a regular

singular point of the system associated with it. This happens only when the

ak have at most simple poles at z0.

However, there is an equivalent first-order system with the property
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that if z0 is a regular singular point of (A.1) then z0 is a regular singular point

of the system.

Suppose (A.1) has a regular singularity at z0, and let φ be a solution

of (A.1). Define φ̂ to be the vector with components φ1, . . . , φn by

φk = (z − z0)
k−1φ(k−1), (k = 1, . . . , n).

Then clearly

(z − z0)φ
′
k = (z − z0)((z − z0)

k−1φ(k−1))′

= (z − z0)((k − 1)(z − z0)
k−2φ(k−1) + (z − z0)

k−1φ(k))

= (k − 1)(z − z0)
k−1φ(k−1) + (z − z0)

kφ(k)

= (k − 1)φk + φk+1 (k = 1 . . . , n− 1)

And, finally,

(z − z0)φ
′
n = (n− 1)φn −

n
∑

m=1

bn−m+1(z)φm.

Therefore φ̂ is a solution of the linear system

y′ = Â(z)y (A.4)

where Â has the structure
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Â(z) = (z − z0)
−1























0 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 2 1 · · · 0
0 0 0 3 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
−bn −bn−1 −bn−2 −bn−3 · · · (n− 1) − b1























This system clearly has a regular singularity at z0.

We need to say something about the solutions. A system as in (A.2)

with a regular singularity at z0 may be written as

y′ =

(

(z − z0)
−1R +

∞
∑

m=0

(z − z0)
mAm

)

y (A.5)

where R 6= 0, Am are constant matrices, and the power series converges for a

neighborhood of z0.

Theorem A.0.2 ([6]). In the system (A.5), if R has characteristic roots which

do not differ by positive integers, then (A.5) has a fundamental matrix Φ of

the form

Φ = P (z − z0)
R (0 < |z − z0| < c, c > 0)

where P is a power series

P (z) =
∞
∑

m=0

(z − z0)
mPm P0 = I.
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In order to study the behavior of a system (A.2) or an nth order equa-

tion (A.1) around an isolated singularity at z = ∞, we make the subtitution

z = 1
ζ
, and obtain a new system or equation with solutions which are functions

of ζ . The point z = ∞ is a regular singularity if ζ = 0 is a regular singularity

of the induced system.

For example, in the case of the system, if z = 1
ζ
, ỹ(ζ) = y(1

ζ
), Ã(ζ) =

A(1
ζ
), then the induced system corresponding to (A.2) is

dỹ

dζ
= −Ã(ζ)

ζ2
ỹ.
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Appendix B

GP Scripts

B.1 Computing the connection matrix

This is a function that counts the number of coordinates with entries bigger

than or equal to d.

count(a)=

{

local(t);

t=0;

for(k=1,length(a), if(a[k]>=length(a),t=t+1));

t

}

This function (from [29]) can tell if a given element is in a vector, and

gives the “position” of the element.

memb(g,v)=for(k=1,length(v),if(g==v[k],return(k)));0

The following function takes a vector a and an integer m (its coefficient)

and subtracts one to all the entries and adds d to one of them until it gets to
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0, a vector in the basis, or the original vector. It saves the leftovers in a vector

v. It is one of the two possible reductions coming from the relations on W.

red1(a,m)=

{

local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

t=vector(length(a));

d=length(a);

l=1;

j=1;

s=vector(length(a));

v=vector(0);

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[k]<t[j], j=k));

for(k=1,length(t),s[k]=t[k]-1);

for(k=1,length(t), if(k==j,t[k]=s[k]+d, t[k]=s[k]));

l=h*s[j]/(d*n);

v=concat(v,[[l,s]]);

h=h*1/n));

[h,t]

}
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red1leftovers(a,m)=

{ local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

t=vector(length(a));

d=length(a);

l=1;

j=1;

s=vector(length(a));

v=vector(0);

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[k]<t[j], j=k));

for(k=1,length(t),s[k]=t[k]-1);

for(k=1,length(t), if(k==j,t[k]=s[k]+d, t[k]=s[k]));

l=h*s[j]/(d*n);

v=concat(v,[[l,s]]);

h=h*1/n));

v

}

Here is the other possible reduction. This one subtracts 5 from one

spot and adds one to everything afterwards. Saves leftovers in vector v.
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red2(a,m)=

{

local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

d=length(a);

l=1;

t=vector(length(a));

v=vector(0);

j=1;

s=vector(length(a));

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[j]<t[k], j=k));

for(k=1,length(t),if(k==j,s[k]=t[k]-d,s[k]=t[k]));

for(k=1,length(t), t[k]=s[k]+1);

l=h*(-s[j])/d;

v=concat(v,[[l,s]]);

h=h*n));

[h,t]

}

red2leftovers(a,m)=

{
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local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

d=length(a);

l=1;

t=vector(length(a));

v=vector(0);

j=1;

s=vector(length(a));

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[j]<t[k], j=k));

for(k=1,length(t),if(k==j,s[k]=t[k]-d,s[k]=t[k]));

for(k=1,length(t), t[k]=s[k]+1);

l=h*(-s[j])/d;

v=concat(v,[[l,s]]);

h=h*n));

v

}

Now we combine these two reductions and loop until we get the right

kind of vector (a monomial in W). The input of this function is a vector of

any length and the output will be the “linear combination” of that vector in

terms of the basis vectors (vectors with entries between 1 and the length).
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reduction(a)=

{

local(d,b,c,u,v,w,uu, bb,j, t, s, g,r);

u=vector(0);

v=vector(0);

d=length(a);

j=1;

if(count(a)==d, u=[red1(a,1)]; v=red1leftovers(a,1),

u=[red2(a,1)];v=red2leftovers(a,1));

for(k=1, 10^d,

if(k<=length(v),

if(count(v[k][2])==0,

if(v[k][1]==0, ,b=0;

for(i=1,length(u),

if(v[k][2]==u[i][2],

u[i][1]=u[i][1]+v[k][1],

b=b+1));

if(b==length(u),u=concat(u,[v[k]]))),

if(v[k][1]==0, ,

uu=red2(v[k][2],v[k][1]);

v=concat(v,red2leftovers(v[k][2],v[k][1]));

b=0;

for(i=1,length(u),

if(uu[2]==u[i][2],
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u[i][1]=u[i][1]+uu[1],

b=b+1));

if(b==length(u),u=concat(u,[uu])))),

break));

b=0;

for(k=1, length(u),

if(u[k][2]==a,

w=vector(length(u)-1);

for(j=1,k-1,w[j]=[u[j][1]/(1-u[k][1]),u[j][2]]);

for(j=k,length(u)-1,

w[j]=[u[j+1][1]/(1-u[k][1]),u[j+1][2]]),

b=b+1));

if(b==length(u), r=u, r=w);

r

}

The step is to write the connection matrix from this, that is, write a

function that gives the derivatives of each vector in terms of the basis. In fact,

there is an easy way to write the derivative of any vector using the reduction

function.

derivative(a)=

{

local(d,t,w);

d=length(a);
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t=vector(d);

for(k=1,d,t[k]=a[k]+1);

if(count(t)==0,[[-d,t]],

w=reduction(t);

for(k=1,length(w),

w[k][1]=w[k][1]*(-d)); w)

}

Given a basis vector, we can find all the other basis vectors that will

be a basis for the same eigenspace.

orbit(a)=

{ local(l,m, c,ss);

d=length(a);

l=0;

c=0;

ss=1;

for(k=1,d, for(t=1,d, if(k==d-a[t], l=l+1;break)));

m=d-l;

b=vector(m); for(k=1,m, b[k]=vector(d));

b[1]=a;

for(s=1,d-1,for(t=1,d, if(s==d-a[t], , c=c+1));

if(c==d,ss=ss+1;for(t=1,d, b[ss][t]=(a[t]+s)%d));c=0);

b;

}
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The following the matrix representation of the block of the Gauss-

Manin connection associated to a particular basis vector (i.e., it gives a block

of the whole matrix, which is related to the eigenspace related to this basis

vector).

connectionmatrix(a)=

{ local(v,w,M);

v=orbit(a);

M=matrix(length(v),length(v));

for(j=1,length(v),

w=derivative(v[j]);

for(k=1,length(w),M[memb(w[k][2],v),j]=w[k][1]));

M=mattranspose(M);

M

}

B.2 The algorithm to find the differential equation

The following finds the derivative with respect to λ of a vector with a coeffi-

cient. Basically, it’s the product rule.

derivn(a)=

{ local(b,z, ww, vv);

b=deriv(a[1]);

z=derivative(a[2]);
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ww=[[b,a[2]]];

vv=vector(length(z));

for(k=1,length(z), vv[k]=[a[1]*z[k][1],z[k][2]]);

for(k=1,length(vv),

if(vv[k][2]==a[2], ww[1][1]=ww[1][1]+vv[k][1],

ww=concat(ww,[vv[k]])));

ww

}

We would like to have the derivative of a vector which is a linear com-

bination of these monomials. This should use ideas like the function above.

The first function finds the derivative of a vector (with a coefficient) in a pre-

scribed basis determined by the orbit of b. The second does the same, but

only outputs the vector of coordinates, without writing the basis down.

derivv(a,b)=

{ local(v,w,z);

w=orbit(b);

v=vector(length(w));

for(i=1,length(w), v[i]=[0,w[i]]);

for(k=1,length(a),

z=derivn(a[k]);

for(j=1,length(z),

v[memb(z[j][2],w)][1]=v[memb(z[j][2],w)][1]+z[j][1]

);
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);

v

}

derivv2(a,b)=

{ local(v,w,z);

w=orbit(b);

v=vector(length(w));

for(k=1,length(a),

z=derivn(a[k]);

for(j=1,length(z),

v[memb(z[j][2],w)]=v[memb(z[j][2],w)]+z[j][1]

);

);

v

}

We want to change basis, and we need a matrix that changes from our

basis obtained by using “connection” to a basis obtained from derivatives.

cob(a)=

{

local(z, vv, uu, w);

uu=orbit(a);

r=vector(length(uu),k,if(k==1,1));
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vv=vector(length(uu), k, [r[k],uu[k]]);

z=[r];

for(k=1,length(uu)-1,

w=derivv2(vv,a);

vv=derivv(vv,a);

z=concat(z,[w])

);

S=Mat(z~);

S

}

Sometimes the vectors in the basis are not cyclic. By the cyclic vector

theorem we know that there is one in this space, though, so we just create

a random vector in this basis and hope for the best. The following function

finds the change of basis for a random vector.

cobrandom(a,bd=10)=

{

local(z, vv, w, r, S, uu, rand);

uu=orbit(a);

r=vector(length(uu),k,random(bd)-bd);

vv=vector(length(uu), k, [r[k],uu[k]]);

z=[r];

for(k=1,length(uu)-1,

w=derivv2(vv,a);
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vv=derivv(vv,a);

z=concat(z,[w])

);

S=Mat(z~);

S

}

This function takes two input vectors, one is a basis and the other a

vector indicating a linear combination of elements in this basis.

cobv(uu,r)=

{

local(z, vv, w);

vv=vector(length(uu), k, [r[k],uu[k]]);

z=[r];

for(k=1,length(uu)-1,

w=derivv2(vv,a);

vv=derivv(vv,a);

z=concat(z,[w])

);

S=Mat(z~);

S

}

The following computes what a change of basis does to the system

of differential equations, where we change from a basis found by using the
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connection function to a basis of all the derivatives of a specific vector.

cobsystem(A, S)=

{

local(dS, C);

dS=matrix(length(A), length(A), X, Y, deriv(S[X,Y]));

C=S*A*1/S+dS*1/S;

C

}

Now, as seen in Appendix A, we can change this system into an equiva-

lent one with regular singularities at 0. Note that we need a matrix that gives

a simple system like the ones given by the cobsystem function. That is, we

need a companion matrix to make any of this work.

regform(A)=

{

local(m,Areg);

m=length(A);

Areg=A;

for(k=1,m, Areg[m,k]=Areg[m,k]*n^(m-k+1));

for(k=1,m,

for(i=1,m, if (i==k, Areg[k,i]=Areg[k,i]+k-1)));

Areg

}
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We need to change variables to have it in terms of x instead of nd.

varchange(A,d)=

{

for(k=1,length(A),

for(i=1,length(A),

A[k,i]=substpol(A[k,i],n^d,x)/d));

A

}

Finally we can compute the residue of the matrix at x = 0.

residuezero(A)=

{

for(k=1,length(A),

for(i=1,length(A),

A[k,i]=subst(A[k,i],x,0)));

A

}

We want a function that finds the rational roots of a polynomial with

rational coefficients (because all of our polynomials are of that form and only

have rational roots). We are using the rational roots theorem.

ratlroots(f)=
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{

local(p,q,z,vv,a,b,c,n,r,j,i);

c=poldegree(f);

vv=vector(c+1);

r=vector(0);

z=vector(0);

for(k=1,c+1, vv[k]=polcoeff(f,k-1));

n=denominator(vv);

f=f*n;

a=substpol(f,x,0);

if(a==0, r=concat(r,0); f=f/x; a=substpol(f,x,0));

b=pollead(f);

p=concat(divisors(a),-divisors(a));

q=concat(divisors(b),-divisors(b));

for(k=1,length(p),

for(i=1,length(q),

if(memb(p[k]/q[i],z)==0, z=concat(z,p[k]/q[i]))));

for(i=1,length(z),

if(substpol(f,x,z[i])==0, r=concat(r,z[i]);

f=f/(x-z[i]);i=1));

r

}

We now want to combine all these steps to find the hypergeometric

parameters given a vector (or monomial) in W.
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hypergcoeff(a)=

{

local(A, B, S, Azero, Ainf,f,g, vv, uu, d, m,r,t);

d=length(a);

A=connectionmatrix(a);

S=cob(a);

A=cobsystem(A,S);

A=regform(A);

A=varchange(A,d);

Azero=residuezero(A);

f=charpoly(Azero);

B=matrix(length(A),length(A));

Ainf=matrix(length(A),length(A));

for(k=1,length(A),

for(i=1,length(A),

B[k,i]=-substpol(A[k,i],x,1/y)));

for(k=1,length(A),

for(i=1,length(A),

Ainf[k,i]=subst(B[k,i],y,0)));

g=charpoly(Ainf);

r=ratlroots(f);

m=vector(length(r));

for(k=1,length(r), m[k]=1-r[k]);

\\ print("alphas ",ratlroots(g)," betas ",m)
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t=[ratlroots(g),m];

t

}

We want to check these coefficients somewhat systematically, so we

have to find a good way to generate basis vectors (or representatives up to

permutations of the variables).

This function (also from [29]) finds all the partitions of a number m.

part(m)=

{

local(k,j,sm,sj,s, S = []);

k = j = 1;

sm = sj = vector(m+1);

while(k,

s = sm[k]+j;

if (s > m,

until(j <= m, j = sj[k]+1; k--);

next);

k++; sm[k]=s; sj[k]=j;

if (s == m,

S = concat(S, [vector(k-1,l, sj[k-l+1])])));
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S

}

This one uses the previous one to find the partitions of a number m of

length c and into numbers that are less than c.

part2(m,c)=

{

local(v,w,t);

v=part(m);

w=vector(0);

for(k=1,length(v),

if(length(v[k])==c,

t=count(v[k]);

if(t==0,

w=concat(w,[v[k]]))));

w

}

Now we can put this together to get representatives of the basis. We

don’t have strict representatives, but at least we eliminate the cases in which

none of the entries are equal to one, because those obviously are in an eigenspace

with a vector with entries equal to one.
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basisreps(m)=

{

local(v,w);

v=vector(0);

for(k=1,ceil((m-1)/2),

w=part2(m*k,m);

for(j=1, length(w),

if(memb(1,w[j])==0, ,v=concat(v,[w[j]]))));

v

}

We now want to be able to put out a table with the basis vectors and

the hypergeometric parameters associated to them given a number d. It should

turn out to be the list of numbers in the vector that remain after canceling

out with the list of numbers between 0 and d.

hypergtable(d)=

{

local(v,u);

v=basisreps(d);

for(k=1,length(v), u=hypergcoeff(v[k]);

print(v[k]," ", "alphas ", u[1],

" betas ", u[2]))

}
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