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Abstract

This paper is concerned with the construction of prior probabil-
ity measures for parametric families of densities where the framework
is such that only beliefs or knowledge about a single observable data
point is required. We pay particular attention to the parameter which
minimizes a measure of divergence to the distribution providing the
data. The prior distribution reflects this attention and we discuss the
application of the Bayes rule from this perspective. Our framework is
fundamentally nonparametric and we are able to interpret prior distri-
butions on the parameter space using ideas of matching loss functions,
one of which is coming from the data model and the other from the
prior.

Keywords: Conjugate prior; Dirichlet process; Kullback–Leibler di-
vergence; Loss function; Model choice; M-open; Prior distribution;
Self–information loss.

1. Introduction. A key component of the statistical approach to the
modeling of independent and identically distributed or exchangeable
outcomes is the choice of a parametric family of densities, denoted by
f(x|θ), with θ ∈ Θ and Θ the parameter space. For the Bayesian, the
additional task is to construct a prior distribution π(θ) on Θ. This task
has been a well debated subject in the literature (see the Appendix for
a systematic review) and in particular how one should proceed when
information or knowledge about θ is scant or non–existent. Priors un-
der such a scenario have been termed non–informative, vague, objec-
tive, reference, default. This issue, according to Bernardo and Smith
(1994), “is far more complex than the apparent intuitive immediacy
of these words and phrases would suggest”. According to Hartigan
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(1998), “The selection and justification of these priors is an important
part of the Bayesian approach”.

The subjective Bayesian approach insists that π is a proper density
and exploits information about θ to construct it. There are a number
of considerations here. The obvious one is that there may be no qual-
itative information to use. Another, and more poignant one is that if,
as is typical, f(x|θ) is selected as an approximation or for pragmatic
reasons, then assigning a subjective probability to θ must be problem-
atic. For what is θ? We are asked to express uncertainty about θ using
the language of probability, but before we can do this we need to define
θ. We need to know what we are expressing uncertainty about. These
problems have been widely reported in the literature; see, for example,
Goldstein (1981).

To elaborate here. If a subjective prior has been assigned then
presumably quantities such as P(θ ∈ A) for suitable A ⊆ Θ must
mean something. But this can only be the case if θ means something.
We would need then to complete the statement “θ is the parameter
value which . . .”. The only evident and worthwhile identification of θ
here is the parameter value which minimizes a distance, or divergence,
(such as the Kullback–Leibler divergence) to the true sampling density
function. Therefore, in the case of the Kullback–Leibler divergence we
would be interested in the θ which minimizes

l(θ) = −
∫

log f(x|θ) dF0(x)

where we use F0 to denote the distribution of the observations. If F0

is associated with a f(x|θ0) for some true θ0 ∈ Θ then this θ0 becomes
the true parameter value. Outside of this scenario we believe it is
essential to acknowledge what interest should focus on, rather than
express beliefs via probabilities about non–existent “true” parameter
values. In this context, we believe a prior should be targeted at θ∗

which is the parameter value minimizing l(θ). Hence P(θ∗ ∈ A) means
something as this θ∗ is a real parameter value.

The likelihood approach, and in particular the maximum likeli-
hood estimator, implicitly acknowledge the appropriateness of thinking
about θ∗. Using the data (X1, . . . , Xn) and the empirical distribution
function to substitute for F0, (which is something sensible to do), we
have the estimated l(θ) as the simple empirical average

ln(θ) = −n−1
n∑
i=1

log f(Xi|θ).

Minimizing this yields the maximum likelihood estimator θ̂.
In both Bayes and classical approaches, explicitly acknowledging

that it is θ∗ which is of interest, means that the subsequent statis-
tics: confidence intervals, testing, asymptotics, consistency (in the case
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of classical methods) and the application of Bayes theorem itself for
Bayesian analysis, now lack justification.

For Bayesian inference assigning a subjective prior to θ with interest
in θ∗ is inconsistent with an application of Bayes theorem and there
seems little theoretical room for manoeuvre here. These concerns can
then motivate an objective prior, not solely when prior information is
scant. And for this there seems no reason to insist on a proper prior
distribution. However, an obvious choice of objective prior based on
ignorance is problematic. According to Bernardo and Smith (1994),
“There is no objective prior that represents ignorance.”

To deal with the problem of assigning a prior π(θ), which reflects
beliefs about θ∗ while wishing to use something equivalent to a Bayes
theorem, our approach is not the traditional subjective idea in that
we do not construct π(θ) based on the expression of beliefs directly.
Rather, we require the Bayesian to express beliefs about the distribu-
tion of the data directly, and this first guess will be denoted by M0.
We also require the specification of a parameter, c > 0, which reflects
the degree of belief in the choice of M0. These, i.e. (c,M0), are neces-
sary specifications in most Bayesian nonparametric prior models. With
these we then provide a means, using loss functions, by which to build
a prior distribution for π(θ).

We note here that a selection of (c,M0) already defines a partic-
ular Bayesian (nonparametric) prior. It is the Dirichlet process prior
(Ferguson, 1973). Details of this prior will be outlined in Section 1.2.
The use of this nonparametric prior in the present paper is essentially
the same as used in Gutiérrez-Peña and Walker (2005), and this will
also be described in Section 1.2.

We see our approach as intermediate between the traditional ideas
for subjective and objective priors. Indeed, the subjective choice of
(c,M0) can be made with no reference to any parametric model f(·|θ).
On the other hand, once (c,M0) have been specified, and then the
model f(·|θ) selected, we provide an objective criterion for the choice
of π(θ). As far as we are aware, this is a new idea.

We will discuss our idea for prior construction using exchange-
able distributed observations, say (x1, x2, . . .). Then, according to de
Finetti (1937), and later also studied by Hewitt and Savage (1951),
there exists a probability measure on the space of relevant distribution
functions such that the sequence can be generated by first generating
a random distribution function from the probability measure and then
taking the (xi) to be independent and identically distributed from this
randomly generated distribution. That is, the density function for an
n sequence is given by

m(x1, . . . , xn) =

∫ n∏
i=1

f(xi)π(df),
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where π is the probability measure generating the random distribution
functions, with f(x) denoting the corresponding density function.

This proceeds by observing part of the sequence, say (x1, . . . , xn),
and use this to learn about the density function which renders the se-
quence independent and identically distributed. The vehicle for doing
this is the posterior distribution π(df |x1, . . . , xn) and one would an-
ticipate, that as n gets large, the sequence of posterior distributions
accumulate about this density.

However, for this to happen, the density generating the sequence
must be in the support of the prior. By this we mean that the densities
that π can generate are going to be able to land arbitrarily close to the
density generating the sequence, with respect to some suitable distance,
which for the sake of concreteness and for reasons which will become
clear later on, we shall take to be the Kullback–Leibler divergence.

Traditional approaches to the construction of π(df) relied heavily
on parametric models. So it is easy to generate random densities by
generating a random parameter θ ∈ Θ and then have f(x|θ) as the
random density. Hence, in this way, a π(df) has been constructed, and
with this we can represent the prior by the pair {f(x|θ), π(θ)}. It is
important to note that the prior is not just π(θ); it is the pair. Probably
the more important part of the prior is f(x|θ), since it determines the
support of the prior π(df). For some reason, which is not so clear,
the prior has become known to be exclusively as π(θ) in the Bayesian
literature.

This is not our main point, but it does mean that the literature on
Bayesian prior construction has narrowly focused on the π(θ). This has
led to issues between interpretation of θ and whether an objective or
subjective construction is needed. See recent discussions of Goldstein
(2006) and Berger (2006).

We will adopt the common stance with Bayesian analysis which is
that f(x|θ) has been selected for pragmatic reasons (e.g. Box, 1980).
In particular, there is no θ conditional on which the (xi) are inde-
pendent and identically distributed with density f(x|θ). We are in
what Bernardo and Smith (1994) refer to as the M–open view. It is
then true to say that the usual update provided by Bayes’ theorem is
not valid and this is what led Key et al. (1999) to propose a cross–
validation updating rule. Many other concerns along these lines have
also been detailed in the literature.

Additionally, within this M–open view, it is difficult to see how a
π(θ) can really be developed. What is being targeted, what is uncer-
tainty being expressed about? This sentiment is central to de Finetti’s
subjectivist approach to inference. The idea of separating out a part of
the distribution for which the complementary part is unknown but tri-
als are independent given it, he emphasizes cannot be ‘stripped of its,
so to speak, “metaphysical” character’. With respect to statements of
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independence conditional on some unknown parameter he states, ‘From
our point of view these statements are devoid of sense, and no one has
given them a justification which seems satisfactory, even in relation to
a different point of view.’ (de Finetti, 1964, chapter V, p141). Central
to his approach is the supremacy of observables over unobserved pa-
rameters; these parameters being mere constructs with no operational
meaning in his formulation except that which can be deduced via the
representation theorem of exchangeability on sequences of trials.

Taking this paradigm as the cue, it is our aim to undertake Bayesian
inference by only expressing beliefs about the observables. We aim to
develop the theory with only a M0(dx) and a c > 0 being specified.
Here the M0(dx) is a prior guess as to the distribution generating each
xi; and c is a measure of the degree of belief in the choice of M0(dx).

The essence of our ideas is how to map

[(c,M0), f(·|θ)]⇒ πΘ(θ).

We will show that the procedure we develop is coherent and coincides
with an application of Bayes theorem; so that once (X1, . . . , Xn) has
been observed, and we have updated (c,M0) to (cn,Mn) (using the
nonparametric model (see Section 1.2)) then

[(cn,Mn), f(·|θ)]⇒ πΘ(θ|X1, . . . , Xn)

where

πΘ(θ|X1, . . . , Xn) ∝ πΘ(θ)×
n∏
i=1

f(Xi|θ).

In the next sub–section 1.1 we look at a key component of our approach:
the loss function, and in sub–section 1.2 we review the Dirichlet process
and how we use in the current context.

1.1 Loss functions. Loss functions are a key to the paper. In the
most broad of definitions a loss function denotes the loss (incurred to
an individual) when outcome u arises. The loss is measured as l(u).
Or there could be two outcomes u and v for which we write the loss as
l(u, v). These two become distinct situations when one of the outcomes
arises out of the control of the individual and the other is an action
determined by the individual. But this is not essential and the loss is
the loss however the outcomes arise.

A common situation is when one of the outcomes is selected as an
action and the other is an as yet unknown outcome. The choice of
action by the individual can then be made, apparently rationally, by
selecting a belief distribution for the unknown outcome, let this be v
and the belief distribution be Q(v), and the appropriate loss function
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is given by the expected loss:

l(u) =

∫
l(u, v) dQ(v).

See for example Hirshleifer and Riley (1992).
Loss functions are therefore a means by which to connect outcomes

and choices, or just outcomes. We are interested in connecting θ with
a number of outcomes and/or choices. These are with X, F0 and πΘ.
For ease of notation we will refer to πΘ as simply π.

Our loss function connecting θ and F0 is standard; it is based on
the logarithmic score function which is fundamentally linked to the
Kullback–Leibler divergence (Kullback and Leibler, 1951):

l(θ, F0) = −
∫

log f(x|θ) dF0(x).

Since F0 is unknown, the rational approach is to construct a proba-
bility distribution for it and to replace F0 by the expectation of this
probability distribution. For us this would be M0 and therefore the
loss function for θ would be

l(θ) = −
∫

log f(x|θ) dM0(x).

This can also be seen as an expected loss for the loss function

l(θ,X) = − log f(X|θ).

For if X is observed then one can evaluate the loss for θ using this loss
function as we discussed earlier. Based on a sample of size n the cu-
mulative loss would be ln(θ) and minimizing this yields the maximum
likelihood estimator.

Looking at this loss function the other way round also is also per-
fectly natural. For if we know θ then the x minimizing − log f(x|θ) is
the x maximizing f(x|θ) and so x̂ is the mode of f(·|θ).

Hence we have dealt with the loss functions connecting θ with M0

and X. Finally we look at loss functions connecting θ and π. We must
note that however we select π the ultimate aim is to use the posterior
as a representation of the information we have in the form of a belief
probability on Θ. Thus implicitly we are thinking about θ∗. Hence to
us π(θ) is a belief distribution about this particular value of θ. Thus
l(θ, π) should be equivalent in structure to the loss for l(θ,X) but with
the roles switched. Hence,

l(θ, π) = − log π(θ).

Here now π plays the role of θ, and θ the role of X, in l(θ,X) =
− log f(X|θ). This can be seen more clearly if we index π with a
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parameter φ and write

l(θ, π) = l(φ, θ) = − log π(θ|φ).

But as we have mentioned earlier, loss functions connecting outcomes
make sense whichever one regards as the outcome of choice or of un-
certainty.

In summary, the building blocks for loss functions considered in
this paper are derived from the two following standard or benchmark
loss functions:

1. If x is modeled via f(x|θ) and x is a possible outcome, then the
logarithmic loss function connecting θ and x is given by

l(θ, x) = − log f(x|θ).

If M0 represents the current belief about the distribution of x,
then the expected loss is

l(θ) = −
∫

log f(x|θ)M0(dx).

Effectively then, this loss is measuring the Kullback–Leibler di-
vergence between M0(·) and f(·; θ).

2. If π(θ) expresses beliefs about a θ, then the self–information loss
function connecting θ and π is given by

l(θ, π) = − log π(θ).

See, for example, Merhav (1998) for details about this loss func-
tion and use.

Whenever we write a loss function it must be noted that these
are defined, at least for us, up to scalar and additive constants; so in
reality, even though we write, for example, l(θ, π) = − log π(θ), for
some constants α and β, not depending on θ, we could have l(θ, π) =
a− β log π(θ).

We obtain loss functions for the pieces of information available. A
loss function for the information that f(·|θ) has been chosen to act as
the model will be referred to as lM (θ), and developed in Section 2.1,
whereas a loss function for the information provided by (c,M0) shall
be referred to as lN (θ) and developed in Section 2.2.

For more on loss functions in statistical decision theory, see Berger
(1993).

1.2 Bayesian nonparametric prior. Another key component of our
idea is the use of a nonparametric prior which is acting as the “true”
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model for the observations. This is the foundation for the work in
Gutiérrez–Peña and Walker (2005). The point is that one can make
low dimensional decisions or inference within a large or nonparametric
framework. The nonparametric model used was the Dirichlet process
(Ferguson, 1973) and we briefly describe it here.

The prior Dirichlet process is characterized by parameters (c,M0)
and generates random distribution functions F such that E(F ) = M0

and

Var(F (A)) =
M0(A)M0(Ac)

c+ 1
,

where Ac is the complementary set of A. The posterior given (xi)
n
i=1

is also a Dirichlet process with updated parameters (c+n,Mn), where

Mn(dx) =
cM0(dx) + nPn(dx)

c+ n
,

and Pn is the empirical distribution of the observations. The sequence
of posterior distributions is always consistent in the sense that for any
suitable set A it is that E[F (A)|X1, . . . , Xn]→ F0(A) a.s. and

Var[F (A)|X1, . . . , Xn]→ 0 a.s.

Hence, the Dirichlet process prior can be thought of as a “true” model.
An issue with the Dirichlet process is that it only generates discrete

distribution functions. Hence, if the overall target is density estima-
tion, for example, then this is a problem. However, if the overall aim is
one of decision making via the use of utility or loss functions, then this
discreteness is irrelevant because we take expectations of quantities
with respect to Mn.

Suppose we wish to select an action a ∈ A, the best action being
known if the distribution generating the (xi) is known and a loss func-
tion is in place measuring the loss in taking action a when F is the
true distribution function. Call this loss function l(a, F ). With beliefs
about F being represented by a posterior distribution Πn(dF ), then
the best action is to select the action a which minimizes

l(a) =

∫
l(a, F ) Πn(dF ).

Thus, in particular, if l(a, F ) =
∫
l(a, x) dF (x), where l(a, x) is a loss

function directly connecting the action with observable x, and we use
the Dirichlet process model, then

l(a) =

∫
l(a, x) dMn(x).

The basis of the work in Gutiérrez–Peña and Walker (2005) is that
action a is a statistical decision, such as parameter estimation or model
selection.
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In fact, the point of the paper by Gutiérrez–Peña and Walker (2005)
was to discuss the incoherence of Bayesian model selection as it cur-
rently stands. The incoherence is due, ironically, to the lack of a prior.
There is no prior for Bayesian model selection problems, i.e. there is
no single assessment of prior uncertainty. Gutiérrez–Peña and Walker
(2005) resolve this issue by using a Dirichlet process prior as the prior
and then deal with issues such as Bayesian model selection using de-
cision theory with respect to the posterior Dirichlet process. In this
way, and undertaken in this framework, the incoherence disappears.
For example, if k indexes a number of possible models with θk de-
noting the parameter for model fk(·|θk), then the best model can be
selected based on the loss function

l(k) = min
θk∈Θk

{
−
∫

log fk(x|θk)Mn(dx) + γ(pk)

}
where pk is the dimension of model k and γ(p) a function which pe-
nalizes high dimensional models. The idea is that the best model is
the one with a parameter which takes the family of densities closest
to F0 with respect to the Kullback–Leibler divergence. And in the
traditional approach, F0 is replaced by the current best guess which is
clearly Mn.

Here we discuss more explicitly the role of c. We are not using
the Dirichlet process to model the data as a final goal; it is being
used to make decisions and as such its use appears solely in the form∫
l(a, x) dMn(x). The role of c is ambiguous in general, but its use in

making decisions is less so. For c = 0, the most controversial choice
simply yields Mn as the empirical distribution function Pn. This is
hardly any cause for concern. This is natural as we can use c literally
as a prior sample size by recalling that Mn is a weighted mixture of
the empirical and M0, with the weighting determined by c. Hence, we
see no conceptual or practical problems with the choice of c. See also
Walker and Mallick (1997).

The paper is laid out as follows: In Section 2 we detail our idea for prior
construction based on the notion of matching loss functions. Section
3, 4 and 5 then illustrate the approach for a range of models including
regression and hierarchical. Section 6 concludes with a discussion. In
the Appendix we provide a brief review of many popular and current
approaches to the construction of prior distributions.

2 Priors from loss matching. The idea for matching of loss func-
tions is quite straightforward. Since π is to encapsulate all the infor-
mation from [(c,M0), fΘ], then the requirement must be that, up to
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additive and scalar constants, the loss functions must match, i.e.

l(θ, π) = lN (θ) + lM (θ) = l(θ, (c,M0)|fΘ) + l(θ, fΘ). (1)

We see this as a highly appropriate means by which to deduce π
from [(c,M0), fΘ].

This section breaks into a number of sub-sections. In Section 2.1 we
provide the loss function lM (θ), in Section 2.2 the loss function lN (θ),
and in Section 2.3 we consider the loss function derived from the choice
of prior π(θ). Section 2.4 then puts all these together to derive a choice
for π(θ) and Section 2.5 relates our results to the existing literature.

2.1 Loss from choice of model. The first point, which is presum-
ably well known, is that it is imperative to construct any prior on Θ
with reference to the family f(x|θ), and not just to Θ. We start by
considering the utility of the density f(·|θ) for a particular θ as it sits
in the family of densities. This may be motivated first by discretizing
the densities so fj(·) = f(·|θj) for a set of discrete (θj) ∈ Θ.

To illustrate this, we consider a simple and extreme case, when
three densities have been chosen only, say (f1, f2, f3) to model the
density generating the outcomes. These have been chosen in such a
way that f1 and f2 are barely indistinguishable from each other, yet
f3 is far from these two. One can imagine that there is knowledge that
has been used to construct a model in this way.

However, something concrete is needed and we believe this is to be
found using notions of utility functions (equivalently loss functions but
it is convenient to come at this from utility functions to start with).
We would assess the utility of f3 to be greater than that of either f2 or
f1. It would be more serious to lose f3 from the model than it would
be to lose either f2 or f1. And this utility can only be made concrete
by considering how close each fj is to its neighbours.

If we were to remove fj from the model, and it was the true density,
then we would lose the Kullback–Leibler distance from fj to its nearest
density. This is because the Bayesian model would eventually put all
the mass on the density closest to fj with respect to the Kullback–
Leibler divergence (see Berk, 1966), hence this is the loss. Thus, the
utility of fj would be of the type

u(fj) = inf
k 6=j

D(fj , fk),

where D(f, g) =
∫
f log(f/g) is the Kullback–Leibler divergence be-

tween f and g.
When we have a continuum of densities, and indexed by a param-

eter θ, then for each ε > 0 we would consider the utility function for θ
of the type

uε(θ) = D(fθ, fθ+ε).
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This would arise by assuming we have a model with discrete θ and the
nearest neighbour is at θ + ε. We would need this to have a limiting
form as ε→ 0 to get something out in the continuum. Hence, we would
need to take

uε(θ) = ε−2D(fθ, fθ+ε)

and if θ is p–dimensional then the limit as ε → 0, (Blyth, 1994), is
given by

u(θ) =
∑

1≤j,k≤p

Ijk(θ),

where

Ijk(θ) = E

(
∂

∂θj
log f(x|θ) ∂

∂θk
log f(x|θ)

)
.

Hence, reinterpreting this as a loss function, and putting on the log–
scale which is where we will be operating, we would use

lM (θ) = − log

 ∑
1≤j,k≤p

Ijk(θ)

 . (2)

Of course if p = 1 then we have

I(θ) = E

[(
∂

∂θ
log f(x|θ)

)2
]

and so lM (θ) = − log I(θ).
This idea for extracting information from a choice of model deserves

close inspection and is currently being investigated by a PhD student
of the second author.

2.2 Loss from choice of (c,M0). Following Gutiérrez–Peña and
Walker (2005) and Section 1.1, we assess the loss at (θ, x) to be given
by the logarithmic loss function:

l(θ, x) = − log f(x|θ).

This is standard and even forms the basis for classical estimation via
maximum likelihood, since based on a sample of size n, the cumulative
loss would be

l(θ, x1, . . . , xn) = −
n∑
i=1

log f(xi|θ)

and minimizing this yields the maximum likelihood estimator.
Hence, if M0 represents beliefs about the distribution of x, then the

expected loss is precisely

lN (θ) = −
∫

log f(x|θ)M0(dx). (3)
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We will see the role of c when we put all the loss functions together in
Section 2.4.

2.3 Loss from choice of prior distribution. We now think about
a loss function for (θ, π), where the idea is that π is now being used
to encapsulate the information in [(c,M0), fΘ] in a probability density
function on Θ. If π(θ) is to represent beliefs about which value of θ is
best, for us to be able to make statements such as P(θ ∈ A) = π(A),
we need to have π(θ) as the belief distribution function for θ. Hence,
if we construct a loss for θ based on the choice of π(θ), we would need
to use the “honest” loss function − log π(θ), see Bernardo (1979a). His
Theorem 2 shows this to be the unique local proper scoring rule. See
also Section 1.1.

2.4 Matching the loss functions. We have relevant information I =
[(c,M0), fΘ] and we have a loss function connecting this information
for each value of θ, this is, up to additive and scalar constants,

lM (θ) = l(θ, fΘ) and lN (θ) = l(θ, (c,M0)|fΘ).

The loss functions for the model fΘ and [(c,M0)|fΘ] are cumulative
and provide a loss for each θ based on these pieces of information, i.e.
putting arbitrary scalars into (??),

lI(θ) = βlN (θ) + γlM (θ),

where β > 0 and γ > 0 are as yet undefined constants, and lM and lN
are given in equations (??) and (??), respectively. We will work out
appropriate values for them.

On the other hand, the loss for the choice of π(θ), which is supposed
to encapsulate the information I in a probability form, is given by
lπ(θ) = − log π(θ).

We have two loss functions for the same θ, and hence they must
match. Therefore, for some α,

− log π(θ) = α− β
∫

log f(x|θ)M0(dx)− γ log

 ∑
1≤j,k≤p

Ijk(θ)

 .

Hence, our choice of prior is

π(θ) ∝ J(θ)γ exp

{
β

∫
log f(x|θ)M0(dx)

}
,

where we have written

J(θ) =
∑

1≤j,k≤p

Ijk(θ).
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In order to understand the role of c and β here, we need to move
forward, applying Bayes theorem at overarching Dirichlet level, and
look at the posterior distribution. This is given by

π(θ|x1, . . . , xn) ∝ J(θ)γ exp

{
(β + n)

∫
log f(x|θ)Mn(dx)

}
,

where

Mn(dx) =
βM0(dx) + nPn(dx)

β + n
.

Within the embedded framework we cannot utilize Bayes theorem di-
rectly, so to see how this can be derived from the matching of loss
functions and the Bayes theorem applied to the Dirichlet process, it
is worth returning to the discussion about Bayesian nonparametric in-
ference using the Dirichlet process prior. If we are interested in the
loss

l(θ, F ) = −
∫

log f(x|θ)F (dx)

and model F with a Dirichlet process prior with parameters (c,M0),
then the posterior expected loss is given by

l(θ) = −
∫

log f(x|θ)Mn(dx),

where now the Mn(dx) is as given before except with β = c.
Using the match of loss functions at this point, we obtain, for some

αn and βn > 0,

− log π(θ|x1, . . . , xn) = αn − βn
∫

log f(x|θ)Mn(dx)− γ log J(θ).

Consequently, we obtain coherence for the procedure, and based on a
necessary cumulative loss function, only if we take βn = β + n and
β = c.

For the choice of γ, we do not need this to change with n as the
choice of model does not alter with the sample size. This parameter
is difficult to assess, yet if we consider p = 1, then J(θ) is the Fisher
information and hence the choice of γ = 1

2 yields the Jeffreys prior
(Jeffreys, 1946), which is a standard choice of objective prior from
many perspectives, and which includes an invariance property. We
will use this value in the examples which follow in Section 3.

Hence, the prior, based on choices I = [(c,M0), fΘ] is given by

π(θ) ∝ J(θ)
1
2 exp

{
c

∫
log f(x|θ)M0(dx)

}
.
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It is to be noted the model is conjugate. As data accumulate the c
changes to c+ n and the M0 changes to

Mn =
cM0 + nPn
c+ n

which are the updates for the Dirichlet process prior. The coherence of
the procedure based on the matching of loss functions follows since it
coincides with an application of Bayes theorem: The lN (θ) is changing
from

−c
∫

log f(x|θ)M0(dx)

to

−(c+ n)

∫
log f(x|θ)Mn(dx)

which is a consequence of revised expected loss to concur with current
updated beliefs in light of the data (x1, . . . , xn). All that is required
is an ability to express beliefs about the distribution of the initial
observable.

Note that we can write the prior as

π(θ) ∝ J(θ)γ exp {−cD(M0(·), f(·|θ))}

and so the prior puts more weight to those θ which make the Kullback–
Leibler divergence between f(·|θ) and M0 small (and only this when
γ = 0). This is what is achieved by the data, since one can write the
likelihood function as, with a mild abuse of notation,

n∏
i=1

f(xi|θ) ∝ exp {−nD(Pn(·), f(·|θ))} .

It makes sense then to have this aspect a part of the prior distribution.
Our aim is to have it as the key part of the prior.

We are content to apply Bayes theorem for the Dirichlet process
model. It is a true model, as discussed earlier, and hence there does
exist an F , a distribution function conditional on which the data are
independent and identically distributed. We may be more circumspect
about applying Bayes theorem to the model f(·|θ) as it is not the
case that there is a θ for which the observations are independent and
identically distributed from f(·|θ). However, through the application
of Bayes theorem for the Dirichlet process and the coherent application
of loss matching we can derive the Bayes rule for the parametric family.

2.5 Relation to the literature. Looking through the literature, we
find this idea is in the same spirit as an idea appearing in Barron (1998).
Effectively, Barron (1998) is matching two loss functions for θ. An
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asymptotic expression for the Kullback–Leibler divergence (Kullback
and Leibler, 1951) between

f(x1, . . . , xn|θ) =

n∏
i=1

f(xi|θ)

and the marginal joint density

p(x1, . . . , xn) =

∫ n∏
i=1

f(xi|θ)π(dθ)

is given by

D
(
f(x1, . . . , xn|θ), p(x1, . . . , xn)

)
= Kn + log{|I(θ)|1/2/π(θ)}+ o(1),

where Kn does not depend on θ and I(θ) is the Fisher information
matrix.

Re–arranging this, we see we have

− log π(θ) = D
(
f(x1, . . . , xn|θ), p(x1, . . . , xn)

)
− 1

2 log |I(θ)|,

which is very similar to our matching of loss functions. However, we
have something different in the multipara–meter case, replacing I(θ),
and (effectively) instead of our subjective D

(
M0(·), f(·|θ)

)
, Barron has

a(θ) = D
(
f(x1, . . . , xn|θ), p(x1, . . . , xn)

)
for which an objective choice

is sought.
If it is possible to assess what a(θ) should be, then this would result

in the choice of prior as

π(θ) ∝
√
|I(θ)| e−a(θ).

However, as noted by Sweeting (1998) in the discussion of Barron
(1998), it seems a non–trivial task to find a suitable or well motivated
choice for a(θ).

Nevertheless, the idea we present for constructing prior distribu-
tions is closely related to the idea of Barron (1998). Effectively it is
the same if one views Barron’s idea is indeed matching loss functions.

Prudent observers will note we are breaking a supposed prior construc-
tion rule which is that

m(x) =

∫
f(x|θ)π(θ) dθ,

where m(x) is the density function corresponding to the distribution
M0(x). But this rule is only valid if it is thought that for some θ the
x is coming from f(x|θ). It is a law of total probability statement
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and required to hold for the Bayesian update via Bayes Theorem. But
we do not rely on this for the update as we can do it via the match
of loss functions. While we believe m(x) to be the best choice for
the initial distribution of x, once we have constructed π(θ) via the
matching of losses, there is no reason whatsoever to now believe that∫
f(x|θ)π(dθ) is also this initial belief since we do not connect x and θ

through a probability model f(x|θ), but rather through a loss function
− log f(x|θ).

We will discuss further aspects in Section 6. In the next section
we will consider the application for independent and identically dis-
tributed observations. In Section 4 we consider the application to
regression models and in Section 5 to hierarchical models.

3. Illustrations. For a variety of models we now consider the priors
constructed through the matching of loss functions approach.

3.1 Normal model. Here we consider the case when θ = (µ, λ) and

f(x|θ) ∝ λ
1
2 exp

{
− 1

2λ(x− µ)2
}
.

If the choice of m(x) is Normal with mean ν and variance σ2, then∫
IR

log f(x|θ)m(x) dx = K + 1
2 log λ− 1

2λ(µ2 + σ2),

where K does not depend on θ.
It is also easy to verify that J(θ) = (λ+ 1

2λ
−2), thus we have

π(µ, λ) ∝ [λ+ 1
2λ
−2]

1
2λc/2 exp

{
− 1

2cλ(µ2 + ν2 + σ2 − 2µν)
}
.

The conjugacy works on the parameters (c, ν, s2), where s2 = ν2 + σ2.
Then it is easy to see that c→ c+ n,

ν → cν + nx̄

c+ n

and

s2 →
cs2 +

∑
i x

2
i

c+ n

where x̄ is the sample mean.

3.2 Bernoulli model. Here we have

log f(x|θ) = x log θ + (1− x) log(1− θ)

with x ∈ {0, 1} and 0 < θ < 1. If m(1) = p then it is easy to see that∑
x∈{0,1}

[x log(1−θ)+(1−x) log(1−θ)]m(x) = p log θ+(1−p) log(1−θ).
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Given that J(θ) = θ−1(1− θ)−1, we would have

π(θ) ∝ θcp−
1
2 (1− θ)c(1−p)−

1
2 .

The conjugacy here operates on c and p and c→ c+ n and

p→ cp+ nx̄

c+ n
.

3.3 Poisson model. Here we have log f(x|θ) = K+x log θ−θ, where
K does not depend on θ, with x ∈ {0, 1, 2, . . .} and θ > 0. So∑

x

log f(x|θ)m(x) = K + µ log θ − θ

where µ is the prior guess at the mean of x. So, given that J(θ) = θ−1

we have

π(θ) ∝ θcµ−
1
2 exp(−cθ).

The pattern for conjugacy is now clear and so c→ c+ n and

µ→ cµ+ nx̄

c+ n
.

3.4 Gamma model. Here we have

f(x|θ) =
ba

Γ(a)
xa−1e−xb,

where θ = (a, b) and a, b > 0. Then

log f(x|θ) = a log b− log Γ(a) + (a− 1) log x− xb

and so∫
X

log f(x|θ)m(x) dx = a log b− log Γ(a) + (a− 1)ξ − µb

where ξ is the guess at the expected value of log x and µ the guess at
the expected value of x. Some calculations give

J(a, b) = ψ(a)− 2/b+ a/b2,

where ψ(a) is the tri–gamma function. This J(a, b) is positive since

J(a, b) = ψ(a)− 1

a
+

(
1√
a
−
√
a

b

)2
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and ψ(a) > 1/a. So

π(a, b) ∝ J(a, b)
1
2

bca

Γ(a)c
ξcae−cµb.

3.5 Exponential family. Here we consider the exponential family;
so

f(x|θ) = c(x) exp{xθ − b(θ)}.
If we consider m(x) as the prior guess for the density of x, and ξ =∫
xm(x) dx, then, given that

J(θ) = b′′(θ),

we would take the prior as

π(θ) ∝
√
b′′(θ) exp{cξθ − cb(θ)}.

Conjugacy here is that c→ c+ n and

ξ → cξ + nx̄

c+ n
.

4. Regression models. In this section we extend our idea of loss
function matching to regression models. We will write the models as
f(y|x, θ) where now y is the dependent variable and x the independent
variable and θ the parameter of interest to which a prior is to be
assigned. We will consider the priors for θ under which the x are
generated stochastically with known density function m(x).

We will as usual take lπ(θ) = − log π(θ) and for the model part we
will take logarithmic loss function; so if

l(y, x, θ) = − log f(y|x, θ),

then the expected Kullback–Leibler loss is with respect to the distri-
bution assigned to (y, x), with density m(y, x), so

lN (θ) = −
∫ ∫

log f(y|x, θ)m(y, x) dy dx.

On the other hand, we would have

lM (θ) = − log

∫ ∑
1≤j,k≤p

Ijk(θ, x)m(x) dx,

with an obvious interpretation of Ijk(θ, x). Therefore, we have

π(θ) ∝ J(θ)1/2 exp

(
c

∫ ∫
log f(y|x, θ)m(y, x) dy dx

)
,
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where
J(θ) = exp{−lM (θ)}.

As before, this is a conjugate prior, since the posterior density for θ is
given by

π(θ|(x1, y1), . . . , (xn, yn)) ∝ J(θ)1/2 exp

(
cn

∫ ∫
log f(y|x, θ) dMn(y, x) dy dx

)
,

where cn = c+ n and

Mn(y, x) =
cM(y, x) + nPn(y, x)

c+ n
.

4.1 Normal regression model. Here we consider a normal example, so
θ = (α, β, λ), where

f(y|x, θ) = N(y|α+ βx, λ),

a normal distribution with mean α + βx, x being a real scalar, and
variance λ−1. To obtain the prior we need to find the expectation of

1
2 log λ− 1

2λ(y − α− βx)2,

with respect to m(y, x), which is given by

1
2 log λ− 1

2λ
{

(µy − α− βµx)2 + βσ2
x − 2βρxy + σ2

y

}
,

where µx is E(x) and σ2
x is Var(x); µy is the prior choice for E(y), σ2

y is
the prior choice for Var(y) and ρxy is the prior choice for the Cov(x, y).
Therefore,

π(θ) ∝ J(α, β, λ)1/2λc/2 exp
[
−c 1

2λ
{

(µy − α− βµx)2 + βσ2
x − 2βρxy + σ2

y

}]
,

where

J(α, β, λ) = 2λ−2 + λ+ λ

∫
x2m(x) dx.

4.2 Bernoulli regression model. Now we consider a Bernoulli model for
y, whereby for some θ we have

Pr(y = 1|x, θ) =
eθx

1 + eθx
.

Therefore,∑
y∈{0,1}

∫
log f(y|x, θ)m(y, x) dx

=
∫ {

θx− log(1 + eθx)m(1|x)m(x)
}

dx+
∫
− log(1 + eθx)[1−m(1|x)]m(x) dx

=
∫
θ xm(1|x)m(x) dx−

∫
log(1 + eθx)m(x) dx.
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Hence,

π(θ) ∝ J(θ)1/2 exp

{
cθξ − c

∫
log(1 + eθx)m(x) dx

}
,

where ξ is the prior choice for
∫
xm(1|x)m(x) dx, and

J(θ) =

∫
x2exθ

1 + exθ
m(x) dx.

5. Hierarchical models. The form of model we consider here is in
hierarchical form given by

yi|xi ∼ f1(yi|xi, θ)

xi ∼ f2(xi|φ)

where (θ, φ) are the parameters and (xi) are unobserved random ef-
fects. This model, if we integrated out the (xi), would not yield in-
dependent (yi) and hence the unsuitability of cumulative loss in this
case. Moreover the integration is often intractable. Hence, we can and
must consider a conditional loss function.

It is easy to see that l(θ;x, y) = − log f1(y|x, θ) and therefore if
m(y, x) represents the a priori guess for the joint density of (y, x),
then we would take, for some c1 > 0,

π(θ) ∝ J1(θ)1/2 exp

{
c1

∫ ∫
log f1(y|x, θ)m(y, x) dy dx

}
,

where J1(θ) is defined as

J1(θ) =

∫ ∑
1≤j,k≤p1

I1jk(θ, x)m(x) dx

with I1jk(θ, x) being the elements of the Fisher information matrix
based on f1(y|x, θ), and m(x) =

∫
m(y, x) dy.

The second level of the hierarchy can be dealt in the usual way, so
for some c2 > 0, we would have

π(φ) ∝ J2(φ)1/2 exp

{
c2

∫
log f2(x|φ)m(x) dx

}
,

where
J2(φ) =

∑
1≤j,k≤p2

I2jk(φ),

with I2jk(φ) being the elements of the Fisher information matrix based
on f2(x|φ).
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These are conjugate type prior distributions, in that we can easily
obtain π(θ|(xi, yi)ni=1) and π(φ|x1, . . . , xn). The updates are, respec-
tively, c1 + n and

c1dM(y, x) + ndPn(y, x)

c1 + n
,

and c2 + n and
c2dM(x) + ndPn(x)

c2 + n
.

Although the (xi) are not observed, within a Gibbs sampler algorithm,
these are key conditional distributions. To complete the sampler, one
would need to evaluate and sample, for each i, f(xi|y1, . . . , yn, θ, φ).

6. Discussion. We have shown how the idea of matching loss func-
tions, based on the self–information loss and Kullback–Leibler infor-
mation loss functions, lead to the probability belief distribution being
represented as

− log πn(θ) = Kn + (c+ n)

∫
log f(x|θ)Mn(dx)− γ log J(θ),

which holds for all n ≥ 0. This is the Bayesian rule applied to the
model f(·|θ) for which the direct application of Bayes theorem can be
seen as problematic. The Bayes theorem hiding in the background has
been applied to the Dirichlet process, this we are happy to apply due to
the true model status we have allocated to it. It is a consistent model
for all sampling distributions. The loss matching idea we can view as
a justification for the Bayes rule in the parametric case. So we have no
need for the formal Bayes theorem for the parametric model and all the
restrictive assumptions that need to be made to effect it. While f(x|θ)
is a probability density function, it enters the learning mechanism only
through its role as providing a loss function − log f(x|θ). The precise
rôle is to measure its loss with respect to beliefs about the distribution
of the observables, using the Kullback–Leibler divergence.

All that is required to start this process is a prior choice for the
M0(x) and a measure of precision with this, i.e. some scalar c > 0.
Bayesians should not have any qualms about specifying such objects,
or should question whether they really are Bayesians at all. And these
are precisely the quantities needed in any Bayesian nonparametric ap-
plication. It is also interesting to note that there are no objective priors
that have been presented in the Bayesian nonparametric literature. So
a (c,M0) must be specified in such models.

6.1 Model selection. Another issue is the model selection prob-
lem. Suppose for each k there is a model to be considered based on
fk(x|θk), with θk ∈ Θk. The ambition for each parameter θk would be
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to learn about the value θk0 which takes the family fk(·|θk) closest in
the Kullback–Leibler sense to the true density function. A measure of
this discrepancy is precisely what we are using as the loss function

L(θk) = −
∫

log fk(x|θk)Mn(dx),

where Mn is the current estimate for the true distribution function.
Hence, if θ̂k minimizes L(θk) then we would select the k which min-

imizes L(k) = L(θ̂k). To us this seems a natural decision rule. For

large n, θ̂k would be approximately the maximum likelihood estimator
in Θk since Mn is approximately the empirical distribution function.

6.2 Predictive density. An interesting point of discussion is what
does the predictive

fn(x) =

∫
f(x|θ)πn(dθ)

represent. Given the wrong model is being used, and known to be
wrong, but used for pragmatic purposes, nevertheless we have con-
structed πn(θ) to represent beliefs about which θ is getting us closest
in the Kullback–Leibler sense to the correct predictive Mn(dx). Hence,
to us, fn(x) is merely the expected density averaged over the family
f(x|θ) using πn(θ). It therefore has no special interpretation other
than an estimate of the sampling density.

6.3 Objective prior. With the choice of c = 0, we have no M0

entering the model at all. So now effectively the prior becomes

π(θ) ∝ J(θ)
1
2

which we could claim as an objective prior. As far as we are aware,
this has not been previously proposed as an objective prior, though it
does coincide with the Jeffreys prior in the case p = 1.

Yet its claim for an objective prior are good. It extracts the infor-
mation inherent in the fact that the model f(·|θ) has been chosen to
model the data, and this idea appears new. We are not trying to be
minimally informative or ignorant, but using the available information
in that the model has been chosen

For p > 1 we are not able to consider invariance under one-to-one
re–parameterizations. Datta and Ghosh (1996) investigate the invari-
ance, or lack of, for various noninformative or objective priors under
re-parameterizations. They establish the invariance under certain re–
parameterizations for particular priors and lack of invariance for others.
The message would appear to be that while invariance is a desirable
property it is by no means an overriding one.
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6.4 Asymptotics. We can write the posterior distribution as

π(θ|x1, . . . , xn) ∝ J(θ)
1
2 exp {−(c+ n)D(Mn(·), f(·|θ))} .

Here we provide heuristic discussions of the asymptotics; models that
do not behave as indicated below will be unusual ones. Now Mn con-
verges a.s. to F0 and so the posterior will accumulate about θ∗ and one
may recall that this is the parameter which minimizes the Kullback–
Leibler divergence between F0 and f(·|θ). See also Berk (1966) and
Bunke and Milhaud (1998). If this is where the posterior will end up
then it is natural to think about this result when constructing the prior
and a prior of the form

π(θ) ∝ J(θ)
1
2 exp {−cD(M0(·), f(·|θ))}

is doing precisely this as M0 represents the initial belief about the value
of F0. That is the further f(·|θ) is away from M0 the lower the weight
attributed to that value of θ.

6.5 Summary. If it is acknowledged that f(x|θ) and F0 are different
then one is interested in the θ which maximizes

U(θ) =

∫
log f(x|θ) dF0(x).

There are two unknowns, the minimizing θ value and F0. If we assign a
Dirichlet process prior for F , with parameters (c,M0), then we need a
compatible prior for θ, π(θ), which accounts for all the interpretations
associated with the desire to find the maximizer of U(θ). This we
believe has the key component

π(θ) ∝ exp

{
c

∫
log f(x|θ)M0(dx)

}
,

which clearly assigns greater density value to those θ making the prior
estimate of U(θ) large. The procedure updates naturally, using the
likelihood and Dirichlet process update, to

π(θ|Pn) ∝ exp

{
(c+ n)

∫
log f(x|θ)Mn(dx)

}
,

where Mn is now the best guess for F0 once the data have been seen.

Appendix. Since we advocate a particular choice of prior, here we
review the main current ideas for prior construction. We start with
subjective or personal probabilities.
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A.1 Subjective prior. Perhaps the dominant theory in recent years
has been that which acknowledges explicitly and transparently the rôle
of subjectivity in statistical inference. The seminal paper of Ramsey
(1926, 1964) developed the skeleton of a theory relying on coherent
betting behaviour and the existence of a canonical ‘ethically neutral’
event. Independently, de Finetti (1937, 1964), coming from an ac-
tuarial background in Italy, showed how the notion of symmetry of
beliefs or exchangeability gives rise to the duality of model and prior
{f(x|θ), π(θ)} so that for de Finetti probability is assigned to observ-
ables, and unknown parameters merely emerge as constructs from his
theorem on exchangeability. Again, coherence, or the non existence of
bets such that an individual is sure to win is crucial to the interroga-
tion of beliefs, and has been developed by a number of authors since.
See Lindley (1972) for an insightful review, and French (1982), for the
axiomization of subjective probability,

These pure subjectivist views do not countenance using data in
hand for mixing with the assignment process. Many of the alterna-
tive methods of assigning prior probabilities for π(θ), when f(x|θ) is
assumed given and ‘true’, do take some cognizance of how the sample
arose, e.g. through the Fisher Information involving averaging over
the sample space. In fact all the objective priors listed next contradict
the pure subjectivist credo in this respect.

We now look at the so–called objective ideas. A recent review is given
in Kass and Wasserman (1996) where details on most of the priors
discussed below are given in more depth and for priors which we have
not mentioned, such as the maximum entropy prior.

A.2 Uniform prior. One idea is the uniform prior, π(θ) ∝ 1. This is
clearly improper except in the case when Θ is bounded and has finite
Lebesgue measure; i.e.

∫
Θ
dθ < +∞.

A.3 Jeffreys’ prior. A commonly used objective prior is the Jef-
freys’ prior (1946), whereby π(θ) ∝

√
|I(θ)|, where I(θ) is the Fisher

information matrix, given by

Iij(θ) = −
∫
X

f(x|θ) dx
∂2

∂θi∂θj
(log f(x|θ))

where θ = (θ1, . . . , θp) and Iij(θ) is the ijth element of the matrix. The
motivation for this is the invariance to transformation property. If we
denote J(θ) =

√
|I(θ)| and we consider the transform φ = φ(θ), then

it is not difficult to show that π(φ) = π(θ)|∂θ/∂φ| =
√
|I(φ)| = J(φ).

While the Jeffreys’ prior is well known for its invariance property it
is also the prior such that for small ε, puts equal mass on all Kullback–
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Leibler balls of size ε. It also arises as an objective prior based on
alternative criterion, such as in regular parametric families. It can be
derived as the reference prior of Bernardo (1979b), see also Barron and
Clarke (1994).

A.4 Kullback risk prior. This idea for constructing a prior distri-
bution π(θ) is given in Barron (1998). An asymptotic expression for
the Kullback–Leibler divergence between

f(x1, . . . , xn|θ) =

n∏
i=1

f(xi|θ)

and the marginal joint density

p(x1, . . . , xn) =

∫ n∏
i=1

f(xi|θ)π(dθ)

is given by

D
(
f(x1, . . . , xn|θ), p(x1, . . . , xn)

)
= Kn + log{|I(θ)|1/2/π(θ)}+ o(1),

where Kn does not depend on θ. If it is possible to assess also that
this risk is of the form a(θ) +Cn where Cn → 0 then this would result
in the choice of prior as

π(θ) ∝
√
|I(θ)| e−a(θ).

A.5 Probability matching prior. The idea here is to find the prior
π(θ) so that the posterior quantiles match up to some level of error, fre-
quentist confidence intervals. So, if zα(π, x1, . . . , xn) is the α quantile
of the posterior distribution of θ, with prior π(θ), then

Pr(θ ≤ zα(π, x1, . . . , xn)|x1, . . . , xn) = α,

and the probability here refers to θ.
A probability matching prior would also ensure that

Pr(θ ≤ zα(π, x1, . . . , xn)) = α+Op(n
−1)

for all 0 < α < 1, where now the probability refers to (x1, . . . , xn) which
are taken as independently and identically distributed from f(x|θ). See
Datta and Sweeting (2005), for example.

A.6 Reference prior. Another idea is the reference prior of Bernardo
(1979b). The idea is quite straightforward and involves the value of an
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infinite amount of data if the prior π(θ) has been chosen. A minimally
informative or reference prior will be the one which maximizes the
information in the sample. While this might be a difficult task, with
many possible options to define the value of an experiment, the chosen
strategy is to maximize, asymptotically, the expected Kullback–Leibler
divergence between the prior and posterior. That is, if

In(π) =

∫
Xn

p(xn)

∫
Θ

π(θ|xn) log{π(θ|xn)/π(θ)} dθ dxn,

where

p(xn) = p(x1, . . . , xn) =

∫
Θ

n∏
i=1

f(xi|θ)π(θ) dθ.

then the reference prior π maximizes

lim
n→∞

In(π).

Due to the limit typically being infinite, some suitable adjustments
need to be made. See Berger et al. (2009) for recent developments.

Other ideas include the maximum likelihood prior of Hartigan (1998).
Here the problem is to find, if it exists, the prior for which the Bayes
estimate is asymptotically negligibly different from the maximum like-
lihood estimator. Sweeting et al. (2006) provide asymptotic proper-
ties of priors derived via a posterior predictive entropy regret crite-
rion. This is related to the prior predictive regret criterion described
in Clarke and Barron (1990). We note the widespread use in these
papers of the self–information loss function, known as the negative
logarithmic score function. There is a recent contribution by Diciccio
and Young (2010) where an objective Bayes methodology is considered
for conditional frequentist inference about a canonical parameter in a
multi-parameter exponential family. These authors derive a condition
under which posterior Bayes quantiles match the conditional frequen-
tist coverage to a higher-order approximation in terms of the sample
size. Other default choices of prior appear in Fraser et al. (2010).

A recent article expanding on the objective point of view is given
in Berger (2006).
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