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Abstract 

As a step towards low cost manufacture of conducting arrays for Frequency Selective 

Surfaces an inkjet procedure is under development.  The plane wave transmission 

response of a printed array compares well with its conventionally etched counterpart and 

the predictions of modelling software.  

 

Introduction 

 

Frequency Selective Surface (FSS) technology is well known in microwave and mm-

wave aerospace systems but recent applications in UHF mobile bands have given rise to 

new design and fabrication requirements, including large physical size and low cost 

manufacture. At such long wavelengths the sizes of even electrically finite arrays can be 

large [1]. Current mobile and wireless systems are becoming severely capacity limited 

owing to interference and frequency reuse issues.  A possible means to address the 

problem is to embed potentially large FSS panels within building structures.  To be a 

realistic proposition, these panels must be simple to fabricate and of low cost.  Frequency 

selective surfaces usually take the form of arrays of conductive elements either printed on 

some form of suitable substrate, or alternatively they are slots of suitable patterns etched 

into a conductor, usually copper.    

 

In this letter we demonstrate the use of inkjet printing as a facile digital fabrication tool 

for the low cost manufacture of frequency selective surfaces on low cost flexible 

substrates. Inkjet is particularly attractive because of its ability to accurately dispense 

variable volumes of material per drop, 2 - 100pl, with high resolution, +/- 5m, with 

feature sizes currently down to 50m, in the absence of complimentary small feature 

patterning strategies. A key factor in any such process is the printing of conductive 



elements having the appropriate conductivity achieved under processing conditions 

compatible with thermally sensitive substrates. 

 

Experimental Procedure 

 

Materials 

A silver nanoparticle conducting ink provided in ethylene glycol/ethanol was used as 

received (Product No. AG-IJ-G-100-S1, Cabot Corporation, Albuquerque, USA). It was 

characterized as having 20 wt-% silver, average particle size of 30-50 nm, and dispersion 

viscosity of 14.4 cPs at 25 
o
C and surface tension of 31 mN/m at 25 

o
C.  

 

Polyethylenenapthenate (PEN) substrate (QX 65, DuPont Teijin Film) was used as 

received, having a surface energy of 57.1 mN/m, a contact angle with water of 65 
0
 and a 

contact angle with the silver ink of 20
 0

. 

 

Instrumentation 

A Dimatix DMP-2800 inkjet printer (Fujifilm Dimatix, Inc., Santa Clara, USA) was used 

in the study using a disposable piezo "ink jet" cartridge. This printer can create and define 

patterns over an area of about 200 x 300 mm and handle substrates up to 25 mm thick, 

being adjustable in the Z direction. The nozzle plate consists of a single row of 16 

nozzles of 23 m diameter spaced 254 m with typical drop size of 10 pL, drop diameter 

27 m. The silver ink jetted reliably and reproducibly as received at 30 
o
C, using a 13 V 

waveform. It was important however to use the primed head within 48 hours if non 

recoverable nozzle drop out is to be avoided.  

 

The electrical resistance of sintered silver features was measure by the 4-point probe 

technique. A Jandel multi-position wafer probe system mounted with a cylindrical probe 

head (solid tungsten carbide needles of 0.40 mm diameter spaced 1.0 mm) was employed. 

Track width and thickness were determined using a Veeco Dektak 8 Stylus profilometer. 

Atomic Force Microscopy was used to characterize the surface of printed features using a 

PSIA XE 100, Parls Systems instrument, in contact mode at 1Hz and a constant contact 



force of 21.4nN. A soft commercial silicon cantilever was used, with a nominal spring 

constant of about 0.6 N/m, the back of the cantilever being coated with aluminium to 

increase signal feedback. 

 

Results and Discussion 

 

Inkjet Printing of FSS 

In order to produce individual conductive silver dipoles, the individual droplets have to 

be printed in such a way that consecutive droplets partially overlap. The degree of 

overlap is a function of both the substrate and the ink, substrate surface energy, 

heterogeneity and roughness and the contact angle of the ink on the surface, as well as 

print strategy [2].  Arrays of individual silver dipoles were single pass printed using the 

following protocol; length = 9400 m; width = 450 m using a 10 m drop spacing in 

both the x and y directions (Figure 1a). The width of the lines was slightly wider than 

expected from the print pattern arising from slight over wetting of the ink on the 

substrate, leading to dried elements having a uniform width of 522 m. The lines show a 

characteristic ‘coffee stain’ profile as shown in Figures 1b and c, resulting in a line which 

is 2.5 m thick at the edges and less than 0.2 m thick in the middle. The coffee stain 

profile arises from contact line pining of the rapidly drying ink leading to a net flow of 

solute to the drying edge [3].  

 

The silver dipoles were sintered in a convection oven at 160
o
C for 120 minutes. Although 

it was not possible to measure the conductivity of an individual element without 

delamination occurring from the substrate, for dipoles on glass in the absence of any 

coffee stain profile the measured resistivity was 10 -m, approximately 15% bulk 

silver. 

 



 

 

The Inkjet printed FSS. 

 

Frequency selective surfaces designed to operate in the microwave region were 

fabricated, in order to make sensible performance comparisons with conventional arrays 

etched onto a copper clad polyimide substrate. The elements were simple linear dipoles 

approximately 9mm long, arranged on the lattice illustrated in Figure 1a. The electrical 

behaviour of this kind of surface is well known and has been previously reported [4].  

 

Plots of the measured transmittivity at normal plane wave incidence as functions of 

frequency for the inkjet printed array, together with computer simulations (broken curve 

with dots) using software based on a standard Floquet Modal analysis are shown in 

Figure 2. The agreement between the measurements and simulations for the 

conventionally etched FSS and also its counterpart produced using inkjet printing is 

excellent.  Both show high reflectivity of the surface at about 14 GHz, indicated by the 

clear nulls in the transmittivity, and are effectively transparent at 10GHz.   The slightly 

different resonant frequencies for the two surfaces are a consequence of  slightly different 

dipole lengths in the two cases.   

 

 

 

Conclusions 

 

As can be seen in Fig.1, there is a noticeable variability in the print quality of the inkjet 

printed dipole elements. Dipoles prepared by the etching of copper show regular linear 

edges and a characteristic top hat profile, the conductivity in each being that of bulk 

copper. However the inkjet printed dipoles show some edge acuity which is not linear, a 

heavy coffee stain profile and the conductivity is less than 10% of the copper etch 

control.  But the concentration of the conductor towards the outer regions might be an 

advantage, as the induced currents tend to maximise towards the edges.  The line profile 



does not have a significant effect on the performance of widely spaced lattices such as the 

one used here, but for more complicated elements where the performance is a function of 

the effective inductance determined by the conductor width, or capacitance determined 

by the spacing between conductors, any spreading of the ink would be important and the 

printing process may well need refinement.  This can be achieved in part by 

reformulating the ink to negate coffee stain drying [5]. These results are particularly 

encouraging and point the way to a means for rapidly printing FSS on large areas of 

suitable substrate.  In particular work is required to enable very inexpensive paper like 

porous substrates to be used.   
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List of figure captions: 

 

Figure 1. (a) Inkjet printed FSS using an array of simple linear silver dipoles on PEN;   

(b and c) silver dipole cross-section showing the ‘coffee stain’ profile. 

 

Figure 2. Comparison of measured and simulated transmission curves for inkjet printed 

and etched frequency selective surfaces.  
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Figure 1 
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Figure 2 


