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Abstract 

This paper presents sparse and low-rank methods for explicit modeling and harnessing the data structure to address the inverse 
problems in structural dynamics, identification, and data-driven health monitoring. In particular, it is shown that the structural 
dynamic features and damage information, intrinsic within the structural vibration response measurement data, possesses sparse 
and low-rank structure, which can be effectively modeled and processed by emerging mathematical tools such as sparse 
representation (SR), and low-rank matrix decomposition. It is also discussed that explicitly modeling and harnessing the sparse and 
low-rank data structure could benefit future work in developing data-driven approaches towards rapid, unsupervised, and effective 
system identification, damage detection, as well as massive SHM data sensing and management. 
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1. Introduction  

Vibration-based response measurements (e.g., strains, displacements, and accelerations) and analysis techniques 
such as modal analysis based system identification and damage detection methods have been widely studied for SHM 
[1,2]. Traditional modal identification typically complies with the principle of system identification which is based on 
the relationship of inputs and outputs [1,2,3]. For civil structures, typically large-scale (e.g., bridges, buildings, dams, 
etc.), it is extremely difficult or expensive, if not impossible, to apply controlled excitation to conduct input-output 
modal analysis. Accurate measurement of the ambient excitation (e.g., wind, traffic, etc.) to structures is also 
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challenging. Therefore, in practical applications, it is often required to identify the structural dynamic properties from 
only the available structural vibration response measurement data. This is essentially an ill-posed inverse problem, 
which hardly has analytical solutions. Solving the ill-posed inverse problem where only the structural vibration 
response measurements are available needs additional, prior, knowledge or assumption. If detailed knowledge of the 
structure is available, including material property, geometry, component connections and joints, boundary conditions, 
etc., a common approach to solving the inverse problem is to build a physics based or physical model of the structure, 
such as a finite element model, as the reference information of the initially healthy structure. Afterwards, the structural 
model is updated by fitting the model-predicted responses with the current structural responses (usually modal 
parameters) [1,2,3]. In the context of the need of performing output-only modal parameters identification from the 
current structural vibration response measurements, many established methods, such as Ibrahim time domain (ITD) 
method [1,2], eigensystem realization algorithm (ERA) [1,2], and stochastic subspace identification (SSI) [1,2], (note: 
frequency domain decomposition (FDD) [1,2] is non-parametric) include a process of building a parametric dynamic 
model such as state space model, and then estimating the dynamic parameters of the dynamic model by fitting the 
structural response measurements. Finally, one obtains the system or dynamic parameters (e.g., by eigen analysis) 
from the updated structural model, and the discrepancy between the updated and reference models (physical or modal 
models) indicates structural damage.  

 

 

Fig. 1. The framework of the new paradigm of explicitly modeling the sparse and low-rank data structure (presented in this paper) for structural 
system identification and structural health monitoring. 

An alternative approach is to directly exploit the available structural vibration response measurement data itself. 
Unlike parametric model based methods which are derived from the (mathematically) physical processes, data-driven 
approaches aim to extract the desirable information directly from the available data, without explicit knowledge of 
the physical or dynamic model of the underlying system. The non-parametric data-driven algorithms are efficient and 
have potential for real-time processing the massive SHM data. 

This paper contributes to present an alternative paradigm of explicitly modeling and harnessing the inherent data 
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structure itself of the structural vibration response data to extract the desirable structural features and damage 
information, otherwise invisible. Particularly, the salient structural features and damage information intrinsic within 
the structural vibration response measurement data, usually large-scale in SHM, possesses sparsity nature and low-
rank structure, which could be effectively modeled and processed by emerging mathematical tools such as sparse 
representation (SR) [4], low-rank matrix decomposition and completion [4], as blind source separation techniques, 
towards rapid (close to real-time), automated, and effective system identification, damage detection, as well as massive 
SHM data management. 

In this context, this paper attempts to provide physical interpretation and model of the data structure—sparsity and 
low-rank—to address the inverse problems of interest. It should be mentioned that the detailed mathematical theory 
of SR and CS has been well documented in other fields and it is briefly reviewed in this paper. It is finally discussed 
that a unified model of the data structure and characterization of the system dynamic and damage features could benefit 
some future work in structural dynamics, identification, and health monitoring. A framework with the presented new 
paradigm for the SHM process is shown in Fig. 1.  

2. Definition and modeling of sparsity and low-rank  

2.1. Sparse Representation 

To mathematically express sparsity of a signal , it is useful to define the -norm [4], 

  (1) 
simply counting the number of non-zeros in . A signal  (vector) is -sparse if it has at most  non-zeros, i.e., 

. In analogy, a matrix  is also said to be sparse if most of its elements are zero. 
In a more general perspective,  is said to be -sparse (transform sparse) in a domain  with a representation 

 

  (2) 

if .  is an orthonormal basis (e.g., sinusoid, wavelet, etc), whose th 
row is  (or on Fourier basis).  is the coefficient sequence of   on , whose  th 
element  (inner product). This generalization is particularly useful, since, in practice,  is typically 
sparse in an appropriate domain instead of its original domain. A simple example is the sinusoid, which is sparsest (

) in the frequency domain. This actually underlies a sparse probability density function whose most elements 
are concentrated on the zero. 

 

Fig. 2. The probability density functions of standardized Laplacian and Gaussian distributions. 
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From a statistical view, a sparse distribution is easier to predict, while a uniform distribution provides little clue to 
trace. In fact, if of equal variance, a Gaussian-distributed variable ( ) is the most random or 
unstructured one. Sparse distribution, such as Laplace distribution ( ), has been extensively 
used in sparse models. Fig. 2 shows that the Laplace distribution is much more-spiky than the Gaussian distribution 
(both normalized). 

It turns out that the structural dynamic features and damage features of interest inherent in the structural vibration 
response measurement data are naturally sparse and can be readily revealed by the mathematical tools of sparse 
representation. In this paper, it has been a useful thread to explicitly exploit such data structure towards developing 
innovative data-driven system identification and damage detection approaches. 

2.2. Low-rank structure 

Structural vibration response measurements, from potentially hundreds of channels or sensors, can be represented 
as a data matrix. Analogous to the sparsity property of single-channel data (vector), the intrinsic low-dimensional data 
structure of multi-channel data matrix is also explicitly exploited and modeled, e.g., by singular value decomposition 
(SVD) or principal component analysis (PCA). 

The data matrix  with  sensors and  time history sampling points ( ) has an SVD 
representation  

  (3) 

where   is an orthonormal matrix associated with the channel (variable) dimension, 
called left-singular vectors or principal component directions;  has  diagonal elements  as the  th 
singular value ( ), and  is associated with 
the time history (measurement) dimension, called the right-singular vector matrix. SVD is closely related to the 
eigenvalue decomposition (EVD): the left-singular vector matrix  is obtained by the EVD of its covariance matrix 
  (4) 
and similarly for the right-singular vector matrix , 
  (5) 
where   and are zero-truncated and zero-padded version of , respectively.  
is said to be low-rank if it has only few active (non-zero) singular values ( ). 

It is well understood that the th singular value  is related to the energy captured by the th principal direction of 
. In structural dynamics, under some assumption, the principal directions would coincide with the mode directions 

with the corresponding singular values indicating their participating energy in the structural responses , i.e., the 
structural active modes are captured by  principal components under broadband excitation. 

3. Implications of the sparse/low-rank data structure in structural dynamics and SHM  

3.1. Sparse representation & clustering of modal expansion 

For an -DOF linear time-invariant system, its equation of motion (EOM) is 
  (6) 
where , , and  are constant mass, diagonalizable damping, and stiffness matrices, respectively, and are real-
valued and symmetric;  is the system response (displacement) vector and  is the 
external force vector. Under broadband excitation, the coupled  may be expressed as linear combinations of the 
decoupled modal responses 
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  (7) 

Unlike classic input-output system identification, output-only identification pursues to identify the modal 
parameters only from the knowledge of  without the excitation or input information to the system, like 
identification of both  and  only from  in Eq. (11). Such is an ill-posed problem and may not be solved 
mathematically. The challenges are that: (1) existing time domain (SSI and ERA) output-only modal identification 
methods rely on parametric model (state-space model) fitting associated with the model order issue (e.g., spurious 
numerical modes); (2) the frequency domain method FDD usually requires users to judge the mode, and is not well-
suited for highly-damped or complex modes. The emerging BSS based methods have been developed to overcome 
limitations of existing methods. 

3.2. Sparse clustering of modes 

The spectral sparsity and spatially disjoint of the monotone modal responses was explicitly exploited by a new 
method, sparse component analysis (SCA) [4,5]. Transform Eq. (11) into the frequency domain , 

                                                      (8) 

Attributed to the spatially disjoint sparsity of  ( ) which is active only at  (the modal frequency of 
the th mode) and elsewhere , , Eq. (12) becomes 

  (9) 

             
Fig. 2. The scatter plot of the frequency-domain system responses in determined case with three sensors (left) and underdetermined case with two 

sensors (right). 
 

which means that there is only a scale difference, , between  and  [5]. For the whole , the 
scatter plot of  (up to 3-dimension) then reveals all the  directions of the mode shape columns of  (Fig. 3). 
With a general value of  the dimension  (may be larger than 3), the estimated vibration mode matrix  can 
automatically be extracted by standard clustering algorithms such as fuzzy-C-means (FCM). 

In determined case ( ), time-domain modal responses  are readily de-coupled by 
  (10) 
thereby estimating the modal frequency and damping ratio from . For underdetermined case ( ) where the 
sensors are insufficient,  is rectangular and recovery of  from the underdetermined Eq. (12) is ill-posed. By 
looking to sparsity, the spatially sparsest (disjoint) representation of the modal responses  can be recovered by 
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the well-known sparsity optimization -minimization program ( ) [4,5], at each  
  (11) 
where  is the -norm.  therefore finds a vector  with smallest -norm 
that explains the observation . This -norm naturally guides  to seek the sparsest  with fewest non-
zero entries among all feasible solutions. It has been proven, however, that solving  is in general NP-hard [4,5].  

Fortunately, if the solution  is sufficiently sparse, then  can be safely replaced by a convex optimization 
program -minimization , known as basis pursuit [4,5], 
  (12) 

in which the -norm is defined by . Since the underlying -dimension  is very 
sparse (theoretically ) with only one non-zero entry, it is guaranteed to be accurately recovered by  from 
the incomplete -dimension ( ) observations  and the rectangular . Using the inverse cosine 
transform, the time-domain modal responses  can be readily recovered  from . 

3.3. Data management via low-rank structure 

Recently, many structural health monitoring (SHM) systems, each with an array of networked sensors to 
continuously record structural data for monitoring and assessing structural performance, have raised the data-intensive 
issue. On the one hand, the continuously collected sensor data provides high-resolution and multi-dimensional 
information of the structure, which is vital for identifying and updating structural information, evaluating its health 
status, and detecting damage in real time. It is important to develop efficient and effective SHM data compression and 
cleansing algorithms. This section presents the approach of explicitly exploiting the sparse and low-rank data structure 
of the structural vibration response measurements to address this issue. 

3.4. Removing sparse outliers 

Real-world measured structural response data typically contains considerable noise or errors. For example, the 
ambient vibration response data of the Canton Tower (Fig. 4(a)), recorded by the SHM system, contains remarkable 
outliers (gross errors). Applications of traditional data processing methods can only deal with dense small noise. 
Taking advantage of the data structure of the multi-channel noisy structural vibration responses, robust PCA [6], 
termed PCP, is capable of effectively modeling the noisy data with outliers and thus simultaneously removing both 
the outliers and dense noise [4,6]. When the original data  are addictively corrupted by both gross errors 
(outliers) and dense noise, 
  (13) 
where  has few (sparse) but gross outlier elements with arbitrarily large and located magnitudes, and 

 is entry-wise i.i.d. small dense noise. PCP aims to recover  by solving the following convex 
program 
  (14) 
where  is termed the nuclear norm of the matrix , which summates its singular values; 

 denotes the -norm of the matrix , which is thought as a long vector;  is a 

trading parameter,  is the Frobenius norm of , and  is some bounding parameter related to 
the small dense noise level. In analogy to the -norm of a vector, the nuclear norm is the tightest convex 
approximation to the rank of a matrix. 

 
It has been rigorously proved that if  is sufficiently low-rank and  sparse, with overwhelmingly high 

probability,  accurately recovers the true low-rank  and sparse . As mentioned,  in its 
original dimension is seldom very low-rank. The matrix reshape scheme [4] is applied to make a low-rank reshaped 
matrix : both the -norm and Frobenius norm of a matrix are summations of its entries and energy, 
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the th mode) and elsewhere , , Eq. (12) becomes 

  (9) 

             
Fig. 2. The scatter plot of the frequency-domain system responses in determined case with three sensors (left) and underdetermined case with two 

sensors (right). 
 

which means that there is only a scale difference, , between  and  [5]. For the whole , the 
scatter plot of  (up to 3-dimension) then reveals all the  directions of the mode shape columns of  (Fig. 3). 
With a general value of  the dimension  (may be larger than 3), the estimated vibration mode matrix  can 
automatically be extracted by standard clustering algorithms such as fuzzy-C-means (FCM). 

In determined case ( ), time-domain modal responses  are readily de-coupled by 
  (10) 
thereby estimating the modal frequency and damping ratio from . For underdetermined case ( ) where the 
sensors are insufficient,  is rectangular and recovery of  from the underdetermined Eq. (12) is ill-posed. By 
looking to sparsity, the spatially sparsest (disjoint) representation of the modal responses  can be recovered by 
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the well-known sparsity optimization -minimization program ( ) [4,5], at each  
  (11) 
where  is the -norm.  therefore finds a vector  with smallest -norm 
that explains the observation . This -norm naturally guides  to seek the sparsest  with fewest non-
zero entries among all feasible solutions. It has been proven, however, that solving  is in general NP-hard [4,5].  

Fortunately, if the solution  is sufficiently sparse, then  can be safely replaced by a convex optimization 
program -minimization , known as basis pursuit [4,5], 
  (12) 

in which the -norm is defined by . Since the underlying -dimension  is very 
sparse (theoretically ) with only one non-zero entry, it is guaranteed to be accurately recovered by  from 
the incomplete -dimension ( ) observations  and the rectangular . Using the inverse cosine 
transform, the time-domain modal responses  can be readily recovered  from . 

3.3. Data management via low-rank structure 

Recently, many structural health monitoring (SHM) systems, each with an array of networked sensors to 
continuously record structural data for monitoring and assessing structural performance, have raised the data-intensive 
issue. On the one hand, the continuously collected sensor data provides high-resolution and multi-dimensional 
information of the structure, which is vital for identifying and updating structural information, evaluating its health 
status, and detecting damage in real time. It is important to develop efficient and effective SHM data compression and 
cleansing algorithms. This section presents the approach of explicitly exploiting the sparse and low-rank data structure 
of the structural vibration response measurements to address this issue. 

3.4. Removing sparse outliers 

Real-world measured structural response data typically contains considerable noise or errors. For example, the 
ambient vibration response data of the Canton Tower (Fig. 4(a)), recorded by the SHM system, contains remarkable 
outliers (gross errors). Applications of traditional data processing methods can only deal with dense small noise. 
Taking advantage of the data structure of the multi-channel noisy structural vibration responses, robust PCA [6], 
termed PCP, is capable of effectively modeling the noisy data with outliers and thus simultaneously removing both 
the outliers and dense noise [4,6]. When the original data  are addictively corrupted by both gross errors 
(outliers) and dense noise, 
  (13) 
where  has few (sparse) but gross outlier elements with arbitrarily large and located magnitudes, and 

 is entry-wise i.i.d. small dense noise. PCP aims to recover  by solving the following convex 
program 
  (14) 
where  is termed the nuclear norm of the matrix , which summates its singular values; 

 denotes the -norm of the matrix , which is thought as a long vector;  is a 

trading parameter,  is the Frobenius norm of , and  is some bounding parameter related to 
the small dense noise level. In analogy to the -norm of a vector, the nuclear norm is the tightest convex 
approximation to the rank of a matrix. 

 
It has been rigorously proved that if  is sufficiently low-rank and  sparse, with overwhelmingly high 

probability,  accurately recovers the true low-rank  and sparse . As mentioned,  in its 
original dimension is seldom very low-rank. The matrix reshape scheme [4] is applied to make a low-rank reshaped 
matrix : both the -norm and Frobenius norm of a matrix are summations of its entries and energy, 



68	 Satish Nagarajaiah  / Procedia Engineering 199 (2017) 62–69
 Satish Nagarajaiah / Procedia Engineering 00 (2017) 000–000 7 

respectively; as such, restacking won't essentially change the property that   remains sparse, and 
 bounded. With these assumptions satisfied,  accurately estimates the low-rank (and 

the outliers ), which can then be readily re-stacked back to .  can be implemented 
using the Augmented Lagrange multiplier (ALM) method. Inheriting from the virtue of convex program, the solution 
to  found by ALM is always globally optimal. Fig. 7(b) shows the structural vibration responses with the gross 
outliers removed and more examples are presented in Ref. [4]. 

  
Fig. 4. (a) The recorded ambient vibration accelerations with many outliers and (b) the PCP-denoised (reshape factor ) of the Canton 

Tower from 12:00 am Jan. 20th, 2010 to 1:00 pm Jan. 20th, 2010. 

3.5. Dynamic imaging for structural surveillance using low-rank plus sparse representation 

Local structural assessment focuses on close-up inspection of structural health status and is meant to more 
accurately quantify structural damage (e.g., damage types and severity). Current practice of local structural assessment 
includes on-site visual inspection by experts and nondestructive testing (e.g., acoustic and ultrasonic). Although 
effective in many applications, they can be time-consuming and costly, and limited to areas that are accessible to 
experts, making them mostly suitable for offline evaluation. The video cameras—permanently mounted on appropriate 
positions—enable close-up imaging (“filming”) of critical structural components such as the anchorage of the stay 
cables and other critical connections, for continuous local structural damage assessment and damage diagnosis and 
alerts in real time. An unsupervised data-driven framework has been established to automate real-time detection of 
structural damage by explicitly modeling the fundamental spatiotemporal data structure of the multiple images (video 
stream) [11]. 

If restacking each of  temporal frame of the structure as a long column vector with a resolution of 
 pixels, the multi-frame data matrix  is obtained, whose th ( ) column 

 represents the temporal frame at time . PCP is able to blindly decompose  into a 
superposition of a low-rank matrix   and a sparse matrix  as 
  (15) 
by solving .  is said to be sparse if it has only few non-zero entries, and   is low-rank 
in the sense that its SVD has few active singular values. 

    The   representation has a novel insight into the data structure of the multiple temporal close-up frames 
of structures as a superposition of a background component and an innovation component:  represents the static or 
slowly-changing correlated background component among the temporal frames, which is naturally low-rank;  
captures the innovation information in each frame induced by the evolutionary damage, which is naturally sparse 
standing out from the background. See the proposed dynamic imaging framework for continuous local structural 
assessment in Ref. [11] for more details. 

3.6. Damage identification via sparse classification 

While extracting the sparse component from the structural vibration or image measurements could lead to efficient 
and effective identification of damage instants and locations, if incorporating a structural model or other structural 
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    The   representation has a novel insight into the data structure of the multiple temporal close-up frames 
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slowly-changing correlated background component among the temporal frames, which is naturally low-rank;  
captures the innovation information in each frame induced by the evolutionary damage, which is naturally sparse 
standing out from the background. See the proposed dynamic imaging framework for continuous local structural 
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3.6. Damage identification via sparse classification 

While extracting the sparse component from the structural vibration or image measurements could lead to efficient 
and effective identification of damage instants and locations, if incorporating a structural model or other structural 
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reference information, one may perform supervised damage identification, in the pattern recognition framework [7], 
that can address even the problem of level 3, that is, the quantification of damage severity.  

Instead of building and training a parametric classifier model, Ref. [7] established a new damage identification 
method in the classification framework by exploiting the sparsity nature implied in the classification problem itself, 
via sparse representation classification (SRC) of a test feature in terms of an adaptive reference dictionary (Fig. 5); it 
is found to be relatively intuitive and efficient. 

 
Fig. 5. The sparse representation classification paradigm for damage identification. The test feature  (red column, e.g., mode shape 

column) only activates itself via its representation  (read in its own location, white denotes unactivated zero) in terms of the large 
reference dictionary  ( ) (by concatenating all feature columns of all candidate reference damage classes), expressed as a 

highly underdetermined linear system of equations . The unique non-zero element (red) in  (recovered by -minimization) 
directly dictates which class the test feature belongs to, within the predefined reference dictionary. 

4. Concluding Remarks  

With the knowledge of the data structure/model of system/damage features—sparse and low-rank, it is useful to 
explore more advanced mathematical tools (e.g., redundant dictionary, over-complete representation leading to sparser 
representation of signals), to explicitly target such data structure, which is more outstanding in high-dimensional data 
[4-13]. 

References 

[1] Farrar, C.R. and Worden, K. (2012). Structural health monitoring: a machine learning perspective, Wiley. 
[2] Brincker, R. and Ventura, C. (2015). Introduction to Operational Modal Analysis, Wiley.  
[3] Nagarajaiah, S. and Basu, B. (2009). Output only identification and structural damage detection using time frequency and wavelet techniques. 
Earthquake Engineering Engineering Vibration, 8, 583-605. 
[4] Nagarajaiah, S., and Yang, Y., (2017). “Modeling and harnessing sparse and low-rank data structure: a new paradigm for structural dynamics, 
identification, damage detection, and health monitoring”, Structural Control and Health Monitoring, 24(1), DOI: 10.1002/stc.1851. 
[5] Yang, Y. and Nagarajaiah, S. (2013). Output-only modal identification with limited sensors using sparse component analysis. Journal of Sound 
and Vibration, 332(19), 4741-4765. 
[6] Yang, Y. and Nagarajaiah, S. (2014). Blind denoising of structural responses with outliers via principal component pursuit. Structural Control 
and Health Monitoring, 21(6), 962-978. 
[7] Yang, Y. and Nagarajaiah, S. (2014). Structural damage identification via a combination of blind feature extraction and sparse representation 
classification. Mechanical Systems Signal Processing, 45(1), 1-23. 
[8] Yang, Y. and Nagarajaiah, S. (2014). Blind identification of damage in time-varying systems using independent component analysis with 
wavelet transform, Mechanical Systems Signal Processing 47 (1), 3-20 
[9] Yang, Y. and Nagarajaiah, S. (2015). Output-only modal identification by compressed sensing: non-uniform low-rate random sampling. 
Mechanical Systems Signal Processing, 56: 15-34. 
[10] Yang,Y, Li, S, Nagarajaiah,S, Li, H, Zhou, P (2015). Real-time output-only identification of time-varying cable tension from accelerations via 
complexity pursuit, J. of Structural Engineering 142 (1), 04015083. 
[11] Yang, Y. and Nagarajaiah, S. (2015). Dynamic imaging: real-time detection of local structural damage with blind-separation of low-rank and 
sparse innovation, J. of Structural Engineering 142 (2), 04015144. 
[12] Yang, Y, Dorn, C, Mancini,T, Talken, Z, Nagarajaiah, S, Kenyon, G, Farrar, C (2017) Blind identification of full-field vibration modes of 
output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements, Journal of Sound and Vibration 
390, 232-256. 
[13] Y Yang, P Sun, S Nagarajaiah, SM Bachilo, RB Weisman (2017). Full-field, high-spatial-resolution detection of local structural damage from 

low-resolution random strain field measurements, Journal of Sound and Vibration 399, 75-85. 


