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Abstract 

Within numerous production and distribution environments, maintenance of 

effective customer service is central to securing competitive benefits. Globalised 

industries are becoming more commonplace as well, further increasing the competitive 

pressure. Companies, as a result, are forced to expand product availability and deliver to 

the demand on schedule. 

As part of a supply chain, service levels are an important measure of 

performance in operations management and are widely used to evaluate and manage 

supplier performance. 

This thesis examines the SLA for the supplier under two types of contracts to 

guarantee the agreed customer service level. Specifically, this dissertation will shed light 

on the two most important (SLA) measurements for inventory systems: fill rate and ready 

rate. Both SLA measurements are commonly used as performance measures in SLAs 

between customers and suppliers. Throughout this thesis, we examine performance-based 

contracts in which the supplier has either: a single customer with a large demand, or 

multiple customers with a smaller demand. Our experiments were designed so that the 

demand distribution for the single customer case was similar to the aggregated demand 

distribution in the multiple customer case. The thesis primarily focused on four main 

questions, with each question being examined in its own chapter.  

The first research problem is addressed in Chapter 3. Earlier studies of finite 

horizon fill rate only consider the situation in which there is a single customer in the 

supply chain. In Chapter 3, we develop a model to analyse the fill rate distributions for a 

supplier that has multiple customers, each with its own SLA. In particular, we examine 

the impacts of performance review period length and the correlation between customer 

demands on the average fill rate and the probability of overreaching the target fill rate 

when a supplier has multiple customers. Under the multiple customer contracts, two 

service policies for demand fulfilment. In the first policy, First-Come-First-Served 

(FCFS), demand is filled with no prioritization (e.g., in the case of two customers, there 

is a 50% chance that the first customer is served first). In the second policy, Prioritized 

Lowest Fill Rate (PLFR), customers are prioritized so that the customer with the highest 
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negative deviation from its target fill rate in the current performance review period is 

served first. The results and findings in Chapter 3 provide insights that can assist suppliers 

in the design and negotiation of SLAs. 

The second research problem is addressed in Chapter 4. Previous studies on the 

finite horizon fill rate are limited and assume a zero lead time for the supplier. We create 

a model to examine the impact of different supplier lead times on the finite horizon fill 

rate, considering either single customer or multiple customers. As lead time exists in real-

life supply chains, we explore the effect of various lead times on the fill rate distribution 

and required base stock over finite horizons with a variety of review period lengths. The 

results revealed that to fix the long-run fill rate, as the lead time increases, more stock is 

required; however, the probability of exceeding the target fill rate (the probability of 

success) increases as the lead time increases. The results indicate that the increase in the 

probability of success as the lead time increases is higher when the review period is 

shorter.  

For the third research problem Chapter 5 presents further results related to the fill 

rate, an important measure of supply chain performance, specifically ensuring that a 

customer’s service need is met with maximum reliability. These results mainly 

concentrate on variability, an aspect that is largely ignored in the literature on fill rate. 

Related results concerning consistency and asymptotic normality extend the range of 

application of the fill rate in evaluating reliability and determining the optimal stock level 

of a supply chain. 

Chapter 6 explores the fourth research problem which considers the ready rate, a 

widely used performance measure in SLAs. The ready rate considered in this study is 

defined as the long-run fraction of periods in which all customer demand is filled 

immediately from on-hand stock. Previous studies of SLAs have been solely concerned 

with one supplier serving one customer, whereas in practice, a supplier usually deals with 

more than one customer. In multiple customer cases, the supplier has an SLA with each 

customer, and a penalty is incurred whenever the agreement is violated. In this chapter, 

we create a model to examine the impacts of various factors such as the base-stock level, 

the type of penalty (lump-sum and linear penalty), and the review period duration on the 

supplier’s cost function when the supplier deals with multiple customers. The results 

show that dealing with more customers is preferable for a supplier (assuming the overall 
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demand is the same) and that under a lump-sum penalty contract, a longer performance 

review is beneficial.  

Finally, Chapter 7 closes with a brief review, discussion on the models constructed and 

suggests areas for future studies. 
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Chapter 1: Introduction 

1.1 Introduction and Background 

Services at logistics level significantly impact customer satisfaction, which in turn has a 

main effect on profits (Ghiana, Laporte & Mussammo 2004). In an increasingly globalised 

industry environment, it is challenging for companies to compete without strong 

inventory management strategies (Schwartz & Rivera 2010). A supply chain (SC) can 

take the form of goods or products, moving from manufacturers to suppliers to retailers, 

then finally to customers through a chain, to realise customer demand (Gong, Lai & Wang 

2008). In recent years, supply chain management (SCM) has been of interest in the 

management field. The SC design process, is the organisation and combination of key 

business activities undertaken by an enterprise, from obtaining raw materials to the 

distribution of the finished product to the customer. Good SC design is a key driver of 

SCM performance and positive customer perceptions (Gupta & Maranas 2003; Sieke, 

Seifert & Thonemann 2012).  

Today, in a global marketplace, companies providing excellent customer service will 

remain competitive (Larsen & Thornstenson 2008). As a result of competition, companies 

try to provide faster responses to customer requirements (Persson & Olhager 2002). 

Kumar and Sharman (1992) have stated: ‘We love your product, but where is it?’ The 

timely delivery of a product is often more important than the features of a product in 

determining customer satisfaction 

1.2 Supply Chain (SC) Definition 

Over the last decade there has been an increasing realisation of the importance of SCM. 

Operations management has been a focal area for many researchers. Several definitions 

of SC have appeared, yet it retains the same meaning with different terminology. Lee and 

Billington (1992) defined an SC: ‘As a set of relationships among suppliers, 

manufacturers, distributors, retailers and customers that facilitates the transformation of 

raw materials into final products.’ Ganeshan et al. (1999) defined an SC as: ‘A system of 

suppliers, manufacturers, and customers where materials flow downstream from suppliers 

to customers and the information flows in both directions.’ 
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In real-life systems, an SC is a network of suppliers, manufacturers, warehouses and 

channels of distribution structured to first obtain raw materials, the raw materials are then 

transformed into completed products, which are sent to customers on time (Ganeshan et 

al. 1999). Strategic-level SC planning involves deciding the configuration of the network, 

that is, the number, location, capacity and technology of the facilities. Tactical-level 

planning of SC operations involves deciding the aggregate quantities and material flows 

for purchasing, processing and distribution of products. 

1.3 Supply Chain Management (SCM) 

Companies now pay attention to SCM, as effectively managing SCs can save them 

billions of dollars in inventory and logistics costs (Julka, Srinivasan & Karimi 2002). It is 

challenging to define the full scope of SCM, as it is a complex endeavour. Researchers 

and practitioners have examined the individual stages and individual functions of SCM, 

such as inventory control, manufacturing planning, product design, transportation and 

distribution, purchasing and marketing etc. individually. They found that optimizing 

individual elements of SCM often does not improve general performance, as the benefits 

and aims of an individual stage or function in the SC commonly conflict with further 

stages or functions. For example, many operations are prepared to decrease inventory 

levels to reduce holding costs, however this can increase the risk of a stock-out and affect 

distribution of products to retailers and customers. Now, however, increasing attention is 

being paid to the performance, design and analysis of the SC as a whole. (Beamon 1999, 

P. 281) defined SCM: 

“as an integrated process wherein, a number of various business entities (i.e., 

suppliers, manufacturers, distributors, and retailers) work together in an effort 

to: (1) acquire raw materials, (2) convert these raw materials into specified final 

products, and (3) deliver these final products to retailers”. 

In SCM it is important to minimise costs while meeting a certain service level. 

SCs are purposely designed and value-driven to maximise efficiency and achieve 

strategic priorities for chain members (Melnyk, Narasimhan & DeCampos 2014; Sieke, 

Seifert & Thonemann 2012). The resources that members are prepared to contribute to 

the chain are fundamental to its success. Melnyk, Narasimhan and DeCampos (2014) 

modelled an SC at three levels: influencers, which are the regulatory, economic and 



  

3 

 

industrial opportunities and constraints; design decisions, which are the physical elements 

and the human resources along the chain; and building blocks or products, which are the 

inventory, transport, technology and capacity decisions that firms must make to operate. 

SC agreements can be between two members of the chain or along the whole chain. 

Importers, manufacturers, distributors and transport firms can network through their 

industries as members of other chains, further complicating control. Therefore, contracts 

tend to be performance-based with a focus on outcomes. Service level agreements (SLAs) 

therefore contain targets, quantities, replenishment times and contingency methods 

(Halldórsson, Larson & Poist 2008; Liang & Atkins 2013). They may also contain 

penalties for non-performance or rewards for providing services within time, quantity or 

quality constraints (Hefley & Loesche 2010). 

A standard SLA establishes objectives set by the customer. For the supplier of goods and 

services, non-performance or under-performance may have severe consequences 

(Selviaridis & Norrman 2015). For the purposes of this research, agreements include time 

of delivery, periodic review of performance and monitoring. Agreements are often 

established for the long term and thus include contract review dates for agreement 

conditions, and the resetting of financial penalties or incentives. However, there is 

increasing evidence that environmental and social responsibility measures are appearing 

as quality constraints for SC entities. Responding to European emission standards, Jaber, 

Glock and El Saadany (2013) developed a coordinated SC model based on suppliers and 

customers that included allowable gas emission rates along the chain. Within the model, 

Jaber, Glock and El Saadany (2013) compared the various permitted emissions trading 

schemes to establish levels before authorities financially penalised chain members. Yan, 

Chien and Yang (2016) produced a measure for environmental sustainability in a 

Taiwanese electronics chain, where members developed processes for reducing waste and 

achieving cleaner production along the chain. Further, Webster (2015) added reputational 

damage to firms who did not take international labour conditions into account along their 

SCs, such as Bangladeshi sweat shops. While these factors are beyond the focus of this 

research, they are important aspects of SC operations and point to the increasingly 

complex social and regulatory environments for producers, wholesalers and retailers. This 

thesis seeks to model SC agreements between one supplier and one or more customers, 

with constant demand and a finite horizon over variable lead times and variable review 
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and replenishment periods. Measures are for fill rate, ready rate, and a required base-stock 

measure as developed from a model by Thomas (2005). 

Established in the mid-20th century, SC research intensified due to the complexity of 

global trade and the increasing use of offshore manufacturing and assembly by countries 

that had previously been manufacturing nations. As the pace of international trade has 

grown, SCs diversified, first into industry-specific chains such as processed food, and 

then into time-sensitive chains, such as international relief organisations’ responses to 

natural disasters (humanitarian chains). Later, computerisation and data management 

facilitated logistics for inventory in warehousing, transport and replenishment measures. 

Finally, online retail firms (such as Amazon) opened up the original catalogue concept 

into the new online retail industry, which perhaps represents the peak of SCM, where 

goods such as food can be delivered within an hour of ordering. 

For goods retailers, supply management is a critical factor in business growth, and the 

success of a firm may depend on the strength of the agreements along the chain. This 

introductory chapter, therefore, begins with a description of the nature of SCs and their 

contracts (SLA), followed by an explanation of the elements of those contracts. 

1.4 Supply Chain Management Benefits 

From successful SCM, various benefits can be estimated: 

 Output developments: these make it easy to coordinate materials, and avoid 

under-utilisation of capacity due to delays in delivery of parts. 

 Decrease in inventory level: the visibility of demand and supply lowers the 

requirement to maintain high inventory levels to protect against uncertainty. The 

ability to understand when to buy products based on customer demand, allows for 

coordination with logistics planning. 

 Optimised shipping: enhanced logistics coordination reduces the number of truck 

loads required, and directly lowers transportation costs. 

 Increase in customer services: improving response to customer demand allows 

for on time product delivery. 
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1.5 Performance-Based Contracts 

It is important to measure the service level because its association with managing of 

stock-levels, can affect performance and the resultant relationship with customers 

(Constantin, Ioan & Romania 2016). Services provided in SCs are numerous and often 

difficult to classify or measure, hence the need for a unified service level framework 

(Ellram, Tate & Billington 2004). To drive improvements in SC processes, performance 

must be measured. Further, if it is not possible to manage the process, performance cannot 

be measured (Neely, Adams & Kennerley 2002). In SC analysis and design, an important 

object is the establishment of convenient SLA performance measures. Performance 

measures in SLAs are applied to evaluate or compare existing systems, and are utilised 

to design proposed systems by setting the values of decision variables that introduce the 

best desired level of performance (Beamon 1999). 

Recently, the design of performance contracts has drawn the attention of operations 

researchers. In contemporary business, performance-based contracts (PBD) are widely 

used because of their focus on outcomes rather than processes. In an SC with 

performance-based contracts, Liang and Atkins (2013) examined a customer SLA using 

principle-agent theory. Their results found benefits for the supplier from an SLA with 

strategic dynamic behaviour. Guajardo et al. (2012) also study performance-based 

contracts. They examine SC performance and compare the after-sales services between 

time-and-materials contracts and PBD. Also under PBD, Mirzahosseinian and Piplani 

(2011) inspected SC performance in relation to fixed-parts services. 

By outsourcing support services, sustainment agreement is being redesigned using a 

unique PBD approach which controls agreements between suppliers and customers 

(Mirzahosseinian & Piplani 2013). In 1998, an examination of PBD application in the 

defence sector of the USA was initiated, with a team of 60, consisting of the Logistics 

Agency and the office of the Secretary of Defense, who assessed the transfer from 

traditional contracts to PBD. A target of 50% migration was set to PBD by the end of 

2005 in the United States (US) Army, Air Force and Navy (Rievley 2001). 

The most common type of PBD are SLAs, which evaluate supplier performance (Larson 

2008; Liang & Atkins 2013). SLAs are established between a service provider and a 

client, based on the quality of service that the client expects from the service provider 

(Hefley & Loesche 2010). A survey by Oblicore (2007) found that more than 90% of 
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organisations use SLAs to manage their suppliers. SLAs are mostly used to manage 

supplier performance in long-term business relationships. Typically, a performance 

(service level) target is set by the customer, and the supplier incurs a financial penalty if 

they fail to achieve this target. This type of contract can result in high penalty costs for 

underperforming suppliers of goods or services (Selviaridis & Norrman 2015). To realise 

a preferred performance outcome, an appropriate motivation should be in place to 

encourage the supplier (Mirzahosseinian & Piplani 2013). 

In SLAs, the performance desired by the customer is recognised and a related target 

service level is specified. The US Office of Federal Procurement Policy described PBD 

as ‘an acquisition structured around the results to be achieved as opposed to the manner 

in which the work is to be performed (on Performance-Based Service Acquisition 2008)’, 

(see, e.g., Acquisition Central website). 

1.6 Service Level Agreement (SLA) 

SLAs are one of the most common types of contracts used to manage supplier 

relationships (Larson 2008; Liang and Atkins 2013). For instance, Hewlett-Packard and 

UPS Supply Chain Solutions are applying an SLA to improve management of their 

partnership (Lewis et al. 2007). In industrial companies, suppliers and retailers normally 

decide on a service level that a supplier is expected to realise (Thonemann et al. 2005). 

Typically, a performance (service level) target is set by the customer, and the supplier 

incurs a financial penalty if they fail to achieve the target. This type of contract can result 

in high penalty costs for underperforming suppliers of goods or services (Selviaridis & 

Norrman 2015). For example, in Indonesia, penalties for failing to deliver coal on time 

were costing the Nobel Group tens of millions of dollars each year (Fragkos & De Reyck 

2016). Alternatively, an SLA may specify a bonus for meeting and/or exceeding the 

performance target, and service levels can also form part of a scorecard used to evaluate 

supplier performance (Katok, Thomas & Davis 2008). In a survey of 190 manufacturers, 

suppliers and retailers, the common response of those questioned was that improving their 

service level was the principal goal of their inventory management (Kanet, Gorman & 

Sto¨ßlein 2010). In the 1990s, many manufacturers were required to cooperate with their 

suppliers to improve their organisational performance and competitiveness (Ittner et al. 

1999; Shin, Collier & Wilson 2000). 
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1.7 Inventory Management Performance 

This section identifies the measures used in this research. 

1.7.1 Performance Measure 

Fill rate: This refers to inventory levels at a distribution point in the supply chain. Disney 

et al. (2015, p. 501) define the item fill rate as ‘the proportion of demand fulfilled directly 

from inventory’. The inventory fill rate is a measure that has been used extensively over 

time, and is popular in the management press (Johnson & Scudder 1999; Lee & Billington 

1992; Tempelmeier 2000). This measure is calculated over a time interval, the 

replenishment review period, and is discussed further in the literature review. 

Ready rate: The ready rate was established by Schneider (1981) ‘as the long-run average 

cumulative satisfied demand per replenishment cycle divided by the average demand per 

replenishment cycle’ (Goetschalckx 2011, p. 438). The ready rate has variously been 

described by Larsen and Thorstenson (2014, p. 13) as ‘the fraction of time during which 

the on-hand stock is positive’, and Axsäter (2006), who used the term ‘net inventory level’ 

instead of ‘on-hand stock’. For the purposes of this research, Liang and Atkins’ (2013, p. 

1104) explanation is used: ‘the long run fraction of periods that demands are filled from 

stock, which is equal to 1–stock-out rate’. This is further discussed in the literature review. 

1.7.2 Important parameters in Inventory Management 

Replenishment review period: Depending on the service or product, the review period in 

the service contract may be a day, a week or a year, but is generally monthly or quarterly 

(Syntetos, Babai & Gardner 2015). Further, SC agreements may be established for short-

term (finite planning horizon), or long term (infinite planning horizon) (Zhang 2013). 

Lead time: There are several interpretations of lead times. Christopher (2016) stated that 

the customer’s view of lead time is from order to delivery. From the supplier’s viewpoint, 

lead time may extend from the time when working capital is committed, to when the 

customer’s cash is received. In this research, lead time is defined as the delay between 

the time customers place an order and the time they receive it. Rushton, Croucher and 

Baker (2014) explained that lead times can vary according to the environment; logistics 

lead times include manufacturing and supply of a product; customer’s order cycle time 

refers to the period that customers are willing to wait for their goods. SC lead time refers 
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to the period between customer order and delivery time. The lead time gap is the point 

where inventory must be held. Lead times are further discussed in the literature review. 

Stock-out event; backorder: Stock-out occurs when there is unexpectedly high demand, 

perhaps with a longer lead time. Backorder may mean a delay to a customer until the next 

delivery, but it may also mean lost sales, especially in retail or food chains. Jain, Rudi and 

Wang (2014, p. 134) advised that ‘optimal order quantity with timing observations is 

greater than the optimal order quantity with full demand observations’. Table 1.1 shows 

an inventory review result using these concepts. 

Table 1.1: Sample of inventory review 

Order cycle Demand (units) Stocked-out units 

1 120 0 

2 120 0 

3 120 0 

4 120 30 

5 120 0 

6 120 0 

7 120 0 

8 120 80 

9 120 0 

10 120 0 

Table 1.1 shows 10 cycles with expected demand that resulted in a stock-out event in each 

of two cycles. Demand over the replenishment review period was 1200 items, and demand 

for 110 items was unfulfilled, thus the fill rate was as = 
1090

1200
 = 0.91, or 91%. The ready 

rate for the 10 cycles showed stock-out for two periods, so was = 
8

10
 = 0.8 or 80%. The 

base stock policy occurs when the supplier replenishes to a level stipulated in the 

agreement each order cycle. In a typical agreement, the supplier is responsible for 

reaching a target fill rate or ready rate, as measured at each performance review point. 
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While agreements contain idealised conditions, these rarely occur in practice and 

anomalies occur. Suppliers with a long-run or infinite horizon contract may overfill an 

agreement to ensure compliance. In the example, if a supplier must exceed a 90% fill rate, 

a 93% long-run fill rate may be used as a buffer against penalties. It well known that base 

stock inventory policies minimise holding and shortage costs for an integrated SC (Zipkin 

2000). 

1.8 Performance Incentives and Penalties 

In most SLAs, the partners agree that there is a target that should be achieved by the 

supplier, or else the supplier can face a financial penalty. Financial incentives and 

penalties for SLAs are typically linear (a rate) or fixed (an amount) and both forms are 

commonly used in service agreements (Larsen & Thorstenson 2014; Sieke, Seifert & 

Thonemann 2012). For example, Fragkos and De Reyck (2016) reported that in delivering 

coal outside of the contract conditions, the Nobel Group in Indonesia was losing a 

significant amount of money each year. 

The first type of penalty is a lump sum, in which a supplier incurs a penalty if the 

supplier’s review phase performance is beneath the performance threshold. The second 

type is a linear penalty SLA, where the supplier incurs a linear penalty of the quantity of 

deviation from a performance threshold. For instance, the Acquisition Central website 

(on Performance-Based Service Acquisition 2008); describes two types of SLA penalty: 

 Example 1. ‘The firm-fixed-price for this... shall be reduced by 2% if the 

performance standard is not met’ (a lump-sum penalty). 

 Example 2. ‘For each 5% degradation in... Performance observed..., the firm 

fixed- price... will be reduced by 1%’ (a linear-based penalty). 

For example, the large US retail chain CVS imposes a fixed penalty on suppliers who fail 

to supply at least 92% of purchase transactions (orders) within one month (CVS, 2013). 

Similarly, Dm-Drogeriemarkt (one of the biggest drugstore chains in Germany) applies 

fixed financial penalties to suppliers who do not achieve pre-specified thresholds 

(Mostberger 2006). Thonemann et al. (2003) found that in Germany, 70% of retailers 

measure the performance of their suppliers based on service levels. KPMG (2010) 

identified food, drinks and consumer goods companies (FDCGs) as frequently having 

service level commitments with retailers regarding product availability, the value of the 
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product and on-time delivery. Toys “R” Us, on the other hand, applies a linear penalty 

that increases as the realised fill rate decreases (Toys “R” Us 2013). Drugstore chain Rite 

Aid is an example of an organisation with a mixed penalty system, consisting of a fixed 

flat fee and a linear percentage-based penalty (Rite Aid, 2014). Supplier SLAs that 

incorporate either fixed (flat) or linear penalties can affect a supplier’s base stock level 

decision (Liang & Atkins 2013). Sieke, Seifert and Thonemann (2012) show that SLAs 

with both penalties (flat or unit penalty), and can organise the SC through supplier and 

manufacturer. Holmes and France (2002) reported that, in 1997, late delivery resulted in 

enormous fees for the Boeing Company. Because of delivery delays, the company lost 

customers to Airbus. Similarly, in the US, grocery chain Kroger applies a flat penalty 

every time a supplier cannot deliver a complete order on time (Kroger, (2011)). An 

observed study by Bensaou (1999) found that Japanese companies often divide their 

purchases between multiple suppliers, then subsequently use service level performance 

measures to evaluate and select the suppliers for long-term relationships. 

Considerable research has been done on the effect of performance on supply chains using 

either incentives or penalties, or both. Liang (2009) stated that ‘Monetary compensation 

is used for an incentive’. Returning to the social responsibility and firms’ reputations of 

social responsibility, Porteous, Rammohan and Lee (2015) noted the increasing potential 

for supply chain disruption through regulatory or social media influences. They set a 

model of incentives and penalties for suppliers’ social and environmental transgressions, 

which included customers’ operational costs. Incentives proved more efficient among 334 

US companies and 17 industries with reduced supplier violations and reduced customer 

costs. Incentives were not necessarily financial; they included environmental training for 

staff and offers of increased business. 

In assessing the efficiency of using performance incentives or penalties, Aktas and 

Ulengin (2016) established a service agreement with a durable goods firm and its logistics 

provider. A newsvendor model was used, whereby the state of the inventory cannot be 

known until the customer places an order; thus, the order is random, the inventory is 

established before the order is made and economic results are bound by insufficient 

inventory or oversupply. They found that use of the reward and penalty system enhanced 

Supply chain performance, reaching 96.1% Aktas and Ulengin (2016). Alwan et al. (2016) 

noted that the newsvendor model, in which demand is assumed to be independent from 
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one period to the next, proved to be superior to the exponential smoothing method and 

moving-average method under certain conditions. 

Less research has been conducted on the effects of penalties alone on SC performance. 

Qi, Ni and Shi (2015) used game theory to explore consumers’ search behaviours when 

confronted with a stock-out (backorder). Using one distributor and two retailers, Qi et al 

(2015) found that if the wholesale price is exogenous, their model predicted more retailers 

and higher chain efficiency; if the wholesale price was endogenous, the opposite 

occurred, as the wholesaler could raise its prices. In a stock-out situation in which demand 

was such that the wholesaler was unable to supply the retailers, the penalty was that the 

chain was confronted with higher competition and reduced influence. That is, unless SC 

members develop the capacity to compete, the chain itself may disintegrate. 

1.9 Inventory and Demand Fulfilment Policies 

Policies refer to the business models that firms use, and the policies and practices they 

employ to achieve their objectives. Policies are therefore part of the assumptions in SC 

modelling. 

Base stock policy: Base stock inventory policies minimise storage costs for an integrated 

SC (Song, Dong & Xu 2014). Tempelmeier and Bantel (2015) stated that an inventory 

base stock policy is commonly used in modelling and practice. A base stock policy has 

random demand and is filled one unit at a time; times between orders are independent and 

identically distributed, stock is constantly reviewed and backorders occur when stock is 

out. 

First come, first served policy: demand is filled with no prioritization (e.g. in the case of 

two customers, there is a 50% chance that customer 1 is served first). Also, known as 

‘queue state dependent order acceptance policy’, order receipt is random, which has an 

effect upon stock-out. Orders cannot be stratified by the priority of customer status, or 

item quantity if it is available, so other customers may miss out if replenishment of 

inventory does not occur in time.  

Prioritised lowest fill rate: This refers to prioritising customers based on current 

measured fill rate performance. Prioritised Lowest Fill Rate (PLFR) customers are 

prioritised such that the customer with the highest negative deviation from their target fill 

rate in the current performance review period is served first. For example, if service level 
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is reviewed every 5 days, and on day 4 the supplier faces a shortage and is unable fill the 

demand of all customers, then the fill rate of each customer for the past three days is 

calculated, and customers are prioritised for service according to the difference between 

their computed fill rate (for the last three days) and their target fill rate. Note that the 

PLFR policy is not necessarily optimal, as the optimal policy must be designed based on 

the penalty structure outlined in the SLAs. 

1.10 Research Scope and Objectives 

This research aims to evaluate the performance of an SC with one supplier and one or 

more customers. The performance is measured using fill rate, and ready rate. The models 

have static demand across replenishment review periods (finite horizon). There are two 

policies used (see Chapter 3): FCFS and PLFR. Other chapters focus only on the FCFS 

models. Due to issues with multiple parameters, the models are based on simulation 

approach. 

Objective 1: The first objective is to model fill rate distributions for a supplier with a base 

stock policy and a single customer, and then to compare this to multiple customers each 

with their own agreement. Total demand in all scenarios is constant; The first objective 

is then extended by using a pooled inventory, multiple-customer model, with varying 

review period lengths. The effect of correlated customers’ demands are then considered 

and tested for the probability of overreaching the target fill rate. Service levels for a single 

supplier are examined for customers with different levels of demand. 

Objective 2: The second objective is to investigate the effect of various lead times on the 

fill rate performance of a base stock model system. This thesis explores cases with one 

customer with high demand and multiple customers with small demands.  

Objective 3: The third objective is to assess the variability of these results on consistency 

and asymptotic normality, extending the range of this measure to determine an optimal 

stock level and evaluate the reliability of the SC. 

Objective 4: The fourth objective is to model ready rate distributions for a supplier with 

a base stock policy and a single-customer case, and then to compare this to multiple 

customers each with their own agreement. Then we examine the impact of the base stock 

level, the type of penalty (lump-sum and linear penalty) and differences in ready rate 

thresholds on the supplier’s costs. This is tested with single and multiple customers. 
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Objective 5: The last objective is to identity possible future research directions that may 

improve and build on the work in this research. 

1.11 Contribution, Significance of Thesis 

It is well known that supply chain management is regarded as an essential element for 

success and customer satisfaction in most industries and businesses. In a supply chain, 

reaching customer satisfaction is dependent upon measuring and evaluating the 

performance of supplier with customers, and the two most important measures of this 

evaluation are the fill rate and ready rate. However, earlier research of finite-horizon fill 

rate and ready rate only inspect situations involving a single customer in the supply chain, 

whereas in practice, a supplier often deals with many more. Taking this perspective, this 

thesis introduces new models under one and multiple customers as well as under fill rate 

and ready rate measures to fully evaluate supplier performance. 

The components of this dissertation are as follows:  

1) Chapter 3 introduces two service policies for demand fulfillment to 

investigate finite-horizon fill rate behaviour when there are multiple 

customers for a supplier that uses a base stock policy. In this situation, 

customers’ demands are fulfilled from a pooled inventory according to an 

established service policy. Therefore, the base stock policy for a supplier 

with multiple customers signifies that there are stock level (S) items 

available in each replenishment period to fulfil the demand of all 

customers. The inventory is replenished to S at the beginning of each 

replenishment period.  Altering the time frame of the performance review 

period and tracking the correlation between customers’ demands allows 

for an examination of the changes in the average fill rate and the 

probability of exceeding the target fill rate of each customer. The findings 

in this thesis provide insights that can assist suppliers in the design and 

negotiation of SLAs. The results of this model have been published in 

Omega Journal. 

2) The thesis explores the impact of lead times on the finite-horizon fill rate 

of a base-stock inventory system. Specifically, new models were 

developed to examine the effect of lead time on the distribution of the fill 

rate over finite horizons with various review period lengths for single and 
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multiple customers. Findings suggest that when the lead time increases, 

the supplier needs to stock more units to reach a defined average fill rate; 

however, an increase in the lead time leads to a higher probability of 

exceeding the target fill rate when the expected fill rate is fixed. The 

insights provided in Chapter 4 can have a significant influence on crafting 

an SLA and assist suppliers and customers both in deciding on the review 

period length as well as bonus and penalty amounts. The results of this 

model have been published in the Manufacturing and Service Operations 

Management (MSOM) conference, New Zealand. 

 

3) The third component concerns reliability measures for the fill rate so as to 

assess consistency and asymptotic normality and determine an optimal 

base stock level for single or multiple customers. Reliability was 

established with a set of equations, numerically tested first for one 

customer, and then extended to two customers. Results revealed that the 

upper bounds for reliability increased with increasing performance review 

duration and decreased as confidence levels rose, reaching symmetry over 

the long-run contract FR. Utilising these findings, the optimal stock levels 

for reliability in the supply chain were established. The results of this 

model have been published in the International Society of Science and 

Applied Technologies (ISSAT) conference, New Jersey. 

 

4) Ultimately, a new model was developed to evaluate ready-rate behaviour 

in a multiple customer setting. The thesis examines the impact of 

contributing factors, such as the base stock level; two important forms of 

SLA penalties,lump-sum and linear; and the review period duration on the 

supplier’s cost function when the supplier deals with single and multiple 

customers. Given that the ready-rate is a random variable, a numerical 

approach is employed to systemically investigate cost outcomes under 

different SLA contracts. The findings provide useful insights that can 

assist suppliers in the design and negotiation of future SLAs and in 

devising strategies for achieving compliance, thus avoiding penalties once 
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an SLA is in place. The results of this model have been published in the 

Operational Research Society Journal. 

 

 

1.12 Main Research Questions 

This research examines the performance of supplier for both measures (fill rate and ready 

rate) over different review period phases, when suppliers faced two different types of 

SLA contract (a single customer with a large demand, and multiple customers with a 

smaller demand, in which both cases have the same demand). 

Here, we present main research questions for this thesis, whereas, each chapter has 

numerous of sub-questions. 

 

Chapter 3 will answer the first two questions, related to the average fill rate measure for 

a single and multiple customers; the answer to the second question tries to explain the 

different stocking levels required for the supplier to achieve the fill rate target: 

 What is the change in the average fill rate when the review period is increased for 

single and multiple customers? 

 What are the changes in the average fill rate and the probability of exceeding the 

target fill rate of each of multiple customers when compared to a single customer? 

These questions examined the fill rate measure for a supplier with zero lead time. Chapter 

4 will address the next question, which investigates the impact of lead time for the 

supplier and how many units should be stocked to achieve the fill rate target. 

 What is the impact on base stock levels of single and multiple customers’ cases 

over various review lengths and lead times? 

 

Chapters 3 and 4 are primarily concerned with fill rate—assessing its mean value and 

simulating sampling distribution under various supply and demand regimes. However, 

Chapter 5 considers the variance of the fill rate and uses this to consider its consistency 
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as an estimator as well as its asymptotic normality. Results are then extended to multiple 

customers. 

 

The previous questions were concerned about fill rates that SLAs measure. The next 

questions, addressed in Chapter 6, examine other important measures: 

 What base stock level is required to minimise the supplier’s expected cost? 

 How is the supplier’s expected cost affected by differing performance review 

phase durations? 

1.13 Thesis Structure 

This thesis is organised into seven chapters. Chapter 1 has introduced the background of 

the research. Chapter 2 is a literature review on the fill rate, ready rate lead time and 

simulation analysis. It explains the model selected for the research. 

Next, Chapter 3 examines the impact of the performance review period duration on the 

shape of the fill rate distribution, which is not well understood. Past studies on finite 

horizon fill rate only consider the situation where there is a single customer in the SC. In 

Chapter 3, we analyse fill rate distributions for a supplier that exercises a base stock policy 

and has multiple customers, each with their own SLA. In particular, we examine the 

impact of performance review period length and correlation between customers’ demands 

on the average fill rate, and the probability of overreaching the target fill rate, when a 

supplier has multiple customers and their demands are fulfilled from a pooled inventory. 

Further, we explore the realised service level for customers with different levels of 

demand dealing with a single supplier. Customers’ demands on the average fill rates are 

then correlated and tested for the probability of overreaching the target fill rate (0.95); 

these are compared to independent customers and a single customer. 

Chapter 4 investigates the impact of different supplier lead times on the finite horizon fill 

rate, considering one customer or multiple customers. Previous studies on the finite 

horizon fill rate are limited and assume a zero lead time for the supplier. Because lead 

time exists in firms, we study the effect of various lead times on the fill rate distribution 

and base stock over finite horizons with a variety of review period lengths. 
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Chapter 5 moves to the third objective, we will consider the variance of the fill rate and 

use this to consider its consistency as an estimator as well as its asymptotic normality. 

We also extend the results to multiple customers but will concentrate mainly on the case 

of two customers since extension beyond this case is straightforward but algebraically 

cumbersome. Measures of supply chain reliability for both the single and multiple 

customers are introduced, and finally, several numerical examples will be provided to 

illustrate the foregoing results. 

The fourth objective is to evaluate ready rate performance in a multiple customer setting. 

In Chapter 6, previous studies in ready rate SLAs performance have been solely 

concerned with one supplier serving one customer, whereas in practice a supplier usually 

deals with more than one customer. In multiple-customer cases, the supplier has an SLA 

with each customer, and a penalty is incurred whenever the agreement is violated. In 

Chapter 6, we examine the impact of various factors, such as the base stock level, the type 

of penalty (lump-sum or linear) and the review period duration on the supplier’s cost 

function when the supplier deals with multiple customers. Finally, Chapter 7 includes a 

review, a discussion on the models constructed and suggests areas for future studies. 
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1.14 Publications 

The following are publications based on the contents of this thesis: 

Conference proceedings 

 O Alamri, B Abbasi & Z Hosseinifard 2016, ‘The impact of lead time on the finite 

horizon fill rate in single and multiple-customer cases’, 6 July, MSOM Annual 

Conference, Auckland University, New Zealand. 

 P Zeephongsekul, O Alamri & B Abbasi 2016, ‘Fill rate: ensuring reliability in a 

supply chain’, H Pham (ed), Proceedings of the 22nd ISSAT International 

Conference Reliability and Quality in Design, International Society of Science 

and Applied Technology, New Jersey, pp. 1–5. 

Conference presentations 

 B Abbasi, Z Hosseinifard, O Alamri, D Thomas & J Minas 2016, ‘Service level 

agreement between a supplier and multiple customers’, December, NZSA-ORSNZ 

Annual conference, Auckland University, New Zealand. 

 O Alamri, B Abbasi, JP Minas & P Zeephongsekul 2016, ‘Comparing ready rate 

performance for a supplier in single and multiple customer cases’, 6 May, POMS 

Annual Conference, Orlando, FL. 

 B Abbasi, Z Hosseinifard, O Alamri, D Thomas & J Minas 2015, ‘One customer 

with large demand or multiple customers with smaller demands: a service level 

agreement perspective’, 10 May, POMS Annual Conference, Washington, DC. 

Journal articles 

We submitted four journal papers, of which two are under review and two has been 

accepted. 

 O Alamri, B Abbasi, JP Minas & P Zeephongsekul 2017, ‘Service level 

agreements: ready-rate analysis with lump-sum and linear penalty structures’, 

Journal of the Operational Research Society (forthcoming). 



  

19 

 

 O Alamri, B Abbasi & Z Hosseinifard 2017, ‘The impact of lead time on the finite-

horizon fill rate in the case of a supplier with multiple customers’, Australasian 

Journal of Information Systems (under review). 

 B Abbasi, Z Hosseinifard, O Alamri, D Thomas & J Minas 2017, ‘One-customer 

with large demand or multiple-customers with smaller demands: an SLA 

perspective’, Omega Journal (forthcoming). 

 P Zeephongsekul, O Alamri and B Abbasi 2016, ‘Fill rate: ensuring reliability in 

a supply chain’, ISSAT Journal (under review). 
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Chapter 2: Background and Literature Review 

2.1 Introduction 

Performance is critical in SCs, and the dynamic nature of supply has resulted in many 

possible directions for research since the field developed in the 20th century (Schneider 

1981). In inventory control, where undersupply results in penalties and oversupply 

inflates costs, research attention has been directed towards service constraints, SC 

optimisation, production performance measures and monitoring inventory control 

(Beamon 1999). This research investigates suppliers’ inventory service level measures, 

established by Schneider (1981) as the fill rate or ready rate, which are measured over 

either a finite or infinite horizon. Over time, these terms have diverged; for example, 

Liang and Aitkens (2013) use a ready rate or “stock-out rate” as measures for an inventory 

optimisation model. Thomas (2005) investigated the effect of varying the length of the 

performance review phase on both the optimal base-stock level and on the fill rate 

distribution. These elements are the focus of this literature review, as well as fill rate, 

ready rate, and lead time. In this chapter, an overview of the literature on fill rate and 

ready rate is provided but technical review related to the topic of each chapter is provided 

in the related chapter.  

2.2 Fill Rate 

For inventory measures, a periodic replenishment review inventory system, the 

‘traditional’ or standard approach for fill rate is to assess stock levels by unfilled orders 

and approximate future demand. In calculations, high standard deviations (SD) for this 

system lead to a negative value for fill rate. Second, total shortages are assessed for 

individual periods. Thus, shortages in series (continuous review) lead to an 

overestimation of the actual shortages (backorders), therefore underestimating the actual 

system fill rate (Nahmias & Olsen 2015; Vollmann, Berry & Whybark 1997). To address 

these anomalies, Hadley and Whitin (1963) used a Poisson-distributed random demand 

function. In this method, the expected shortage of units each period equals the average 

quantity that demand exceeds the base stock level with the lead time, plus the review 

period, less the average quantity that demand exceeds the base stock level with the lead 
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time. This approach is accurate when the review period is smaller than the lead time and 

there is a small SD in demand. 

Several attempts have been made to address the underestimating and overestimating 

anomalies in stochastic inventory systems with service level constraints. Johnson et al. 

(1995) observed that the traditional expression for line item fill rate, once under 95%, 

underestimates the exact fill rate and this underestimation becomes significant below 

90%. Extrapolating from Hadley and Whitin’s (1963) inventory system, Johnson et al. 

(1995) provided an exact expression for the fill rate in a periodic inventory system to 

account for high demand variability and customer returns. Tempelmeier (2007) argued 

that as well as the fill rate, the extent of the shortfall (backorder) in supply is important. 

Adding a new measure, Larsen and Thorstenson (2014) tested the customer order fill rate 

with order fill rate and volume fill rate, and found the new measure superior. Guijarro, 

Cardós and Babiloni (2012) approximated the fill rate, outperforming Johnson et al.’s 

(1995) estimation when there is probability of zero demand. Moving from the product, 

Milner and Olsen (2008) and Hasija, Pinker and Shumsky (2008) investigated supply 

agreements for call centres and estimated shortfall as percentages of delay time for 

waiting customers. 

In a restricted supply space, Mapes (1993) determined the service level fill rate of a 

restricted capacity periodic review safety equipment system to provide an agreed service 

level. Dubois, Allaert and Witlox (2013) used retail for their calculation of the fill rate of 

a periodic review order-up-to inventory system with capacitated replenishments, lost 

sales and zero lead time. Again in retail, Wan, Evers and Dresner (2012) examined the 

impact of product variety on fill rate, finding that it decreased by increasing the product 

variety; however, as product variety increases, the rate of decrease diminishes. 

In the standard periodic review, the interval of review is one unit of time; in an actual 

review the interval is (R ≥ 1). In calculating fill rate, multistage models could assist 

extended global SCs. Radner (1985) initially used multiple periods in a repeated 

principal-agent game. Radner (1985) found that the principal’s decision on an agent’s 

action for one period could affect performance on a second game, as both principal and 

agent became more efficient (skilled). These procedures were independent and identically 

distributed. Choi, Dai and Song (2004) examined contract performance for a supplier; 

next, a buyer firm was contracted to an end customer. Choi, Dai and Song (2004) argued 

that the end customer cannot be guaranteed delivery because of variables in replacement 
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of inventory, despatch or receipt and storage issues by either the supplier or the 

distributor. Given this risk, contracts can be based on long-run expectations of inventory 

availability. Zhang and Sobel (2012) solved the fill rate problem under single and 

multistage period reviews, concluding that higher fill rates occur with shorter SCs. Zhang 

(2010) also offered an exact expression for the fill rate for a general periodic two-stage 

inventory system, expanding the expression to N inventory system stage, optimising the 

standard SC performance. 

Using a base stock policy, Chen, Lin and Thomas (2003) showed that the expected value 

of the fill rate for a finite horizon is higher than that for an infinite horizon. They also 

proved that the expected fill rate value is highest when the length of the finite horizon 

(review period) is one. Larsen (2011) showed that for an infinite horizon, the estimation 

of the (volume) fill rate is more accurate than estimating the order fill rate. However, for 

a finite horizon model, the estimation of the order fill rate is more accurate than estimation 

of the (volume) fill rate. Thomas (2005) conducted a simulation study considering one 

customer in the SC, an Erlang distribution for the demand and a static periodic review 

base stock model to examine the behaviour of the fill rate distribution when the 

performance review period changes. He found that the average fill rate decreases when 

the performance review period length is increased. 

To minimise holding costs, Boyaci and Gallego (2001) and Shang and Song (2006) 

developed infinite horizon continuous review inventory models with fill rate constraints. 

Shang and Song derived a closed-form approximation for an optimal base stock model, 

imputing a shortage cost as the fill rate constraint. Banerjee and Paul (2005) found the 

average fill rate decreased when the review period increased in a base stock inventory 

system. Further confirmation came from an inventory experiment to determine optimal 

stock levels by Katok, Thomas and Davis (2008), used a controlled laboratory setting to 

study both performance review period length and magnitude of the bonus for meeting or 

exceeding the service level target in a supply chain with a single customer. They 

concluded longer performance review periods may be more effective than shorter ones 

because of enhanced feedback and the opportunity to improve service.  

Using the reward and penalty performance variables, Yin and Ma (2015) considered fixed 

and linear bonuses for an SC of two, a manufacturer and a retailer. They showed the 

retailer could achieve higher service level and higher profits with a fixed bonus rather 

than a variable bonus, if their results were based on modelling a single performance 
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review phase. Conversely, Liang and Atkins (2013) found that penalties that aligned 

closely with performance were preferable to either bonuses or set penalties. Following 

the penalties finding, Bijvank et al. (2014) used a lost sales approach, where a missing 

retail item is substituted and not purchased later. They tested three approaches and found 

Archibald’s (2007) solution optimal. The studies reviewed in this section examined the 

problem of a fill rate with a single customer, and assumed zero lead time. 

2.3 Ready Rate 

There has been some research on the ready rate in the early literature, discussing its part 

in stochastic modelling (Feeney & Sherbrooke 1966; Rosling 2002). In a US Navy 

context, Silver (1972) used the term to describe the inventory of useable spares for 

assembly. Others have assumed a meaning similar to the fill rate (Chen & Krass 2001; 

Schneider 1981). Larsen and Thorstenson (2008, 2014) consistently use the measure in 

their modelling, and Liang and Atkins (2013) used ready rate in their study. Other authors 

that have used the ready rate as a standard measure are Srivathsan and Kamath (2012), 

Rossetti et al. (2013) and Rossetti and Xiang (2010). Rossetti and Xiang (2010) 

commented that if the distributor experiences unpredictable (lumpy) demand and reorder 

quantities vary, a Poisson process would probably not apply and the ready and fill rate 

could markedly differ.  

Wang, Chen and Feng (2005, p. 667) define the time-window ready rate as ‘the 

percentage of periods in which orders are completely fulfilled within a pre-specified 

window’. Wang, Chen and Feng (2005) used a single-item single-location min-max (s, S) 

inventory system due to the complexity of their modelling, finding that changing the 

dimensions of the time-window to have considerable impact on inventory costs. Liang 

and Atkins (2013) confirmed that ‘time-window fulfilment’ was commonly used by 

industry, although in logistics rather than inventory. 

2.4 Lead Time 

Fulfilling customers’ orders promptly is a measure of a firm’s efficiency and productivity. 

A stock-out may not only cancel the order but also it will affect the probability of future 

customer demand (Bertazzi et al. 2013). In inventory management studies, lead time has 

been a point of interest (Priyan & Uthayakumar 2014). Heydari (2014) claimed that 
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ordering delay, transport or information issues between line members may disrupt the 

entire chain. Inappropriate lead time planning can therefore disrupt customer service or 

cause costly overstocking (Louly & Dolgui 2013). 

Lead time has a direct impact on the performance of inventory control systems (Berling 

& Marklund 2014). Lead time, the duration between order and delivery, may refer to the 

part of the SC or all of it. Li and Liu (2013) noted that the length of lead time can be 

affected by size and batching of orders, transport distances and delays, pricing 

prioritisations and adequate communications. Minimising lead time for suppliers can 

reduce high inventory levels and increase customer satisfaction. 

In SC operations lead time can have variety of effects on its members, ranging from lead 

times that are too long, too short, or to unpredictability in inventory control. Heydari 

(2014) reported on a retailer experiencing unpredictable delivery times. A model of a 

supply agreement was constructed that, as an incentive to the customer, stabilised lead 

time fluctuations. Improving transport (shipping) reliability leading to allow for SC 

continuity and improve its profitability. 

Disturbances along the SC lead to increased lead times. Spiegler, Naim and Syntetos 

(2016) developed a chain model, testing various disturbances. As the resulting model 

became nonlinear, Spiegler, Naim and Syntetos (2016) used simulation and nonlinear 

control theory to establish that inventory and order rate, as well as work-in-progress, were 

input dependent. As the lead time increases, the inventory level should be increased to 

compensate the inventory orders (the customer's demand). Expectations were that as lead 

times decreased, services improved, the chain became more efficient, flexibility improved 

and costs decreased. However, when the lead time decreases abruptly, Speigler, Naim and 

Syntetos (2016) found that operations along the chain were disrupted, while oversupply 

of inventory was reduced. The authors cautioned that reduced lead times should be 

stepped so that the chain nodes could adapt to the new rate. Muckstadt and Sapra (2010) 

advocated for establishing continuous reviews of lead times. 

In modelling, stochastic lead time relates not to a precise period, but to a statistically 

probable period (Wang & Disney 2017). An assumption of a constant lead time refers to 

classic safety stock policy (Kouki, Jemaï & Minner 2015). Ren, Li and Che (2016) 

modelled key points along a SC of perishable goods, established an inventory level to 

minimise waste and a change point. Stock-out occurs after the change point comprised of 
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the retailer’s inventory and ordering costs, and this is further reliant on the length of the 

lead times, particularly for perishable goods. 

2.5 Simulation and Analysis 

Simulation can be useful to identifying options when designing SCs in a complex and 

uncertain decision environment for suppliers and customers. To estimate the fill rate 

along a SC with a manufacturer or distributor and one or more customers, a simulation 

approach may be used, similar to Thomas (2005) or Katok, Thomas and Davis (2008) for 

service agreements, or Mapes (1993) for fill rate. Ingalls (1998) and Lee et al. (2002) 

advised on modelling and simulation for designing SCs. Tzafestas and Kapsiotis (1994) 

used simulation to examine their SC model. In a multistage SC, Zhang and Zhang (2007) 

simulated information sharing on SC performance. The simulation approach is the 

method of designing a model of a real-life system to realise the behaviour of the system 

or/and evaluate strategies for the processes of the system. 

Modelling is used to test stochastic SC designs over time, illustrate SC variables, and 

isolate the problem under discussion (Kulkarni, 2016). Brandenburg et al. (2014) surveyed 

the recent literature on SCs, noting formal modelling studies for closed-loop SCs, reverse 

logistics, environmental effects and social factors in forward SCs. They found that a focus 

on multiple variable decision makers was emerging, and techniques included analytical 

hierarchy processes, analytical networking and life cycle analysis. Using both supply and 

time targets within a review period, Thomas (2005) explained that if the contract 

stipulates a fixed number of items then the target time must vary; if the time is fixed, then 

the number of items varies. Nevertheless, a standard (finite horizon) contract has both a 

set number of items and a due date. Thomas (2005) then constructed a static periodic 

review base stock model to illustrate the fill rate distribution for different review periods. 

In this dissertation, we use a simulation approach similar to Thomas’ (2005) to analyse 

the fill rate and ready rate SLAs measures in a SC with multiple customers. This is due 

to the complexity arising from the numerous parameters in the model. Thomas (2005) 

noted that researchers standardised the inventory fill rate as stationary demand, which is 

independent over replenishment review periods for finite time (finite horizon). Further, 

with a base stock policy and zero lead time, the value of the long-run fill rate is less than 

the expected value for a periodic fill rate. The fill rate is a random variable across a finite 

time horizon, the incentive for studying this random variable derives from the extensive 
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practical use of fill rates as the performance measure in SLAs. Understanding the 

processes for replenishment is of value to managers due to their targets for performance 

incentives and penalties. Using a stationary base stock policy, Thomas examined the 

effect of varying review periods on demand distribution and penalty costs with the fill 

rate SLA measure. 

Further research has been undertaken on this concept. Katok, Thomas and Davis (2008) 

simulated an SC agreement, where a supplier is committed to a minimum fill rate for a 

given period with a single customer. Two factors were studied in the simulation by Katok, 

Thomas and Davis (2008), during different review periods, and had different incentives 

for meeting contract conditions. Under these conditions, the supplier’s bonus rate may 

increase the fill rate, whereas the effect on varying review periods is unknown. The 

simulation showed that longer review periods were more effective due to more time for 

communication and response between the parties. 

The concept of ‘a single-item, single-stage, continuous review inventory system with 

backordering and constant lead times controlled by a base stock policy’, as Larsen and 

Thornsten (2014, p. 13) commented, has been extended in many different directions. This 

was to be expected, given the range of SCs and contractual obligations that developed 

over time. 

2.6 Research Gap 

This chapter contains a review of the literature on modelling fill rates, ready rates, 

lead times, and different service policies for demand fulfilment for each research 

component. Under fill rate SLA measures, some studies developed fill rate with a single 

customer (Thomas, 2005); (Katok, Thomas, and Davis, 2008), while others considered fill 

rate with a single review period (Yin and Ma, 2015). However, despite many suppliers 

dealing with more than one customer, all the research on fill rate and SLAs focuses on 

cases with only one customer; from what can be ascertained, there has yet to be research 

investigating the fill rate in multiple customer situations. Furthermore, in the multiple- 

customer case, two different policies for fulfilling customers’ demands are considered: a 

First-Come-First-Served (FCFS) policy and a second policy (called PLFR throughout the 

thesis) which prioritises customers based on current measured fill rate performance. 

Chapter 3 addresses this gap in the literature by studying the effect of having multiple 

customers on the fill rate with various performance review period lengths. 
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Moreover, the majority of previous studies on the finite-horizon fill rate assumed 

zero lead time, even though it is unrealistic in real-world businesses. Hence, in Chapter 

4, this thesis attempts to fill a gap in the literature: analysis of the finite-horizon fill rate 

in an SC with a positive lead time. 

From what can be gathered, all literature dealing with fill rate is mainly concerned with 

its mean value and with simulating its sampling distribution under various supply and 

demand regimes. In Chapter 5, the variance of the fill rate is assessed and used to consider 

its consistency as an estimator, as well as its asymptotic normality. The results are also 

extended to multiple customers, however this thesis concentrates mainly on the case of 

two customers, as extension beyond this case is straightforward but algebraically 

cumbersome. Measures of SC reliability for both single and multiple customers are 

introduced, and finally, several numerical examples are provided to illustrate the 

foregoing results. 

Finally, under ready rate SLA measures, our research fills a gap in the existing literature; 

this thesis is the first to evaluate ready rate performance in a multiple customer setting. 

Since the ready rate is a random variable in a finite time horizon, a numerical simulation 

approach is employed to systemically investigate cost outcomes under different SLA 

contracts. The research uses a periodic-review, base-stock model with zero lead time. In 

the analysis, an evaluation is carried out on the effect of different penalty types (fixed and 

linear) over varying performance review phase durations. Also investigated are the effects 

of varying base-stock and demand levels. Throughout, the thesis compares and contrasts 

the multiple customer case to the well-studied single customer case. The results have 

direct managerial implications for customers and inventory suppliers for both current and 

future SLAs.  
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Chapter 3: Finite Time Horizon Fill Rate Analysis for 

Multiple-Customer Cases 

3.1 Introduction 

In inventory theory, the management of inventory, its mechanisms and related service 

levels (such as fill rate) have been an active area of study since the 1950s (Johnson et al. 

1995). A popular performance measure of service level in inventory management is the 

item fill rate. Lee and Billington (1992) and Johnson and Scudder (1999) reported that the 

item fill rate is a popular and preferred service level measurement applied in many firms. 

The fill rate is defined as ‘the long run average fraction of demand satisfied immediately 

using on-hand stock’ (Zhang & Zhang 2007). In this chapter, we study the item fill rate 

(also referred to as the ‘fill rate’) as our service level measure. This choice from the 

extensive practical use of fill rates as the performance measure in SLAs. 

In this chapter, we try to clarify the ‘replenishment period’. In practice, a supplier may 

replenish the inventory to a base stock level at a specified time interval, called the 

replenishment period; for example, weekly, monthly or daily. Supplier performance is 

then evaluated at a regular interval, referred to as the ‘performance review period’; for 

example: monthly, quarterly or six-monthly. In a given performance review period, a 

supplier may incur a financial penalty for not meeting a target fill rate that is specified in 

the terms of the SLA. In some SLAs, the supplier may receive a bonus for exceeding the 

target fill rate level. In a finite period, inventory level and supplier performance can be 

monitored. This information can be used to assist a supplier in meeting or exceeding the 

terms of the SLA. 

In regular SLAs, when the supplier signs the contract, they are responsible for reaching a 

target fill rate at each performance review point. Unfortunately, it is not easy to calculate 

the probability of achieving a specific fill rate target for a given base stock level and 

performance review cycle. In practice, some suppliers with SLAs use an infinite horizon 

model, then ‘overshoot’ to increase their probability of success. For instance, if a supplier 

must exceed a 90% fill rate, they might establish their stock level based on a 93% long-

run fill rate. This ‘overshooting’ is done to improve their probability of success and avoid 

any related penalties.  



  

29 

 

3.2 Procedure for Fill Rate Analysis 

The fill rate can be measured over various performance review periods (finite time 

horizons). The problem is to establish the effects of review period length and the 

correlations between customers’ demands on average fill rate, and the probability of 

overreaching the target fill rate. In fill rate analysis a probability of exceeding the target 

is of interest, especially if the problem is compounded with multiple individually 

contracted customers. The multiple-customer demands are filled from the supplier’s 

pooled inventory, with constant demand. Inventory policies for multiple customers’ cases 

considered in this thesis are FCFS and PLFR. These constraints are examined under both 

demand Erlang distribution and normal distribution. Taking the problem from the 

customers’ perspective, the realised service level is calculated for customers having 

different levels of demand, all with the same supplier. 

3.3 Related Research Questions for this Chapter 

The research questions for this chapter are: 

Q3.1 What is the change in the average fill rate when the review period is 

increased? 

Q3.2 What is the change in the average fill rate and the probability of exceeding 

the target fill rate of each of multiple customers, compared to a single 

customer? 

Q3.3 How does the correlation structure of demand affect the average fill rate and 

the probability of overreaching the target fill rate of each customer? 

Q3.4 Who receives the better service (higher average fill rate and higher 

probability of exceeding the target fill rate): the customer with higher 

demand or the customer with lower demand? 
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3.4 Model and Notations 

The notations for this model are: 

𝑇: duration of review period measured by the number of replenishment periods. 

For example, when T = 5 it means the performance is reviewed after 5 

replenishment periods. 

S: base stock level; 

I: set of customers, cardinality of set I is n; 

𝐶𝑖: customer index; the customer index is deleted in cases of a single customer or 

with multiple identical customers; 

𝛼𝑡
𝐶𝑖(𝑆, 𝑇): the fill rate for customer i for the period t,….t+T where T is the review 

period, any S is the base stock level and 𝛼𝑡
𝐶𝑖(𝑆, 𝑇) is a random variable; 

𝑌𝑖𝑡: customer i demand at time t, where t is expressed as discrete time (e.g., a day); 

𝑋𝑖𝑡: demand satisfied from inventory for customer i at time t, 𝑋𝑖𝑡 =

min(𝑌𝑖𝑡, available inventory): 

     ∑ 𝑋𝑖𝑡 = min (∑ 𝑌𝑖𝑡,𝑛
𝑖=1 𝑆)𝑛

𝑖=1  

�̅�𝐶𝑖(𝑆, 𝑇): the average fill rate for customer i, when the base stock level is S and 

review period is T; 

𝑃𝜋𝑖

𝐶𝑖(𝑆, 𝑇): the probability of exceeding the target fill rate of 𝜋𝑖 for customer i, 

when the base stock level is S and the performance review period is T. 

We assume a discrete time situation, where at each time t there are S units in stock and 

stochastic demands arrive from customers. All unmet demand is lost. Inventory is 

replenished to S for period t. An algorithm is used for multiple customers under the FCFS 

constraint; for two simultaneous customers, there is a 50% chance that customer 1 is 

served first. For the prioritised constraint with multiple customers, the customer with the 

highest negative deviation from their target fill rate in the current period is served first. 

For example, if 𝑇 = 5 days and on day 4 the supplier is unable fill all demand, each 

customer’s fill rate for the previous three days is calculated and customers are prioritised 

according to the difference between their computed three-day fill rate (for the previous 
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three days) and their target fill rate. Note that the PLFR policy is not necessarily optimal, 

as the optimal policy must be designed based on the penalty structure outlined in the 

varying agreements. Accordingly, the fill rate for the period t…., t+T for customer i is: 

                𝛼𝑡
𝐶𝑖(𝑆, 𝑇) ≡  

 𝑋𝑖(𝑡+1)+⋯+ 𝑋𝑖(𝑡+𝑇)

 𝑌𝑖(𝑡+1)+⋯+ 𝑌𝑖(𝑡+𝑇)
       (3.1) 

The average fill rate for customer i as a function of T and S is defined as: 

                             �̅�𝐶𝑖(𝑆, 𝑇) = 𝐸(
 𝑋𝑖1+⋯+ 𝑋𝑖𝑇

 𝑌𝑖1+⋯+ 𝑌𝑖𝑇
)                  (3.2) 

then the long-run fill rate is defined (for aggregated customers’ demand) by: 

                        �̅�(𝑆, ∞) = lim
𝑇→∞

E(
∑ ( 𝑋𝑖1+⋯+ 𝑋𝑖𝑇)𝑛

𝑖=1

∑  𝑌𝑖1+⋯+ 𝑌𝑖𝑇
𝑛
𝑖=1

)                            (3.3) 

and the probability of exceeding the target fill rate (𝜋𝑖) for customer i is: 

                       𝑃𝜋𝑖

𝐶𝑖(𝑆, 𝑇) = Pr ( 𝛼𝑡
𝐶𝑖(𝑆, 𝑇) ≥ 𝜋𝑖)       (3.4) 

In the next section, a simulation model is used to address research related questions 3.1 

to 3.4. 

3.5 Fill Rate Analysis Approach and Review Periods 

Simulation models are used to study real-life processes that change stochastically over 

time. Simulation can be useful to determine possible alternatives when designing an SC, 

where supplier and customers face a complex and uncertain decision environment. To 

evaluate the fill rate measure in an SC with multiple customers, due to difficulties from 

the several parameters in the model, a simulation approach similar to Thomas’ (2005) is 

applied in this chapter. Scenarios are then presented on customer numbers, service policy 

(FCFS or PLFR) and duration of the review period. In the single and multiple-customer 

case comparisons, in all our experiments we assume that the overall demand distributions 

are equal, with the exception of one experiment in Section 3.3, where the demand 

distribution in both one-customer and multiple-customer cases is Gamma, and the 

customers’ demands are correlated in the multiple-customer case. This is due to the fact 

that the distribution of the sum of two correlated variables with Gamma distribution is 

not Gamma. In that experiment, we fixed the overall mean and variance. 

When addressing Q3.1, regarding the change in the average fill rate when the review 

period is increased, all other parameters were fixed and review period lengths are set as 
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T= {5, 10, 20, 100}. Q3.2 concerned on changes in the average fill rate and the probability 

of exceeding the target fill rate of multiple customers when compared to a single 

customer. This is run via controlling T and S, and changing the number of customers in 

the SC. Q3.3 (regarding the correlation structure of demand impacting the average fill 

rate and the probability of overreaching the target fill rate of each customer) was run, 

controlling all parameters and changing the correlation coefficient of demand. The final 

question referred to better service, and this was run with all parameters controlled and the 

average and variance of demand changed for the customer with higher demand. 

From our simulation model’s output, we indicate the average fill rate (FR) in the plots, 

and some probabilities over the unknown distribution of the fill rate, such as the 

probability of exceeding the target FR, referred to here as the probability of success (PS). 

3.5.1 Calculating simulation runs 

The required number of simulation runs (sample size n) was obtained from the Dvoretzky-

Kiefer-Wolfowitz (DKF) inequality. Kosorok (2008) stated that the DKF inequality for a 

two-sided estimate of the empirical cumulative distribution is: 

Pr (Sup
𝑥∈R

(𝐹𝑛(𝑥) − 𝐹(𝑥)) > 𝜀) ≤ 2𝑒−2𝑛𝜀2
      (3.5) 

where 𝜀 is the error in estimation (𝜀 > 0), 𝐹𝑛(. ) is the estimated empirical cumulative 

distribution and 𝐹(𝑥) is the true cumulative distribution. Therefore, to have an error less 

than or equal to 𝜀 in estimating 𝐹𝑛(. ) with (100 × 𝜃)% confidence (e.g., 0.95), the 

required 𝑛 is obtained as: 

𝑛 = 𝑙𝑛 (
1−𝜃

2
) /(−2𝜀2)        (3.6) 

In this dissertation, we set the targets for FRs by 𝜃 = 0.95 and 𝜀 = 0.01, thus 18,445 was 

the optimum number of simulation runs, representing 18,445 review periods (e.g. 18445×

10 days when the performance review period T = 10). Then, output for the simulation 

model for each scenario was 18,445 FR values, to approximate the distribution of the FR. 

3.5.2 Distributions of customer demand 

To validate the model in our simulation experiments, for accurate results, two 

distributions of customer demand were examined. The first was the Erlang distribution, 

with a shape parameter of 𝑘 and scale parameter of 1 denoted by 𝐸𝑟𝑙𝑎𝑛𝑔 (𝑘). The Erlang 
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distribution has been used to study the finite horizon fill rate in previous studies (Hira 

2009; Thomas 2005). The second distribution for customer demand employed in this 

study is the normal distribution 𝑁 (𝜇, 𝜎2). When demand distribution is normal, the 

parameters are selected such that the probability of having a negative demand is very 

small; however, when the demand is negative it is assumed to be zero. When there are 

multiple identical customers, the demand distribution of each customer is Erlang(
𝑘

𝑛
) and 

normal(
𝜇

𝑛
, √

𝜎2

𝑛
),. Situations in which customers are not identical are analysed later in this 

chapter. 

We can design and employ our experiments for any base stock-level S. However, to be 

consistent with previous studies, for some of the experiments we select S, such that the 

long-run FR for the aggregated demand is 0.95. To calculate the value of S that yields a 

given long-run FR, the relationship between the unfulfilled demand and the long-run FR 

was used. 

Let μ denote the expected value of demand and α denote the long-run FR. Then 1 − α is 

the average percentage of lost demand. Hence, the expected value of unfulfilled demand 

is (1 − α)μ. Therefore: 

𝜇(1 − 𝛼) = ∫ (𝑦 − 𝑆)𝑓(𝑦)𝑑𝑦
∞

𝑆

 

𝜇(1 − 𝛼) = ∫ 𝑦𝑓(𝑦)𝑑𝑦 − 𝑆(1 − 𝐹(𝑆)
∞

𝑆

) 

where 𝑓(. ) and 𝐹(. ) are the probability density function (pdf) and cumulative distribution 

function (CDF), respectively. By simplifying the above formula, we obtain: 

𝛼 = 1 + (𝑆(1 − 𝐹(𝑆)) − ∫ 𝑦𝑓(𝑦)𝑑𝑦
∞

𝑆
)/𝜇      (3.7) 

For Erlang(𝑘), (3.7) is simplified to: 

𝛼 = 1 +
𝑆

𝑘
(1 − 𝐹(𝑆)) − (

1

𝑘
∫

𝑦𝑘𝑒−𝑦

(𝑘 − 1)!
𝑑𝑦

∞

𝑆

) = 1 +
𝑆

𝑘
(1 − 𝐹(𝑆)) − (1 − 𝐹"(𝑆)) 

where 𝐹"(. ) is the CDF of Erlang(𝐾 + 1). 

 

We finally obtain: 
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𝛼 = 𝐹"(𝑆) +
𝑆

𝑘
(1 − 𝐹(𝑆))       (3.8) 

By setting the long-run FR to 0.95 for Erlang (6) and Erlang (9), base stock levels are 

reached at 8.11 (S = 8.11) and 11.29 (S = 11.29), respectively. 

3.5.3 The FR distribution 

For a supplier with multiple customers, we examine the effect of performance review 

period length on the average FR and the probability of exceeding the target FR. We run 

the simulation for the one and three-customer cases, applying two different customer 

demand distributions (Erlang and normal), with four different performance review 

periods (i.e., T = 5, 10, 20, 100), and two different service policies (FCFS and PLFR). In 

total, we simulate 24 scenarios. Figures 3.1 and 3.2 present the FR distributions when T 

= 5 and 10, 20, 100 and the demand distribution is Erlang. In each plot there are two 

vertical lines, the green dashed line indicates the target FR threshold of 0.95, while the 

solid red line shows the average FR for each scenario. The average FR, the probability of 

exceeding the target fill rate of 0.95 (PS), and the fifth quintile (Q5) are reported. Figures 

3.3 and 3.4. present the plots for Erlang and normally distributed demand with T = 5, 10, 

20 and 100.While the FR is a continuous measure between 0 and 1, the output of each 

simulation scenario is 18,445 FR values. These values are used to construct the density 

histograms in Figures 3.1 and 3.4. 

All experiments were performed on an Intel Core i7 CPU with a 2.2 GHz processor and 

16 GB RAM. The codes were written in Python programming language (Python 3.4 

version). To solve these models, we applied other packages to solve methods, such as 

Numpy, Sicipy, Matplotlib and Anaconda. When solving simulation algorithm codes in 

Figures 3.5 to 3.10, it took a long time to reach the results (typically two to five days, 

especially when we increased the length of the performance review period) due to many 

loops and the desired accuracy of the results. 

The comparison of the results in Figures 3.1.a, 3.1.b, 3.2.a and 3.2.b shows that in the 

single-customer case, when T is increased, the average FR decreases. The same impact is 

detected in the multiple-customer case in Figures 3.1.c-f and 3.2.c-f for both service 

policies (FCFS and PLFR). The probability of exceeding the target FR is higher when the 

FCFS policy is used, whereas Q5 is higher for the PLFR policy. This is due to the fact 

that in the PLFR policy the customer with the lowest (current) FR is always prioritised, 
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and this serves to cut the left tail of the FR distribution. However, at the same time, it may 

squeeze the right tail of the FR distribution and thus cause a reduction in PS compared to 

the FCFS. 
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Note: FCFS 2nd row, PLFR 3rd row 

Figure 3.1: The distribution of FR when the distribution of the overall demand is 

𝐄𝐫𝐥𝐚𝐧𝐠(𝟗) and T is 5 or 10. In each plot, n denotes the number of customers, FR denotes 

the average fill rate and PS denotes the probability of exceeding the target fill rate of 0.95   

The vertical red solid line and green dashed line show the average FR and the target FR, 

respectively. 

c. Three customers with demand distribution of Erlang(3), T = 5 and 
Service Policy is FCFS 

e. Three customers with demand distribution of Erlang(3), T = 10 

and Service Policy is PLFR 

a. One customer with demand distribution of Erlang(9) and T = 5 b. One customer with demand distribution of Erlang(9) and T 

= 10 

d. Three customers with demand distribution of Erlang(3), T 

= 10 and Service Policy is FCFS 

f. Three customers with demand distribution of Erlang(3), T = 5 and 

Service Policy is PLFR 
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Note: FCFS 2nd row, PLFR 3rd row 

Figure 3.2: The FR distribution when the distribution of the overall demand is 𝐄𝐫𝐥𝐚𝐧𝐠(𝟗) 

and T is 20 and 100. The plots in the second row show the result when the FCFS policy is 

used, and the plot in the third row shows the results when the PLFR service policy is used. 

a. One customer with demand distribution of Erlang(9) 

and T = 20 
b. One customer with demand distribution of Erlang(9) 

and T = 100 

c. Three customers with demand distribution of Erlang(3), 

T = 20 and the service policy is FCFS 
d. Three customers with demand distribution of 

Erlang(3), T = 100 and the service policy is FCFS 

e. Three customers with demand distribution of 

Erlang(3), T = 20 and the service policy is 

PLFR 

f. Three customers with demand distribution of Erlang(3) , T 
= 100 and the service policy is PLFR 
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Figure 3.3: The FR distribution when the distribution of the overall demand is 

𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟑) and T is 5 and 10. The plots in the second row show the result when the 

CFS policy is used, and the plot in the third row shows the results when the PLFR service 

policy is used. 

a. One customer with demand distribution 

of N(12,3) and T=5T= 20 

c. Three customers with demand distribution of 

N(4,1.73), T=5 and the service policy is FCFS 

d. Three customers with demand distribution of 

N(4,1.73), T=10 and the service policy is FCFS 

b. One customer with demand distribution of 

N(12,3) and T=10 

e. Three customers with demand distribution of 

N(4,1.73), T=5 and the service policy is PLFR 
f. Three customers with demand distribution of 

N(4,1.73), T=10 and the service policy is PLFR 
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Figure 3.4: The FR distribution when the distribution of the overall demand is 

𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟑) and T is 20 and 100. The plots in the second row show the result when 

FCFS policy is used, and the plot in the third row shows the results when PLFR service 

policy is used. 

  

a. One customer with demand distribution of 

N(12,3) and T=20 

c. Three customers with demand distribution of 

N(4,1.73) ,T=20 and the service policy is FCFS 

PLFR 

e. Three customers with demand distribution of 

N(4,1.73), T=20 and and the service policy is PLFR 
f. Three customers with demand distribution of 

N(4,1.73), T=100 and the service policy is PLFR 

PLFR 

d. Three customers with demand distribution of 

N(4,1.73), T=100 and the service policy is FCFS 

PLFR 

b. One customer with demand distribution of 

N(12,3) and T=100 
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Figures 3.3 and 3.4 display the FR distributions for one customer and three independent 

customers when the performance review period is T = 5, 10, 20 and 100, and the 

distribution of the overall demand is normal (12,3). In the case with three customers the 

distribution of demand for each customer is normal (4, √3). The base stock level in this 

scenario is S = 13.481, to have a long-run FR of 0.95. The results in Figures 3.1, 3.2, 3.3 

and 3.4 show that when increasing the performance review period the average FR 

decreases. They also show that the average FR when T is fixed is the same for the one-

customer and multiple-customer case (for both the FCFS and PLFR policies). The latter 

point will be verified by the results presented in Figures 3.5, 3.6, 3.7 and 3.8. 

In the next step we compare the FR and PS for the single versus multiple-customer cases, 

considering several base stock-level (S) and review period length (T) values. In the single-

customer case the demand distribution is Erlang(6), while in the multiple-customer case 

there are two customers each with Erlang(3) demand. Thus, in all cases the overall 

demand distribution is Erlang(6).  We also compare the FR and PS for single versus 

multiple-customer cases, where the demand distribution is normal (12, 2). The 

distribution of demand for each customer under multiple-customer case is normal (6, √2). 

To answer question Q3.1 (What is the change in the average FR when the review period 

is increased?) the following results were obtained. Figure 3.5 shows that the average FR 

is fixed for a given S in all cases (one customer; two customers under either FCFS or 

PLFR policies). Figure 3.6 is similar to Figure 3.5, but shows cases with normal demand 

distribution. The Figure 3.6 results using either FCFS or PLFR policies are consistent 

with Figure 3.5 results; that is, average FRs are the same for single or multiple customers.  

Figure 3.7 displayed a convex shaped plot in both single and multiple customer cases, 

where s T rose probability of success (PS) first decreased, and then increased. For 

instance, with a short review period (lower than a threshold (𝜃), e.g., T= 5), a supplier 

would prefer multiple customers due to the increased PS. However, longer review periods 

result in a preference for a single customer. Figure 3.8 is similar to Figure 3.7, but shows 

cases with normal demand distribution. The results of Figure 3.8 verify the findings from 

Figure 3.7 that indicate for shorter T, the probability of exceeding the target FR is higher 

for multiple customers, and for longer T, the probability of exceeding the target FR is 

higher for a single customer. 
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Figure 3.5: Comparison of the average FR for the single and multiple-customer cases. In 

the single-customer case the demand distribution is 𝐄𝐫𝐥𝐚𝐧𝐠(𝟔). In the multiple-customer 

case there are two customers each with an 𝐄𝐫𝐥𝐚𝐧𝐠(𝟑) demand distribution. 

  

  
      a. The average fill rate for T = 5 and different S 

 

       b The average fill rate for T = 10 and different S 

 
 

       c. The average fill rate for T = 20 and different S     d. The average fill rate for T = 30 and different  S 
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Figure 3.6: The change in the average FR. The overall demand distribution 

is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐). The distribution of demand for each customer in multiple-customer 

case is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟔, √𝟐). 

 

  

  

 
 

a The average fill rate for T=5 and different S b. The average fill rate for T=10 and different S 

  
           c. The average fill rate for T=20 and different S d. The average fill rate for T=30 and different S 
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Figure 3.7: Comparison of the probability of exceeding the target FR (PS) of 0.95 for the 

single and multiple-customer cases. In the single-customer case the demand distribution is 

𝐄𝐫𝐥𝐚𝐧𝐠(𝟔). In the multiple-customer case there are two customers each with an 𝐄𝐫𝐥𝐚𝐧𝐠(𝟑) 

demand distribution. 

 

  

  

a. PS for S=9 when T changes from 1 to 25 b. PS for S=10 when T changes from 1 to 25 

  

c. PS for S=11 when T changes from 1 to 25 d. PS for S=12 when T changes from 1 to 25 

 



  

44 

 

 

Figure 3.8: The change in the probability of exceeding the target FR (PS) of 0.95. The 

overall demand distribution is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐). The distribution of demand for each 

customer in multiple-customer case is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟔, √𝟐). 

 

 

 

a.    PS for S = 12 when T changes from 1 to 25 b.  PS for S = 13 when T changes from 1 to 25 

  

             c. PS for S = 14 when T changes from 1 to 25 d .           PS for S = 15 when T changes from 1 to 25 
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3.6  Probability of Exceeding Target FR 

Question 3.2 is: What is the change in the average FR and the probability of exceeding 

the target FR of each of multiple customers when compared to a single customer? 

In this section, the probability of exceeding the target FR for each customer is considered 

through various scenarios. We answer research question 3.2 by analysing the required 

base stock level (S) to realise a given probability of exceeding the target FR in the 

multiple-customer context. 

In each case, there is a numerical search for the lowest base stock level (S) that can satisfy 

the given PS. This is undertaken by applying a simulation-optimisation approach to solve: 

 

                                   Min S           (3.9) 

Subject to: 

𝑃𝜋𝑖

𝐶𝑖(𝑆, 𝑇)  ≥ γ𝑖, For all 𝑖, i= 1,..., n 

S ≥ 0 

where 𝜋𝑖 is the target FR for customer 𝑖 and γ𝑖 is the required probability of exceeding 

the target FR for customer 𝑖. 

3.6.1 Procedure for probability analysis 

In the simulation-optimisation approach, a systematic heuristic search method is used, 

similar in concept to the bisection method for numerically finding the root of 𝑓(𝑥) = 0. 

Initial base stock values are, 𝑆1 and 𝑆2, where 𝑆1 is a low number so that 𝑆 = 𝑆1 results 

in the violation of at least one constraint in Equation (3.9); while 𝑆2 is higher so that 𝑆 =

𝑆2 satisfies all constraints in (3.9). 

A new base stock level is defined as 𝑆𝑛𝑒𝑤 =
𝑆1+𝑆2

2
 and if by setting 𝑆 = 𝑆𝑛𝑒𝑤 all the 

constraints in Equation (3.9) are satisfied, then 𝑆2 = 𝑆𝑛𝑒𝑤 ,otherwise 𝑆1 = 𝑆𝑛𝑒𝑤. The 

procedure continues until 𝑆2 − 𝑆1 ≤ 𝜉 or the number of iterations exceeds 𝜓 (𝜓 can be a 

large number or a constraint that can be removed). On running the calculation, 𝑆2 is the 

solution obtained for Equation (3.9). 𝜉 is the highest acceptable error for S that guarantees 
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that the optimal S is not less than  𝑆2 − 𝜉. In this study 𝜉 = 0.01 and = 50. The pseudo 

code for this simulation-optimisation approach is shown below: 

 

Results for Q3.2 

 

Table 3.1: Pseudo code of the simulation-optimisation method used 

for solving (9) 

Initialization  

Set Initial 𝑆1 and 𝑆2 such that 𝑆 = 𝑆1 violates at least one of the 

constraints in (9) and 𝑆 = 𝑆2 satisfies all of the constraints in (9). Set 𝜔 =

0. The simulation model should be run for S to check if any of the constraints 

are violated. 

While 𝑆2 − 𝑆1 ≥ 𝜉 and  𝜔 ≤ 𝜓 

 𝑆𝑛𝑒𝑤 =
𝑆1+𝑆2

2
  

Run the simulation model for 𝑆 = 𝑆𝑛𝑒𝑤 

           If   𝑆 = 𝑆𝑛𝑒𝑤  satisfies all constraints in (9) then 

𝑆2 = 𝑆𝑛𝑒𝑤  

otherwise 𝑆1 = 𝑆𝑛𝑒𝑤 

𝜔 =  𝜔 + 1 

End While  

𝑆 = 𝑆2  
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Results for Q3.2 

The results of the model (3.9) for different parameter values are presented in Figure 3.9. 

The overall distribution of demand is Erlang (9), and each multiple customer has a 

demand distribution of Erlang (3). The figure shows the stock levels for one or three 

customers to exceed a 95% target FR with probabilities of success (50%, 70%, 90% and 

95%), when the distribution of the overall demand is Erlang(9). 

In Figure 3.9, when we decrease the performance review period, the required S to achieve 

a given PS is lower when there are multiple-customer, regardless of the service policy 

used (FCFS or PLFR). In each of the plots in Figure 3.9, we can observe a threshold T 

value (𝜃), where the single and multiple-customer curves intersect. This is the ‘point of 

indifference’, where the required S to achieve a given PS is equal in the single and 

multiple-customer cases. For T values greater than 𝜃, a lower S is required in the single-

customer case. 

Likewise, it can be seen that this threshold value (𝜃) decreases as the required PS 

increases. For instance, for the PLFR policy, when the required PS is 0.7 then 𝜃 = 8, 

meaning that if 𝑇 < 8, a lower S is needed in the multiple-customer case. However, when 

the required probability of success is increased to 0.9, the threshold 𝜃 below which a 

lower S is required in the multiple-customer case is reduced to 6, and when PS =0.99 the 

threshold 𝜃 is below 5. This finding is valid for both the FCFS and PLFR policies. 

The phenomena described above can be understood by looking at the FR distributions 

presented in Figures 3.1, 3.2, 3.3 and 3.4. When T is short, the spread of the distribution 

is less in the multiple-customer case, and hence a lower base stock level is required to 

achieve a given PS when compared to the single-customer case. Conversely, when T is 

long, the spread of the distribution is less in the single-customer case, and so to reach a 

given PS a lower base stock level is needed when servicing a single customer. This 

analysis was repeated for normally distributed demand, and the results are presented in 

Figure 3.10. 
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Figure 3.9: The comparison between one and three customers in terms of the base stock 

levels needed to meet a 95% target FR with various probabilities of success (50%, 70%, 

90% and 95%), when the distribution of the overall demand is 𝐄𝐫𝐥𝐚𝐧𝐠(𝟗). 

 

  

a. The required S for PS = 0.5 b. The required S for PS = 0.7 

  

c. The required S for PS = 0.9 d. The required S for PS = 0.95 
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Figure 3.10: The required S to achieve a predefined probability of exceeding the target FR 

of 0.95 (PS) in the case of one and multiple customers. The demand distribution for the 

single-customer case is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟔, 𝟑) and it is 𝐍𝐨𝐫𝐦𝐚𝐥(
𝟏𝟔

𝟑
, √𝟑) for each customer in the 

multiple-customer case. 

 

  

a. S required for PS = 0.5 b. S required for PS =  0.7 

  

             c.  S required for PS = 0.9                  d. S required for PS = 0.95 
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Figure 3.10 shows the S levels required for various PS values (i.e., 0.5, 0.7, 0.9 and 0.95) 

in overreaching the target FR of 0.95 for the cases where the demand distribution is 

normal. The results of Figure 3.10 are consistent with those of Figure 3.9. 

The answer to the question (What are the changes in the average FR and the probability 

of exceeding the target FR of each of multiple customers when compared to a single 

customer?) follows. With short review periods, the supplier needs lower stock levels 

when there is more than one customer. As review period duration lengthens, a supplier 

with a single customer can hold lower stock levels than if there are multiple customers. 

This finding is consistent with the finding for the first research question. 

 

3.6.2 Correlated customer demands 

Question 3.3 is How does the correlation structure of demand affect the average FR and 

the probability of overreaching the target FR of each customer? 

This simulation run was conducted with an FR for a finite horizon, to establish correlation 

between customers. The first design analysis establishes whether the (marginal) demand 

distribution of each customer case remains the same for both correlated and independent 

demand; thus, individual mean, individual variance and the total mean do not change and 

the total (sum of) variance of demand is higher (lower) in respect to positive (negative) 

correlation compared to independent demand. The next scenario has correlated demands, 

but the total variance of demands, as well as individual mean and total mean of demand, 

are the same as the independent demand case. With the NORTA algorithm (Cario & 

Nelson 1997; Niaki & Abbasi 2006) we can generate multivariate random data for given 

marginal distributions and correlation matrices. 

The Erlang distribution has one parameter, and it is not possible to control the aggregated 

mean and variance of demand when the customers’ demands are correlated. It is necessary 

to inspect the impact of correlation on the FR distribution, and to eliminate pooling effects 

the aggregated demand should have the same mean and variance in all cases that must be 

compared. Therefore, two types of demand are applied: Gamma and normal distribution. 

For the Gamma distribution scenarios, the marginal demand distribution of each customer 

in the correlated demand cases is Gamma (k (1+𝜌),1/ (1+𝜌)), and the distribution of the 

demand in the one-customer case is Gamma(2k,1), which is equivalent to Erlang(2k). 
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Here, 𝜌 denotes the correlation coefficient between the demands of two customers. The 

total variance is 2k in both the multiple customers, with correlated demand case and the 

single-customer case. For the normal distribution scenarios, the marginal demand 

distribution of each customer in the correlated demand cases would be 

normal 𝑁 (
𝜇

2
, √

𝜎2

1+𝜌
) and the demand distribution for the one-customer case 

is normal 𝑁(𝜇, √2σ). Figures 3.11 and 3.12 display the FR distributions of the two-

customer cases when the demand is Gamma distributed. Figures 3.13 and 3.14 show the 

FR distributions of the two-customer cases case when the demand distribution is Normal. 
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Figure 3.11: The FR distribution when customers’ demand are correlated, the demand 

distribution for each customer is 𝐆𝐚𝐦𝐦𝐚(𝟑(𝟏 +  𝛒), 𝟏/ (𝟏 +  𝛒)), FCFS is applied and 

𝛒 = −𝟎. 𝟓 𝐨𝐫 𝟎. 𝟓. 

  

b. 𝐷𝑖~Gamma(4.5,
2

3
), T = 20 and 𝜌 = 0.5 

𝑎. 𝐷𝑖~Gamma(4.5,
2

3
), T = 5 and 𝜌 = 0.5 c. 𝐷𝑖~Gamma(1.5, 2), T = 5 and 𝜌 = −0.5 

d. 𝐷𝑖~Gamma(1.5, 2), T = 20 and 𝜌 = −0.5 
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Figure 3.12: The FR distribution when customers’ demands are correlated, the demand 

distribution for each customer is 𝐆𝐚𝐦𝐦𝐚(𝟑(𝟏 +  𝝆), 𝟏/ (𝟏 +  𝝆)), PLFR is applied and 

𝝆 = −𝟎. 𝟓 𝐨𝐫 𝟎. 𝟓. 

  

𝑏.  𝐷𝑖~Gamma(1.5, 2), T = 5 and 𝜌 = −0.5 𝑎. 𝐷𝑖~Gamma(4.5,
2

3
), T = 5 and 𝜌 = 0.5 

𝑐.  𝐷𝑖~Gamma(4.5,
2

3
), T = 20 and 𝜌 = 0.5 𝑑. 𝐷𝑖~Gamma(1.5, 2), T = 20 and 𝜌 = −0.5 
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Figure 3.13: The FR distribution when customers’ demands are correlated, the demand 

distribution for each customer is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟔, √
𝟒.𝟓

𝟏+𝝆
), FCFS is applied and 𝝆 = −𝟎. 𝟓 𝐨𝐫 𝟎. 𝟓. 

  

𝑎. 𝐷𝑖~Normal(6, √
4.5

1+0.5
, T=5 and 𝜌 = 0.5 𝑏. 𝐷𝑖~Normal(6, √

4.5

1−0.5
, T=5 and 𝜌 = −0.5 

𝐶. 𝐷𝑖~Normal(6, √
4.5

1+0.5
, T=20 and 𝜌 = 0.5 𝑑. 𝐷𝑖~Normal(6, √

4.5

1−0.5
, T=20 and 𝜌 = −0.5 
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Figure 3.14: The FR distribution when customers’ demands are correlated, the demand 

distribution for each customer is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟔, √
𝟒.𝟓

𝟏+𝝆
), PLFR is applied and 𝝆 =

−𝟎. 𝟓 𝐨𝐫 𝟎. 𝟓. 

  

𝑎. 𝐷𝑖~Normal(6, √
4.5

1+0.5
, T=5 and 𝜌 = 0.5 

𝑑. 𝐷𝑖~Normal(6, √
4.5

1−0.5
, T=20 and 𝜌 = −0.5 𝐶. 𝐷𝑖~Normal(6, √

4.5

1+0.5
, T=20 and 𝜌 = 0.5 

𝑏. 𝐷𝑖~Normal(6, √
4.5

1−0.5
, T=5 and 𝜌 = −0.5 
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Figures 3.11–3.14 display the FR distribution for two-customer cases with correlated 

demand. We examined two different demand distributions to validate the results. In 

Figures 3.11 and 3.12, the demand distribution is Gamma, and in Figure 3.13 and 3.14 it 

is normal. Similarly, the service policy in Figures 3.11 and 3.13 is the FCFS policy, while 

it is the PLFR policy in Figures 3.12 and 3.14. In these experiments, the mean and 

variance are fixed while the correlation coefficient changes. Hence, for Gamma, the 

distribution of demand for each customer is Gamma(3(1+ 𝜌),1/ (1+ 𝜌)) and for normal, 

the distribution of demand for each customer is normal 𝑁(6, √
4.5

1+𝜌
), where 𝜌 is set to 0.5 

and -0.5 in the results presented in Figures 3.11, 3.12, 3.13 and 3.14. Thus, the results of 

the first part of question 3.3 (How does the correlation structure of demand affect the 

average FR?) show that the average FR is higher when customers’ demands are positively 

correlated. 

Comparison of the positive and negative correlated demand is important to see the effect 

of positive and negative correlations. Next, we compared the effect of positive and 

negative correlated demands by the seeking the required base stock level (S) to achieve a 

target PS. 

In Figure 3.15, we presented the required base stock level to achieve a given probability 

of exceeding the target FR of 0.95 in the case of having one customer with demand 

distribution of Erlang (6), and in the cases of having two correlated customers each with 

demand distribution of Gamma (3 (1+ 𝜌),1/ (1+ 𝜌)). The correlation coefficient (𝜌) is set 

to 0.7 and -0.7 to analyse the impact of positively and negatively correlated demand. Note 

that the aggregate average and variance of demand are fixed when 𝜌 is -0.7, 0 or 0.7. 

The second part of the related research question concerned the impact of correlation in 

demands on the probability of exceeding the target FR, and this is presented in Figures 

3.15 and 3.16. In Figure 3.15, the results display two different policies. FCFS and PLFR 

behave similarly in terms of the base stock level required to achieve a given PS. 

Additionally, a supplier must hold a higher base stock level to achieve a given PS when 

the customers’ demands are negatively correlated, compared to cases when demands are 

independent. Conversely, when customers’ demands are positively correlated, the base 

stock level required to achieve a given PS is lower than in cases with independent 

demands. The reason for this observation is that when correlation is negative, there is a 

high probability that in a given period the demand for one customer will be large, while 
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the demand for the other customer will be small. In turn, there is a low chance that in a 

given period both customers will have a small demand. Therefore, the PS reduces when 

the demands are negatively correlated. Results similar to those in Figure 3.15, but for 

normally distributed demand, are presented in Figure 3.16. Figure 3.16 is similar to Figure 

3.15 in the main text, where the demand distribution is normal. It investigates the impact 

of correlated demand on the probability of exceeding the target FR in multiple-customer 

cases. The findings are consistent with those of Figure 3.15. 

 

  

a. The required S for achieving PS = 0.5 b. The required S for achieving PS = 0.7 

  

c. The required S for achieving PS = 0.9 d. The required S for achieving PS = 0.95 

Figure 3.15: The comparison between one customer (with demand of Erlang (6)), two 

independent customers (each with demand of Erlang(3)) and two customers with 

correlated demands (each with Gamma(3(1+ 𝝆),1/(1+ 𝝆))) in terms of the stock levels 

needed to meet a 95% target FR with various probabilities of success. The total mean and 

variance of demand are fixed in all cases. 
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a. The required S for achieving PS = 0.5 b. The required S for achieving PS = 0.7 

  

c. The required S for achieving PS = 0.9 d. The required S for achieving PS = 0.95 

Figure 3.16: The required S to achieve a predefined probability of exceeding the target FR 

of 0.95 in the multiple-customer case when the customers’ demands are correlated. The 

demand distribution each customer is 𝐍𝐨𝐫𝐦𝐚𝐥 (𝟖, √
𝟒

𝟏+𝛒
), and where 𝛒 is the correlation 

coefficient between customers’ demands. The overall demand distribution is 

𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟔, 𝟐√𝟐). 

The impact of correlation in customer demands was found that negative correlation gives 

a higher probability of one customer's demand exceeding that of a second customer. Thus, 

the probability of FR exceeding a set target is reduced. In answer to the question, “How 

does the correlation structure of demand affect the average FR and the probability of 

overreaching the target FR of each customer?”, when customers’ demands are positively 

correlated, the probability of exceeding a FR level of 0.95 is higher; with a negative 

correlation, the probability is lower. 
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3.7 What Achieves Better Service for Customers: Smaller or Larger 

Demand? 

The final question for this chapter, Q3.4, was: Who receives the better service (higher 

average FR and higher probability of exceeding the target FR): the customer with higher 

demand or the customer with lower demand? 

To answer this question, we consider the case where there are multiple customers with 

different demand distributions and; the supplier’s base stock level is set to achieve an 

average FR for overall demand. Of the two policies, in FCFS the sequence of customer 

arrivals is random, so on day t the chance that customer 1 arrives after customer 2 is 50%. 

The results are examined for two situations. In the first scenario, the larger customer has 

a larger mean and variance of demand. In the second scenario, the larger customer has a 

larger mean of demand, but the variance of demand is same as the smaller customer. 

3.7.1 Larger mean and larger variance of demand 

In this scenario, suppose that the supplier is facing two customers and a total demand 

distribution of Erlang(6). Customer 1 has a demand of Erlang(2) and customer 2 has a 

demand of Erlang (4). In Figure 3.17, for different values of S and T, the expected FR 

value for each customer is displayed. Both service policies (FCFS and PLFR) show that 

the customer with higher demand will have a higher expected FR value. The difference 

between the average FR of the larger customer and the smaller customer is higher for 

shorter T. Figure 3.18 displays the probability of exceeding a target FR of 0.95 for 

different values of S and T. The results in Figure 3.18 determine that in both service 

policies, the customer with the larger demand has a higher probability of exceeding the 

target FR than the customer with the smaller demand. Between the larger and smaller 

customers, the difference in the PS is higher for longer T. This is because when satisfying 

the demand of the small customer first (either with the FCFS or PLFR policy), due to the 

smaller customer’s lower variance of demand, it is still highly likely that there is sufficient 

stock available for the larger customer. Similar plots for the case when the overall demand 

distribution is Normal(12,2) and the demand distribution of the customer 1 and 2 are 

Normal(5,1) and N(7, √3) respectively, are presented in Figures 3.19 and 3.20. 
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a. FR when T=5 and S varies from 7 to 12 b. FR when T=10 and S varies from 7 to 12 

 

 

 

 

 

 

 

 

 

 

 

c. FR when T=20 and S varies from 7 to 12 

 

 

d. FR when T=30 and S varies from 7 to 12 

 

Figure 3.17 – The average fill rate for customers 1 and 2 (C2 is the larger customer). The 

demand distribution for customers 1 and 2 are 𝐄𝐫𝐥𝐚𝐧𝐠(𝟐) and 𝐄𝐫𝐥𝐚𝐧𝐠(𝟒) respectively. 

The base stock level (x-axis) changes from 7 to 12 and four review periods T=5, 10, 20 and 

30 are considered. The dashed line shows the average fill rate for a single customer with 

an 𝐄𝐫𝐥𝐚𝐧𝐠(𝟔) demand distribution.  
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          a. PS when S=9 and T varies from 1 to 40           b.   PS when S=10 and T varies from 1 to 40 

  

          c. PS when S=11 and T varies from 1 to 40          d. PS when S=12 and T varies from 1 to 40 

 

Figure 3.18: The probability of exceeding the target FR of 0.95 for customers 1 and 2 (C2 

is the larger customer). The demand distribution of customers 1 and 2 are 𝐄𝐫𝐥𝐚𝐧𝐠(𝟐) 

and 𝐄𝐫𝐥𝐚𝐧𝐠(𝟒), respectively. The dashed line shows the average FR for a single customer 

with an 𝐄𝐫𝐥𝐚𝐧𝐠(𝟔) demand distribution. 

  



  

61 

 

 

Figures 3.19 and 3.20 show the average FR and the probability of overreaching the target 

FR (0.95) for single and multiple-customer cases, in the multiple-customer case there are 

two customers, one of them with a higher demand. Figures 3.19 and 3.20 are similar to 

Figures 3.17 and 3.18 but here the demand distribution is normal. The results and remarks 

are consistent with those of Figure 3.17 and 3.18. 

 

  

a. FR when T = 5 and S varies from 11 to 16        b. FR when T = 10 and S varies from 11 to 16 

 
 

c. FR when T = 20 and S varies from 11 to 16          d. FR when T = 30 and S varies from 11 to 16 

Figure 3.19: The average FR for customers 1 and 2 (customer 2 has the larger average and 

variance of demand). The demand distribution for customers 1 and 2 are 𝐍𝐨𝐫𝐦𝐚𝐥(𝟓, 𝟏) 

and 𝐍𝐨𝐫𝐦𝐚𝐥(𝟕, √𝟑) respectively. The dashed line shows the average FR for the system 

with a single customer with demand distribution of 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐). 
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a. PS when S = 12 and T varies from 1 to 25 b. PS when S = 13 and T varies from 1 to 25 

  

c. PS when S = 14 and T varies from 1 to 25 d. PS when S = 15 and T varies from 1 to 25 

Figure 3.20: The probability of exceeding the target FR of 0.95(PS) for customers 1 and 2 

(customer 2 has larger average and variance of demand). The demand distribution for 

customers 1 and 2 are 𝐍𝐨𝐫𝐦𝐚𝐥(𝟓, 𝟏) and 𝐍𝐨𝐫𝐦𝐚𝐥(𝟕, √𝟑), respectively. The dashed line 

shows the average FR for the system with a single customer with demand distribution of 

𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐). 

 

Overall, evident from the results two customers have different demands, the supplier 

achieves a higher FR and a higher PS for the larger customer. The difference in PS 

becomes greater as the review period is lengthened. This occurs because when serving 

the smaller customer first, there is a still a good probability that there is sufficient stock 

for the larger customer’s order to be satisfied.  
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3.7.2 Customers with high demand (mean) but same variance as customer with 

lower demand. 

In this subsection, we explore the case where customers have different mean demand but 

the same variance of demand. If the supplier serves two customers and the overall demand 

distribution is Normal(12,2), the demand of customer 1 is Normal(5, √2) and the 

demand of customer 2 is Normal (7, √2). Figure 3.21 displays the expected FR value for 

each customer for different values of S and T. Figure 3.22 displays the probability of 

exceeding a target FR of 0.95 for different values of S and T. The results are similar to 

the results in subsection 3.7.1, meaning that the customer with the larger demand will 

have a higher expected FR value (i.e.,  min
𝑖

{�̅�𝐶𝑖(𝑆, 𝑇)} belongs to the smaller customer) 

and will similarly have a higher opportunity of exceeding the target FR than the customer 

with the smaller demand. Moreover, the difference between the average FR of the larger 

customer and the smaller customer is higher for shorter values of T. Conversely, the 

difference between the probability of exceeding the FR between the customer with larger 

demand and the customer with smaller demand is higher for longer T. This finding is due 

to the fact that when satisfying the demand of the smaller customer first (either with the 

FCFS or PLFR policy) due to its lower mean demand, it is still highly likely that there is 

sufficient stock available for the larger customer. The results of another experiment when 

two customers have the same mean demand but the variance of the demand is higher for 

customer 2 is presented in Figure 3.23. In this situation, the average FR is the same for 

both customers; however, the probability of exceeding the target FR is higher for the 

customer with larger variance. 
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a. FR when T=5 and S varies from 11 to 16 b. FR when T=10 and S varies from 11 to 16 

  

 

c. FR when T=20 and S varies from 11 to 16 

 

d. FR when T=30 and S varies from 11 to 16 

 

 

Figure 3.21: The average FR for customers 1 and 2 (C2 is the larger customer). The 

demand of customer 1 is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟓, √𝟐) w and the demand of customer 2 is Normal 

(7, √𝟐). The dashed line shows the average FR for a single customer with a 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐) 

demand distribution. 
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a. PS when S=12 and T varies from 1 to 25 b. PS when S=13 and T varies from 1 to 25 

 

 

c. PS when S=14 and T varies from 1 to 25 d. PS when S=15 and T varies from 1 to 25 

 

Figure 3.22: The probability of exceeding the target FR of 0.95 for customers 1 and 2 (C2 

is the larger customer). The demand of customer 1 is 𝐍𝐨𝐫𝐦𝐚𝐥(𝟓, √𝟐) w and the demand of 

customer 2 is Normal (7, √𝟐). The dashed line shows the average FR for the system with a 

single customer with a 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐) demand distribution. 
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The following plots on Figure 3.23 present the case that both customers have the same 

average of demand but different variance of demand. When both customers have the same 

average of demand, the average FR for both customers are the same. However, the 

customer with higher variance of demand has a higher probability of overreaching the 

target FR. 

 

  

a. FR when T=20 and S varies from 11 to 16 b. PS when S=12 and T varies from 1 to 25 

 

Figure 3.23: The average FR for customers 1 and 2 (customer 2 has larger variance of 

demand). The demand distribution for customers 1 and 2 are 𝐍𝐨𝐫𝐦𝐚𝐥(𝟔, 𝟏) 

and 𝐍𝐨𝐫𝐦𝐚𝐥𝟔, √𝟑) respectively. The dashed line shows the average FR for the system with 

a single customer with demand distribution of 𝐍𝐨𝐫𝐦𝐚𝐥(𝟏𝟐, 𝟐). 

 

The final research related question of this chapter was: ‘who receives the better service 

(higher average FR and higher probability of exceeding the target FR): the customer with 

higher demand or the customer with lower demand?’ The answer is the customer with 

higher demand. Even if the lower demand customer was served first, the probability was 

that there would be sufficient stock to fill a larger order. 
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3.8 Chapter Summary 

In this chapter, we examined the behaviour of FR over different performance review 

periods when there are multiple customers in the SC. We studied the FR measure, which 

is the most common service level measure. The findings provide an opportunity for the 

suppliers in design and negotiation of SLA. Two cases were studied and designed in our 

experiments: one customer and multiple customers. When the supplier faces one 

customer, the demand distribution for the single-customer case was similar to the 

aggregated demand distribution in the multiple-customer case. In the multiple-customer 

case we considered two different policies for fulfilling customers’ demands: a FCFS 

policy and a second policy (called PLFR), based on prioritising customers due to current 

measured FR performance. 

Our findings and insights were entirely consistent when using either service policy. First, 

in both the single and multiple-customer cases, it was shown that when the performance 

review period duration is increased, the average FR decreases. Second, in both the single 

and multiple-customer cases, we proved that the probability of exceeding a target FR is 

highly dependent on the length of the performance review period T. When T is short (i.e., 

less than a threshold value 𝜃), the supplier requires less stock in the multiple-customer 

case. Conversely, when T is longer than 𝜃, the supplier is required to stock a higher base 

stock level in the single-customer case. The value of this threshold 𝜃 decreases when a 

supplier chooses to achieve a higher probability of exceeding the target FR. 

In this chapter, we studied the multiple-customer cases with correlated demand. From our 

results, we can see that when the correlation between customers’ demands is negative, 

the supplier is required to maintain a higher base stock level than in the case of 

independent demands; the opposite holds when the correlation between customers’ 

demands is positive. Finally, we examined multiple customers when the demand of one 

of the customers is larger than the other. We observed that the customer with the higher 

average demand has a higher FR and higher probability of exceeding the target FR. 
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Chapter 4: The Impact of Lead Time on the Finite Horizon 

FR in Single and Multiple-Customer Cases 

4.1 Introduction 

In the previous chapter, the supplier’s FR for inventory was measured over varying 

review period lengths for single and multiple customers with zero lead time. The objective 

of this chapter is to examine the effect of lead times on the finite horizon FR, as existing 

studies assume a zero lead time for the supplier (Abbasi et al.  (2017); Arıkan, Fichtinger 

& Ries 2014; Thomas 2005). This chapter sets research questions to guide our analyses. 

We study the effect of lead times on the distribution of the FR and base-stock level over 

finite horizons, with various review period lengths for both single and multiple customers. 

In response to growing global industrialisation, there is an ongoing challenge in the 

prevailing economic environment to deliver products to customers in a short time 

(Schwartz & Rivera 2010). On the one hand, holding inventory imposes costs on the 

suppliers, while it increases customer satisfaction by avoiding any delays to respond to 

demand. A stock-out may not only cancel the order, it will also affect the probability of 

future customer demand (Anderson, Gavan & Duncan 2006). Gruen (2002) showed that 

45% of customers facing a stock-out will buy products from another store. Intense 

competition between companies means additional pressure to provide and deliver 

products to customers on time, with many firms placing greater focus on improving their 

level of service to provide greater customer satisfaction (Vigoroso 2005). Seller and 

customer connection is the main point in assisting the flow of products. In an SC the delay 

between two successive members (i.e., ordering delay, shipment, or information flow) 

will result in an interruption in product delivery (Heydari 2014). Improper lead time 

planning can cause either large inventories or a low customer service levels (Louly & 

Dolgui 2013). Sandvig and Allaire (1998) found that a lack of customer service plays a 

pivotal role in a company losing its customer base. Currently, the increase in global trade 

with offshore migration of US manufacturing productions has affected SCs with longer 

and added indefinite lead times (Blackburn 2012). 
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4.2 Related Research Questions in this Chapter: 

The following questions serve to accomplish the research objective:  

Q4.1 How does lead time impact base stock levels for single and multiple 

customers cases over various review period lengths? 

Q4.2 How does lead time affect the average FR for single and multiple customers? 

Q4.3 How does lead time affect the probability of exceeding the target FR for 

single and multiple customers? 

Q4.4 How does lead time together with the correlation of demand affect the 

probability of overreaching the target FR for each of multiple customers? 

4.3 Model and Notations 

The notations used are as follows: 

L: lead time; 

T: review period for which the FR is calculated; 

S: base stock level; 

n: number of customers; 

𝐶𝑖: customer index or reference to customer 𝑖 (i =1, 2,…,n); 

𝛼𝑡
𝐶𝑖(𝑆, 𝐿, 𝑇): FR for customer 𝑖 at period t when the review period is T, base stock 

is 𝑆 and lead time of L. 𝛼𝑇
𝐶𝑖(𝑆, 𝐿, 𝑇) is a random variable. The customer index is 

deleted for identical customers; 

𝑋𝑖𝑡: demand that is filled for customer 𝑖 at time 𝑡 (𝑖 is a discrete time (e.g., a day 

or week); 

𝑌𝑖𝑡: demand of customer 𝑖 at time 𝑡; 

�̅�𝐶𝑖 (𝑆, 𝐿, 𝑇): average FR for customer 𝑖 when the base stock is S, lead time is L 

and review period is T. The customer index is deleted for identical customers; 
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 𝑃
𝐶𝑖 (𝑆, 𝐿, 𝑇): probability of exceeding the FR of  for customer 𝑖 when base stock 

level is S, lead time is L and review period is T. The customer index is deleted for 

identical customers; 

Demand 𝑌𝑖𝑡 per period is a non-negative random variable, and is i.i.d. from period to 

period. Demand arrives from the start of time period t, but is not fulfilled until the end of 

the period. Inventory is reviewed at the end of every period t, after demand is satisfied, 

and an order is placed to increase inventory (in-hand and receivable inventory), the order 

arrives after L (lead time). 

A stationary stocking policy does not need to be optimal for a supplier who is looking to 

meet or overestimate the target FR over a finite horizon. The policies are intended to 

establish good practice; thus, this simulation is limited to order-up-to policies. The FR at 

period t is defined as: 

 𝛼𝑡
𝐶𝑖(𝑆, L, 𝑇) ≡  

 𝑋𝑖(𝑡−𝑇+1)+⋯+ 𝑋𝑖(𝑡)

 𝑌𝑖(𝑡−𝑇+1)+⋯+ 𝑌𝑖(t)
                   (4.1) 

the average FR for customer 𝑖, as a function of T and S, is defined as: 

�̅�𝐶𝑖(𝑆, L, 𝑇) = E (
 𝑋𝑖(𝑡−𝑇+1)+⋯+ 𝑋𝑖(𝑡)

 𝑌𝑖(𝑡−𝑇+1)+⋯+ 𝑌𝑖(𝑡)
)                   (4.2) 

the probability of exceeding the target fill rate (𝜋) is: 

𝑃𝜋
𝐶𝑖(𝑆, L, 𝑇) = Pr (𝛼𝑡

𝐶𝑖(𝑆, L, 𝑇) ≥ 𝜋)       (4.3) 

For example, assume there are three customers, with a base stock level of 10, the lead 

time of 4, the length of the review period being 3 (e.g., three days) and in the period t 

(e.g., the tth day), the demand and filled demand for customer 𝑖 are 𝑌𝑖𝑡 and 𝑋𝑖𝑡, 

respectively. The average FRs for the three customers are: 

 

�̅�𝐶1(10,4,3) = E(
 𝑋11+ 𝑋12+ 𝑋13

 𝑌11+ 𝑌12+ 𝑌13
), �̅�𝐶2(10,4,3) = E(

 𝑋21+ 𝑋22+ 𝑋23

 𝑌21+ 𝑌22+ 𝑌23
), 

�̅�𝐶3(10,4,3) = E(
 𝑋31 +  𝑋32 +  𝑋33

 𝑌31 +  𝑌32 +  𝑌33
) 
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Conversely, if all demand came from a single customer, the average FR would be: 

�̅�(10,4,3) = E(
 𝑋11+ 𝑋12+ 𝑋13+ 𝑋21+ 𝑋22+ 𝑋23+ 𝑋31+ 𝑋32+ 𝑋33

 𝑌11+ 𝑌12+ 𝑌13+ 𝑌21+ 𝑌22+ 𝑌23+ 𝑌31+ 𝑌32+ 𝑌33
)    (4.4) 

The next section includes an analysis of the relationship between the average FRs and 

lead time, and between the probabilities of exceeding the target FR and lead time, 

considering various review period lengths, and one or more customers in the system. 

4.4 Analysis of FRs, Lead Times and Exceeding FR 

Similar to Thomas (2005) and Abbasi et al. (2017), we developed a simulation model to 

study the impact of lead time on FR behaviour. The simulation model is a discrete event 

simulation and was run for an extended time to collect the data for the designed scenarios. 

The scenarios are different in terms of the lead time, the number of customers, customers’ 

demand, the correlation between customers’ demands and the length of the review period 

in the SLA. We assumed an Erlang distribution for the demand because it is flexible and 

covers various shapes (different skewness and kurtosis). Additionally, the Erlang 

distribution has been used by Thomas (2005) and Abbasi et al. (2017) to study the FR 

distribution. It is assumed that a base stock policy is used by the supplier, and an order 

from the supplier to replenish inventory is received after L periods (lead time) from the 

point that the order is placed. 

All experiments were performed on an Intel Core i7 CPU with a 2.2 GHz processor and 

16 GB RAM. The codes were written in Python version (3.4). To solve these models we 

applied other packages, such as Numpy, Sicipy, Matplotlib and Anaconda. It takes a long 

time to reach results when solving simulation algorithm codes in Figures 4.1 - 4.10 (in 

some cases 2–5 days, especially when we increase the performance review period 

lengths), due to many loops and the desired accuracy of the results. 

4.4.1 FR distribution 

First, we look at the distribution of FR for various lead times and numbers of independent 

customers in the SC. In each case, we determined S (the base stock level) such that the 

long-run average FR becomes 0.95. Additionally, we assumed a target FR of 0.95, which 

means that achieving an FR above 0.95 in each period is considered a ‘success’. Figure 

4.1 shows the distribution of the FR for different lead times and different review period 

durations when there is one customer. There are two vertical lines in each plot; the green 
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dashed line indicates the threshold of a 0.95 long-run FR, while the solid red line shows 

the average FR. The demand distribution is the same in all subplots in Figure 4.1, i.e. 

Erlang (9). In Figure 4.1.a, S is set to 11.05 to assure a long-run FR of 0.95. Comparing 

the subplots in Figure 4.1 displays that to achieve the same long-run FR when the lead 

time increases in all cases (different review periods), a higher base stock level is required. 

However, when lead time increases, the probability of exceeding the target FR also 

increases. Figure 4.1 also shows that by increasing the review period duration, the 

probability of exceeding the target FR decreases (thus confirming the existing literature). 

Figure 4.2 presents the distribution of FR, similar to Figure 4.1, however in  Figure 4.2 

there are three independent customers each with an Erlang (3) demand distribution (i.e. 

the overall distribution is Erlang (9), similar to the one customer cases). 
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Figure 4.1: The distribution of FR for various lead times and review period durations 

when the long-run FR is fixed at 0.95 in all the plots. The demand distribution is Erlang 

(9). (T is review period, N is the number of customers, FR is the long-run review period, 

PS is the probability of success and S is the base stock level). 

T = 20 
n = 1 

FR =0.95 

PS = 0.542 

S = 11.05 

Erlang (9) 

e. One customer with demand distribution of Erlang (9) and T = 

20, L = 1. 

g. One customer with demand distribution of Erlang (9) and 

T = 100, L = 1. 

T = 100 
n = 1 

FR = 0.950 

PS = 0.529 

S = 11.05 

Erlang (9) 

T = 5 

n = 1 
FR = 0.95 

PS = 0.62 

S = 30.1 

Erlang (9) 

b. One customer with a demand distribution of 

Erlang (9) and T = 5, L = 3. 

T = 10 

n = 1 

FR = 0.95 
PS = 0.572 

S = 30.1 

Erlang (9) 

d. One customer with a demand distribution of 

Erlang (9) and T = 10, L = 3. 

T = 20 
n = 1 

FR = 0.95 

PS = 0.544 

S = 30.1 

Erlang (9) 

f. One customer with demand distribution of Erlang (9) and T 

= 20, L = 3. 

h. One customer with demand distribution of Erlang (9) and T 

= 100, L = 3. 

T = 100 

n = 1 
FR = 0.950 

PS = 0.531 

S = 30.3 

Erlang (9) 

a. One customer with a demand distribution of 

Erlang (9) and T = 5, L = 1. 

T = 5 

n = 1 
FR = 0.950 

PS = 0.591 

S = 11.05 

Erlang (9) 

c. One customer with demand distribution of 

Erlang (9) and T = 10, L = 1. 

T = 5 
n = 1 

FR = 0.95 

PS = 0.591 

S = 11.05 

Erlang (9) 
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Figure 4.2: The distribution of FR for various lead times and review period 

durations when the long-run FR is fixed at 0.95 in all the plots. The demand distribution is 

Erlang (3) for each customer and there are three independent customers. 

T = 5 

n = 3 

FR = 0.950 
PS = 0.725 

S = 11.05 

Erlang (3) 

a. Three customers with a demand distribution of 

Erlang (3) and T = 5, L = 1 

T = 10 

n = 3 
FR = 0.950 

PS = 0.633 

S = 11.05 

Erlang (3) 

c. Three customers with demand distribution of 

Erlang (3) and T = 10, L = 1. 

T = 5 

n = 3 
FR = 0.950 

PS = 0.738 

S = 30.1 

Erlang (3) 

b. Three customers with a demand distribution of 

Erlang (3) and T = 5, L = 3. 

T = 10 
n = 3 

FR = 0.950 

PS = 0.646 

S = 30.1 

Erlang (3) 

d. Three customers with demand distribution of Erlang (3) and 

T = 10, L = 3. 

T = 20 
n = 3 

FR = 0.950 

PS = 0.586 

S = 30.1 

Erlang (3) 

f. Three customers with demand distribution of 

Erlang (3) and T = 20, L = 3. 

T = 100 

n = 3 

FR = 0.950 
PS = 0.538 

S = 11.05 

Erlang (3) 

g. Three customers with demand distribution of 

Erlang (3) and T = 100, L = 1 

T = 100 

n = 3 
FR = 0.950 

PS = 0.543 

S = 30.1 

Erlang (3) 

h. Three customers with demand distribution of 

Erlang (3) and T = 100, L = 3. 

e. Three customers with demand distribution of 

Erlang (3) and T = 20, L = 1. 

T = 20 

n = 3 

FR = 0.950 
PS = 0.584 

S = 11.05 

Erlang (3) 
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Therefore, Q4.1 (What is the impact on base stock levels for single and multiple 

customers’ cases over various review lengths and various lead times?) is answered. 

Increasing the lead time requires a higher base stock level, however the probability of 

exceeding the target FR also increases. 

4.4.2 The impact of lead time on the average FR and PS 

Here, we look at the impact of various base stock levels and lead times on the average FR 

and the probability of exceeding the target FR. Figure 4.3 shows the changes in the 

average FR for cases with different lead times and base stock levels. As expected, by 

increasing the base stock level the average FR increases. Additionally, for a given base 

stock level, increasing the lead time reduces the average FR for all of the review period 

durations. The slopes of the lines in Figure 4.3 are almost constant across all cases. 

 

Figure 4.3: Changes in the average FR by altering the stock level and lead time. The 

demand distribution is 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟗) in all cases. 

 

Figures 4.4 and 4.5 show how the different lead times (L = 1, 2, 3, …, 10) over different 

finite periods can affect the PS when the base stock level S is determined to achieve a 

0.95 long-run FR. Figure 4.4 represents a case of one customer with an Erlang (9) demand 

T = 100 

T = 5 
T = 5 T = 10 

T = 20 
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distribution. Table 4.1 illustrates the details, including the base stock levels required in 

each case. Figure 4.5 and Table 4.2 present the results when there are three customers 

each with an Erlang (3) demand distribution. Figures 4.4 and 4.5 show that by increasing 

the lead time, the probability of exceeding the target FR increases, and that this increase 

is higher for shorter review period durations. It can be seen in Figures 4.4 and 4.5 that the 

line for T = 5 is both higher and steeper than the other lines for T= 10 and T = 20. 

 

Figure 4.4: The PS when there is one customer with demand distribution Erlang(9) and 

the long-run FR is set to be 0.95 for different review horizon lengths and different lead 

times. 

 

Table 4.1 provides greater detail for Figure 4.4. The mean of FR to be achieved is 0.95 

for all plots. 
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Table 4.1: Detail of probability of success with one customer, different review periods and lead times Erlang (9) 

 

  

Lead 

time (L) 
Stock (S) 

Variance 

FR, T=5 

Probability 

(PS), T=5 

Variance FR, 

T=10 

Probability (PS), 

T =10 

Variance 

FR, T=20 

Probability (PS), 

T =20 

1 11.05 0.0538 0.591 0.0390 0.557 0.0279 0.539 

2 20.79 0.0596 0.605 0.0433 0.561 0.0313 0.541 

3 30.10 0.0633 0.617 0.0466 0.564 0.0333 0.541 

4 39.10 0.0665 0.628 0.0485 0.570 0.0352 0.544 

5 48.05 0.0690 0.641 0.0502 0.574 0.0363 0.544 

6 57.10 0.0716 0.652 0.0522 0.578 0.0376 0.546 

7 65.70 0.0740 0.660 0.0534 0.581 0.0389 0.546 

8 74.20 0.0752 0.667 0.0547 0.585 0.0394 0.548 

9 82.95 0.0766 0.673 0.0561 0.591 0.0405 0.548 

10 92.03 0.0775 0.676 0.0579 0.595 0.0412 0.548 
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Figure 4.5 continues the analysis, as the PS when there are three independent (and 

identical) customers, each with demand distribution Erlang (3). The long-run FR is set to 

be 0.95 for different review horizon lengths and different lead times. 

 

Figure 4.5: The PS when there are three independent (and identical) customers, each with 

demand distribution Erlang (3) and the long-run FR is set to be 0.95 for different review 

horizon lengths and different lead times. 

 

Table 4.2 enumerates the data from Figure 4.5, again with FR target of 0.95 
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9
 

Table 4.2: Detail of probability of success with three customers, different review periods and lead times Erlang (9) 

 

 

 

Lead 

time 

(L) 

Stock 

(S) 

Variance 

FR, T=5 

Probability 

(PS), T=5 

Variance 

FR, T=10 

Probability (PS), T 

=10 
Variance FR, T=20 

Probability (PS), 

T =20 

1 11.05 0.0932 0.725 0.0674 0.635 0.0484 0.583 

2 20.79 0.0949 0.731 0.0693 0.638 0.0499 0.583 

3 30.10 0.0964 0.737 0.0706 0.642 0.0510 0.585 

4 39.10 0.0980 0.743 0.0718 0.647 0.0517 0.587 

5 48.05 0.0993 0.747 0.0730 0.651 0.0525 0.588 

6 57.10 0.1014 0.754 0.0738 0.654 0.0534 0.590 

7 65.70 0.1030 0.758 0.0749 0.658 0.0539 0.591 

8 74.20 0.1042 0.761 0.0759 0.661 0.0547 0.592 

9 82.95 0.1050 0.764 0.0768 0.663 0.0550 0.594 

10 92.03 0.1056 0.766 0.0768 0.667 0.0553 0.596 
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4.4.3 Summary of Lead Times, FR and PS 

Figure 4.3 shows the analysis for the estimated FR: that increased stock levels result in 

average FR increases, although the review period duration shows an inverse relationship 

with the average FR. The lead times, however, do not have a significant effect on the 

average FR. Figure 4.4 and Table 4.1 show the results of the probability analysis, that the 

target of 0.95 FR would be exceeded. As expected, the probability is higher for shorter 

review period durations. Furthermore, extended lead times affect shorter review periods 

to a greater extent. For three independent customers (Figure 4.5, Table 4.2), the results 

for one customer were duplicated, but to a less pronounced extent. That is, the probability 

of exceeding the target FR was not as high. Hence it can be seen that review period 

durations have more effect than lead times on probability of success. 

4.4.4 Achieving a defined probability of exceeding the target FR 

Analysing the probability of exceeding the target FR for the base stock level is critical for 

a supplier, through association with bonuses or penalties. Similar to Abbasi et al. (2017), 

the following optimisation problem is numerically solved to find the required S for each 

case with different lead times, review periods and numbers of customers.  

 

𝑆 = 𝐼𝑛𝑓{𝑆 𝑤ℎ𝑒𝑟𝑒 Pr (𝛼𝑡
𝐶𝑖(𝑆, L, 𝑇) ≥ 𝛾 and 𝑆 >  0} 

 

The PS is denoted by 𝑃𝜋
𝐶𝑖(𝑆, L, 𝑇), where T, L and 𝜋 are parameters in this function, 𝜋 

being the target FR. The given probability of exceeding the target FR as a parameter in 

the model is denoted by 𝛾. This model has been applied with different parameter values, 

lead times and numbers of customers. Figure 4.6 presents the results for various 𝛾 for 

different cases where the overall distribution of demand is Erlang (9). In the case of 

multiple customers, each customer is assumed to be identical in terms of demand 
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distribution. Figure 4.6 shows that for any lead time, when T is smaller than the threshold 

value (𝜃), having three customers is more efficient because the supplier can achieve the 

given PS with a smaller base stock level (S). Conversely, when T is larger than 𝜃, having 

one large customer is more desirable. The results indicate that 𝜃 can be very large when 

the given PS is low (e.g., 0.6), and it decreases when the given PS is high (e.g., 0.9 or 

0.95). 
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Figure 4.6: The required base stock to achieve a defined probability of success (𝜸 ) in 

various cases. The target FR is 0.95. 

𝜸 =60% Success 𝜸 =50% Success 

𝜸 =70% success 

𝜸 =99% success 𝜸 =95% success 

𝜸 =90% success 
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In the 𝛾 = 50% case and lead time, L = 1 and T = 5, when the supplier deals with one 

customer, 10.5 stock units are needed to have an even chance of meeting the FR target; 

and for three customers, 9.3 units are necessary. Similarly, when the lead time is L=3 for 

one customer, the supplier needs to stock more than 27.8 units to achieve FR probability 

of 50%, and for three customers, 25 units. Thus, as lead times grow, more stock is 

necessary in all scenarios for the supplier to achieve the target FR of 0.95. 

4.4.5 Customers with correlated demands 

The final question of this chapter is Q4.4: How does lead time together with correlation 

of demand affect the probability of overreaching the target FR for each of multiple 

customers? 

Here, we investigate cases where customers’ demands are correlated and lead times are 

non-zero. We consider two situations: first, when under various correlation settings the 

marginal demand distribution of each customer remines unchanged; second, when for 

various correlations, the marginal demand distribution of each customer change but the 

total variance is fixed in all cases. 

4.4.5.1 Fixed marginal demand distribution (in both correlated and independent 

demand cases) 

Here, we study the impact of positive and negative correlation of demands involving 

various fixed lead times over a finite review horizon for both one customer and a set of 

multiple customers. This study assesses the effect of positive and negative correlation of 

demand on the base stock level needed to achieve a given probability of exceeding the 

target FR of 0.95. We examine the case of having one customer with an Erlang (6) demand 

distribution, and the case of having two customers, each with an Erlang (3) demand 

distribution, with various correlation coefficients and different lead times and review 

period lengths. 
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Figure 4.7 shows that for any fixed lead time, in the case of negative correlation, it is 

preferable for the supplier to deal with multiple customers with smaller demands than one 

customer. The first column shows positive correlation cases and the second column, 

negative correlation. By positively increasing the correlation coefficient, 𝜌, the threshold 

𝜃 decreases (𝜃 is the review period ‘cross-over point’ after which the target FR can be 

achieved with a lower base stock level in the one-customer case). Therefore, in the case 

of high positive correlation, for any lead time, having one large customer is always 

preferable to multiple smaller customers. The results show that for different lead times 

and target success rates, negative correlation in demand requires a lower base stock level. 

Thus, a lower stock level is more efficient for the supplier. 
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 Positive correlations      Negative correlations 

Figure 4.7: Comparison between positive and negative correlation demand, involving 

different lead times for one customer and two customers (with demand of Erlang(6)), two 

independent customers (each with demand of Erlang(3)), in terms of the stock levels 

needed to meet a 95% target FR with various probabilities of success (50%, 60%, 70%, 

90%, 95% and 99%). The demand distribution of each customer is Erlang (3) in both 

correlated and independent demands cases. 

  

50% success 50% success 

60% success 60% success 

70% success 70% success 
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Positive correlations     Negative correlations 

Figure 4.7 (cont.): Correlation of customer demand, fixed marginal demand. 

90% success 90% success 

95% success 

95% success 

99% success 

99% success 
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4.4.5.2 Constant total variance 

Next, we investigate the effects of various lead times over different review horizons for 

one customer with an Erlang (6) demand, two independent customers (each with an 

Erlang (3) demand), and two customers with correlated demands (each with (3(1+ 𝜌),  

1 / (1+ 𝜌)). We consider the base stock level required to meet a 95% target FR with several 

probabilities of success. The total variance of demand is fixed in all scenarios. Figure 4.8 

shows that the lead time and the correlation of demand have an effect on the performance 

of the SC. From these results, we can remark that by increasing the lead time, the supplier 

needs to stock more units to achieve customer satisfaction. 

Figure 4.8 also demonstrates that in cases of constant variance, having multiple customers 

with either negative or positive correlation favours the supplier for short review periods, 

but there is a threshold for the review period beyond which the performance in the 

correlated cases become worse than the one customer case. 
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Figure 4.8: Comparison between positive and negative correlation demand, involving 

different lead times for one and two customers (with demand of Erlang(6)), two 

independent customers (each with demand of Erlang(3)) and two customers with 

correlated demands (each with Gamma(3(1+ ρ),1/(1+ ρ))), in terms of the stock levels 

needed to meet a 95% target FR. The figures in the left column are for positive correlation 

cases, and those in the right column are for negative correlation cases. 

60% Success 60% Success 

50% Success 50% Success 

succuessSuccess 

70% Success 70% Success 
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Figure 4.8 (cont.): Correlation of customer demand, constant variance of demand. 

90% success 

99% success 

95% success 95% success 

90% success 

99% success 
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4.4.5.3 Service level received by non-identical customers dealing with a supplier 

Here, we examine the case of a supplier with multiple customers with lead times of L = 1 

and L = 3, and with the supplier’s base stock level set to achieve an average FR for overall 

demand across all customers. It is supposed that the supplier has two customers and an 

overall Erlang (6) demand distribution, where customer 1 has an Erlang (2) demand and 

customer 2 has an Erlang (4) demand. 

Figure 4.9 presents the expected FR value for two cases involving different lead times for 

each customer for different base stock levels (S) and review periods (T). This Figure 

shows that as long as the stock level increases for various lead times, the customer with 

higher demand will have a higher expected FR value. Figure 4.10 verifies that the 

customer with the larger demand has a greater chance of exceeding the target FR than the 

customer with the smaller demand for different lead times. 
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Figure 4.9: The average FR for customers 1 and 2 with different lead times (L = 1, and 3). 

The demand distribution for customers 1 and 2 are 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟐) and 𝑬𝐫𝒍𝒂𝒏𝒈 (𝟒), 
respectively. The base stock level (x-axis) changes from 2 to 12 when L = 1, and from 10 to 

24 when L = 3; three review periods (T = 5, 10 and 20) are considered. The dashed line 

shows the average FR for the system with one customer with an 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟔) demand 

distribution. 

T = 5 
L =1 

T = 20 
L = 1 

T = 10 
L = 3 T = 10 

L = 1 

T = 5 
L = 3 

T = 20 
L = 3 
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Figure 4.10: The probability of exceeding the target FR of 0.95 for customers 1 and 2. The 

demand distribution of customers 1 and 2 and are 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟐) and 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟒), 

respectively. The review period T (x-axis) changes from 1 to 40, and three base stock levels 

(S = 9, 10 and 12) are considered for L = 1, and when L = 3, base stock levels S = 20, 22 

and 26 are considered. The dashed line shows the average FR for the system with one 

customer with an 𝑬𝒓𝒍𝒂𝒏𝒈 (𝟔) demand distribution. 
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Question 4.4: How does lead time affect correlation of demand and the probability of 

overreaching the target FR of each of multiple customers? 

This was answered in several parts. First, with negativity correlated demands, given any 

fixed lead time, the supplier should select multiple customers with smaller demands, 

rather than one customer. With high positive correlation for any lead time, one large 

customer is preferable. Next, with constant variance, multiple correlated customers 

proved greater productivity. However, once replenishment periods reached a threshold, 

one customer was preferable. The following analysis showed that as stock increases with 

lead times, the larger customer proved a higher expected FR value for the supplier. This 

was subsequently verified. 

 

4.5 Chapter Summary 

Four categories of variables with multiple scenarios were assessed in this chapter. Given 

one large customer and multiple small customers, the finding was that as lead times 

increase, the supplier needs more stock units to reach a defined service level. When the 

expected FR is fixed, longer lead times produce a higher probability of exceeding the 

target FR. For any lead time, it is more productive for a supplier to have multiple 

independent smaller customers than a single larger customer if the review period is less 

than a given threshold (𝜃). The opposite holds true when the review period is greater than 

𝜃. 

When customer demands are correlated with variance, positive increase in the correlation 

coefficient results in a decrease of the threshold 𝜃. Therefore, a scenario of high When 

customer demands are correlated, positive increase in the correlation coefficient results 

in a decrease of the threshold 𝜃. Therefore, in a scenario of high positive correlation for 

any lead time, having one large customer for a supplier is always preferable to multiple 

smaller customers. Moreover, the results showed that negative correlation in demand 
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requires a lower base stock and is profitable for the supplier. Analysing the impact of 

correlation with constant variance showed that having multiple customers with either 

negative or positive correlation is better for the supplier for short review periods. 

Conversely, one larger customer is preferable beyond a threshold review period duration. 

It was also observed that with multiple customers, a larger customer receives a better 

service level and has a higher probability of exceeding the target FR than smaller 

customers, regardless of the lead time.  
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Chapter 5: FR: Measurement of Ensuring Reliability in a 

Supply Chain 

5.1 Introduction 

This chapter considers the consistency and asymptotic normality of the fill rate. It extends 

the range of this measure to determine an optimal stock level, and evaluates the reliability 

of different SCs. Up to this point the analysis has not taken into consideration 

measurement of FR variability, as the scale was taken as one. This chapter focuses on 

variability; consistency and asymptotic normality in FR for optimal stock levels and in 

evaluating the reliability of SCs. Scenarios include single and multiple customers. This 

chapter first explains renewal reward theory as a measure of SC reliability. This is 

followed by modelling a single customer in the FR, which is then generalised to multiple 

independent customers. Finally, numerical examples validate the equations for the FR 

measure, to complete the objective. 

5.2 Introduction to Renewal Reward Processes 

The renewal reward model is one of the most powerful tools to evaluate applied 

probability models such as inventory management, queueing and reliability applications, 

and others. Many stochastic processes are regenerative, which means they renew 

themselves from time to time. Thus, the conduct of the process after the regeneration time 

is a probabilistic copy of conduct of the process beginning from time zero. The time 

interval between two regeneration periods is called a cycle. Whereas, the series of cycles 

creates a so-called renewal process (Tijms, H.C., 2003). 

Renewal theory is a generalization of a Poisson process, where time intervals between 

successive events are independent and identically distributed exponential random 

variables. A generalisation of a Poisson process can be established, where times between 
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time 

successive events are independent and identically and arbitrarily distributed. Mid-century 

Cox (1983, cited in Settanni et al. 2016, p. 13) ‘modelled recurrence data as a Poisson 

process’. Renewal theory can be either discrete time or continuous. Kim (2016, p.1) 

explained that renewals are randomly occurring events that can occur as bulk-renewal or 

single occurrences. Asymptotic results from renewal processes are used to study long-

term events, and recent advances in data management have renewed researcher interest 

in these ‘lengthy and complex expressions’. In 2016, ‘connection between the asymptotic 

results in continuous and discrete-time bulk-renewal processes had not been determined’ 

(Kim, 2016, p. 1). The formal definition for this study is: 

Let 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5,… be a positive sequence independent identically distributed 

random variables such that: 

0 < 𝐸[𝑋𝑖] <  ∞ 

 

Figure 5.1: Renewal reward process and interval times 

 

Define for each n > 0: 

𝑆0 = 0 

𝑆𝑛 =  ∑ 𝑋𝑖

𝑛

1

 

Where, 𝑛 ≥ 1 

It is, 𝑆1 =  𝑋1 which is the time of the first renewal; 𝑆2 =  𝑋1 + 𝑋2 means the time till the 

renewal plus the time between the first and the second renewal, 𝑆2 is the second time of 

renewal. In overall, 𝑆𝑛 denotes the times of 𝑛th renewal (see Figure 5.1) (Nebres, 2011). 
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[𝑆𝑛, 𝑆𝑛+1] 

Then (𝑁𝑡), which the random variable is given by: 

𝑁(𝑡) = ∑ 1{𝑆𝑖 ≤ 𝑡}

∞

𝑛=1

=  𝑠𝑢𝑝{𝑛 ∶  𝑆𝑛  ≤  𝑡} 

 

 

5.3 Modelling FR with a Single Customer 

5.3.1 Model, assumptions and notation through Chapter 5 

The following notations are used in this chapter, in the case of a single customer: 

𝑇 ∶ duration of the review period the FR is calculated for; 

𝑆 ∶ base stock level; 

𝑋𝑖 ∶ number of units demanded by a customer during period 𝑖; 

𝑓(𝑥)(𝑋) : probability density function (pdf) of 𝑋𝑖.; 

𝑌𝑖: number of units of fulfilled demand during period 𝑖, i.e., 𝑌𝑖 = min (𝑆, 𝑋𝑖); 

𝛼(𝑇)(𝑆): the FR for review period of length 𝑇; 

𝑃(𝑇)(𝑆, 𝜋): the probability that the FR exceeds threshold 𝜋, i.e., 𝑃(𝑇)(𝑆, 𝜋) = 

Pr( (𝛼(𝑇)(𝑆) ≥  𝜋). 

In this model, during each equally spaced time interval 𝑖 = 1, 2, …, a single customer 

demands items from an inventory of similar products. The inventory system is an order-

up-to inventory type, with a base stock level 𝑆, which is replenished instantly, and the 

lead time is equal to zero. All unmet demand is lost, so no backlogging occurs. 

The model also assumes that demands 𝑋𝑖 are independent and identically distributed each 

with pdf 𝑓(𝑥)(𝑋). Due to this assumption, the system is stationary and events occurring 
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during a review period of length 𝑇 are stochastically identical to events in other review 

periods of the same length. The FR is defined as: 

 𝛼(𝑇)(𝑆) = 
𝑌1 + 𝑌2 +⋯+ 𝑌𝑇

𝑋1 + 𝑋2 +⋯+ 𝑋𝑇
       (5.1) 

This reflects the proportion of demands that are filled from the base stock during a review 

period. Throughout this chapter we will make the following assumptions: 

 The variance of 𝑋, i.e., 𝑉𝑎𝑟 (𝑋) = 𝐸(𝑋2) −  𝐸2(𝑋) < ∞. 

 Pr(𝑋 > 0)  > 0; this will imply by the Glivenko– Cantelli Lemma that: 

Pr(𝑋𝑖  > 0 infinitely often) = 1 

Therefore, the denominator of (5.1) is never equal to zero with probability 1, as the 

renewal process 𝑆𝑛 =  ∑ 𝑋𝑖
𝑛
1  is non–terminating. 

5.3.2 Folk theorem 

The main result of (5.2), and specifically (5.3) below, is well known, so we refer to it as 

a Folk Theorem. Nevertheless, based on our knowledge, it does not appear to have been 

proven, so we do so here. 

 

Theorem 1 With probability 1, 

                              𝛼(𝑇)(𝑆) → 
𝐸 (𝑌)

𝐸 (𝑋)
                      (5.2) 

and, in addition 

                          𝐸(𝛼(𝑇)(𝑆)) → 
𝐸 (𝑌)

𝐸 (𝑋)
                        (5.3) 
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                                  as 𝑇 → ∞ Here: 

 𝐸(𝑌 )  =  ∫  min (𝑆, 𝑥) 𝑓𝑥 (𝑥)
∞

0
 𝑑𝑥 

             =∫  x 𝑓𝑥 (𝑥)
𝑆

0
 𝑑𝑥 + 𝑆 Pr (𝑋 ≥ 𝑆). 

Proof: 

In the proof, all convergence will be expected to occur as 𝑇 → ∞ and with probability of 

1. Define 𝑁(𝑡)  =  𝑠𝑢𝑝{𝑛 ∶  𝑆𝑛 ≤  𝑡} where the renewal process: 

𝑆𝑛 =  ∑ 𝑋𝑖

𝑛

1

 

We first note that: 

𝛼𝑁 (𝑇)(𝑆) = 
𝑌1 + 𝑌2 +⋯+ 𝑌𝑁(𝑇)

𝑇
 / 

 𝑆𝑇

𝑇
                         (5.4)  

where 𝑆(𝑡)  = 𝑆𝑁(𝑡). Using the Renewal Reward Theorem 3.16 in Ross (1970): 

𝑌1 + 𝑌2 +⋯+ 𝑌𝑁(𝑇)

𝑇
 →  

𝐸 (𝑌)

𝐸 (𝑋)
                                (5.5) 

 

By the Strong Law of Large Numbers 
𝑆(𝑇)

𝑁(𝑇)
 → 𝐸 (𝑋), and by the Renewal Theorem: 

              
𝑁(𝑇)

𝑇
 → 

1

𝐸 (𝑋)
; hence 

 
𝑆(𝑇)

𝑇
 = 

𝑆(𝑇)

𝑁(𝑇)
 / 

𝑇

𝑁(𝑇)
 → 1.        (5.6) 

The result of equation (5.2) follows from (5.4), (5.5), (5.6) and observes that as the 

renewal process is non–terminating, 𝑙𝑖𝑚𝑇 𝛼(𝑇) 𝑆 =  𝑙𝑖𝑚𝑇 𝛼𝑁 (𝑇) (𝑆). Finally, equation 

(5.3) can be proven that in exactly the same way using Theorem 3.16 in Ross (1970). A 

stronger result than (5.33) was shown to be valid by Banerjee (2005) and Chen (2003). 
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They specifically proved that expected FR is actually non-decreasing in 𝑇 while 

converging to 
𝐸 (𝑌)

𝐸 (𝑋)
. 

5.3.3 Consistency and asymptotic normality of the FR 

As far as we know, under the FR SLA performance, no previous works or research has 

discussed the consistency and asymptotic normality of the FR. However, Thomas (2005) 

and Abbasi et al. (2017) discussed the FR SLA measure and presented their works using 

a Monte Carlo simulation. So, the consistency of the FR and its asymptotic normality as 𝑇 

increases over different review period lengths are clearly obvious in graphical displays. 

By considering the first-order approximation (i.e., ignoring terms with order greater than 

one), we can display the dependence of the variance on T specifically and prove 

asymptotic normality. However, first we collect some results concerning the variance of 

Y and covariance between X and Y: 

𝑉𝑎𝑟(𝑌 )  = ∫  x2 𝑓𝑋 (𝑥)
𝑆

0
𝑑𝑥 + 𝑆2 Pr( 𝑋 ≥ 𝑆) −  𝐸2(𝑌)    (5.7) 

𝑐𝑜𝑣(𝑋, 𝑌 )  =  ∫  x2 𝑓𝑋 (𝑥)
𝑆

0
𝑑𝑥 + 𝑆 ∫  𝑥 𝑓𝑋 (𝑥)

∞

𝑆
𝑑𝑥 − 𝐸(𝑋)𝐸(𝑌)    (5.8) 

We note the formula for 𝐸(𝑌 ) from the previous: 

Here, 𝐸(𝑌 )  =  ∫  min (𝑆, 𝑋𝑖) 𝑓𝑥 (𝑥)
∞

0
 𝑑𝑥 

=∫  x 𝑓𝑥 (𝑥)
𝑆

0
 𝑑𝑥 + 𝑆 Pr (𝑋 ≥ 𝑆) 

Theorem 2 For the first-order approximation, the mean and variance of: 

𝛼T(𝑆) are: 

                     𝐸(𝛼𝑇(𝑆)) = 
𝐸 (𝑌)

𝐸 (𝑋)
         (5.9) 

       𝑉𝑎𝑟 (𝛼(𝑇)(𝑆)) = 
𝐸2(𝑌)

𝑇 𝐸2(𝑋)
 ( 

𝑉𝑎𝑟 (𝑌)

𝐸2(𝑋)
−  

2 𝑐𝑜𝑣(𝑋,𝑌)

𝐸(𝑋)𝐸(𝑌)
+ 

𝑉𝑎𝑟 (𝑋)

𝐸2(𝑋)
       (5.10) 
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respectively. 

Proof 

The first-order approximation to the mean and variance of the ratio random variable 
𝑍 

𝑊
 

where 𝑍 and 𝑊 are correlated are given by Kendall and Stuart (1969): 

𝐸 (
𝑍 

𝑊
) =  

𝐸(𝑍) 

𝐸(𝑊)
         (5.11) 

𝑉𝑎𝑟 (
𝑍 

𝑊
)= 

𝐸2(𝑍)

 𝐸2(𝑊)
 ( 

𝑉𝑎𝑟 (𝑍)

𝐸2(𝑍)
−  

2 𝑐𝑜𝑣(𝑍,𝑊)

𝐸(𝑍)𝐸(𝑊)
+  

𝑉𝑎𝑟 (𝑊)

𝐸2(𝑊)
     (5.12) 

respectively. Applying (5.11) and (5.12) to: 

Z =  𝑌1  +  𝑌2  + ⋯ +  𝑌𝑇, and   W = 𝑋1  +  𝑋2  + ⋯ +  𝑋𝑇 proves the 

results. 

We note from equation (5.10) and from using one of the assumptions under sub-section 

(5.3.1), that: 

𝑉𝑎𝑟 (𝛼𝑇(𝑆)) → 0 as 𝑇 → ∞; 

Hence, the following corollary is an immediate consequence of applying Chebyshev 

Inequality. 

 

Corollary 1 

The fill rate converges in probability (i.e., it is a consistent estimator, of the ratio 

𝐸(𝑌) 

𝐸(𝑍)
) as 𝑇 →  ∞. 

Theorem 3 

In the next result 
𝑑
→ represents convergence in distribution and 𝑁(. , . ) is the 

univariate normal distribution. 
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The following asymptotic normal convergence property of the FR SLAs holds: 

           √𝑇 (𝛼(𝑇)(𝑆) − 
𝐸(𝑌) 

𝐸(𝑋)
 ) 

𝑑
→ N (0, 𝜎2)     (5.13) 

Where 𝜎2 = 𝑇 𝑉𝑎𝑟 (𝛼(𝑇)(𝑆))  𝑎𝑛𝑑 𝑉𝑎𝑟 (𝛼(𝑇)(𝑆)) is the first-order 

approximation of the variance given by (5.10). 

Proof 

Applying the multivariate Central Limit Theorem (c.f. Theorem 5.4.4 in Lehman & 

Weibel [1999]), we obtain: 

 √𝑇  ( �̅� −  𝐸 (𝑋), �̅� − 𝐸 (𝑌))  
𝑑
→  𝑁(0, ∑  )      (5.14) 

Where 

 �̅� =
1

𝑇
 ∑ 𝑋𝑖

𝑇
𝑖=1 , �̅� =

1

𝑇
 ∑ 𝑌𝑖

𝑇
𝑖=1   

and ∑  𝑖𝑠 the two-by-two variance–covariance matrix of the bivariate random variable 

(𝑋, 𝑌 ). That is, with diagonal elements: 

𝑎11 =  𝑉 𝑎𝑟(𝑋), 𝑎22 =  𝑉 𝑎𝑟(𝑌), and 𝑎12 =  𝑎21 = 𝑐𝑜𝑣 (𝑋, 𝑌). 

We also note that 𝛼T(𝑆) =
�̅�

�̅�
. 

By applying the Delta Method (c.f. Theorem 5.4.6. in Lehman [1999]) to the function: 

𝑓(𝑥, 𝑦) =
𝑦

𝑥
, we further obtain: 

√𝑇 (𝛼(𝑇)(𝑆) − 
𝐸(𝑌) 

𝐸(𝑋)
 ) 

𝑑
→ N (0, 𝜎2)               (5.15) 

Where: 

𝜎2 =  𝑎11  (
𝜕𝑓

𝜕𝑥
)

2

+ 2 𝑎12  
𝜕𝑓

𝜕𝑥
 
𝜕𝑓

𝜕𝑦
 +  𝑎22  (

𝜕𝑓

𝜕𝑦
)

2
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= 𝑉𝑎𝑟 (𝑋) (
𝜕𝑓

𝜕𝑥
)

2

+ 2 𝑐𝑜𝑣 (𝑋, 𝑌) 
𝜕𝑓

𝜕𝑥
 
𝜕𝑓

𝜕𝑦
+ 𝑉𝑎𝑟 (𝑌) (

𝜕𝑓

𝜕𝑦
)

2

 

and all partial derivatives are evaluated at the point 𝜂 = ( 𝐸(𝑋), 𝐸(𝑌)). Since: 

𝜕𝑓

𝜕𝑥
= − 

𝑦

𝑥2
 and 

𝜕𝑓

𝜕𝑥
=  

1

𝑥
 

𝜎2 = 𝑣𝑎𝑟(𝑥)
𝐸2(𝑌)

 𝐸4(𝑋)
 −  2 𝑐𝑜𝑣 (𝑋. 𝑌)

𝐸(𝑌)

𝐸3(𝑋)
+ 

𝑉𝑎𝑟 (𝑌)

𝐸2(𝑋)
 

=
𝐸2(𝑌)

 𝐸2(𝑋)
 ( 

𝑉𝑎𝑟 (𝑋)

𝐸2(𝑋)
− 

2 𝑐𝑜𝑣(𝑋,𝑌)

𝐸(𝑌)𝐸(𝑋)
+ 

𝑉𝑎𝑟 (𝑌)

𝐸2(𝑋)
) 

     = 𝑇 𝑉𝑎𝑟 (𝛼𝑇(𝑆))                   (5.16) 

On referring to equation (5.10), this completes the proof of the theorem. 

5.3.4 Reliability of the Fill Rate 

In terms of meeting customers’ demands, the higher the FR, the more reliable the 

performance of the SC. As was displayed by Banerjee (2005) and Chen (2003), the 

average FR decreases when the performance review period is increased in a base stock 

inventory system, which means average FR is a decreasing function of the number of 

replenishment periods in T. Nevertheless, this does not indicate that the reliability in 

performance as measured by the FR is decreasing with T, since the real distribution of the 

FR can change quite frequently within each period as it is dependent on the type of 

distribution of the demand. This was presented in several simulation study examples by 

Abbasi et al. (2017) and Thomas (2005). 

The perfect measure of reliability is that the FR exceeds a target π with a probability of 

at least 𝛾 where 0 <  𝛾 <  1, that is: 

 

                    𝑃𝑇  (𝑆, 𝜋)  ≥   𝛾.                                                  (5.17) 
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From Theorem 3, for large T, applying the asymptotic property of the FR, the 

probability𝑃𝑇  (𝑆, 𝜋) can be approximated by 1 −  𝛷𝑍  (
√𝑇 

𝜎
(π −  

𝐸(𝑌) 

𝐸(𝑋)
 ) where 𝛷𝑍(. ) is 

the cumulative distribution of the standard normal random variable. Applying the same 

large sample approximation, the target π that fulfils the reliability criterion (5.17) satisfies 

the following inequality: 

                     π ≤  
𝐸(𝑌)

𝐸(𝑋)
+  

𝜎 

√𝑇 
 𝛷𝑍

−1 (1 −  𝛾)     (5.18) 

where 𝛷𝑍
−1(. ) is the inverse of 𝛷𝑍(. ). 

In previous works, the base stock level S has been considered fixed. However, it is a key 

determinant in realising a reliable supply and satisfying customers’ demands. As we have 

realised, base stock level S, demand, and the length of a review period T all effect the 

distribution of the FR SLA measure. In practice, customers and supply managers would 

discuss suitable base stock levels and those who fail to reach agreed service levels, and 

penalties are imposed on suppliers who fail to reach these levels. A sensible objective for 

both is to discover the minimum stock level S > 0, which will satisfy the condition in 

Equation (5.19). More specifically, the SC manager would prefer to solve the following 

optimisation problem by: 

𝑚𝑖𝑛 𝑆 

 Such that                       𝑃𝑇  (𝑆, 𝜋)  ≥  𝛾, 𝑆 >  0.    (5.19) 

First, the following Lemma should be presented: 

Lemma 1 For each fixed 𝑇, the fill rate 𝛼(𝑇) (𝑆) is a stochastically increasing function 

of S, i.e., 𝑃𝑟(𝛼𝑇 (𝑆1)  ≤  𝑥) ≤ 𝑃𝑟(𝛼𝑇 (𝑆2)  ≤  𝑥) if 𝑆1  >  𝑆2 for every 𝑥 >  0. 

Proof. 

If 𝑆1 >  𝑆2 then the following strict inequality must hold for any random demand X: 

𝑚𝑖𝑛{𝑆1 , 𝑋}  >  𝑚𝑖𝑛{𝑆2 , 𝑋}. 
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Hence 𝛼𝑇  (𝑆1) >  𝛼𝑇 (𝑆2) with probability one which implies that: 

 𝑃𝑟(𝛼𝑇 (𝑆1)  ≤  𝑥) ≤ 𝑃𝑟(𝛼𝑇 (𝑆2)  ≤  𝑥) for every 𝑥 >  0. 

Theorem 4 

The solution 𝑆∗ to the problem (5.19) is unique and is given by: 

                𝑆∗ = inf  { 𝑆 ∶  𝑃𝑇 (𝑆, 𝜋) = 𝛾}                    (5.20) 

Proof. 

From Lemma 1, 𝛼𝑇 (𝑆) is a stochastically increasing function of 𝑆, hence for fixed target 

π, 𝑃𝑇  (𝑆, 𝜋) is non-decreasing function of S. Therefore, over the region: 

𝑆 >  0 the solution to (5.10) is given and presented by (5.20). 

The next corollary is an immediate consequence of Theorem 4. 

Corollary 2 

If 𝑃𝑇  (𝑆, 𝜋) is a strictly increasing function of 𝑆 for each fixed π, then the unique solution 

𝑆∗ to problem (19) satisfies: 

𝑃𝑇 (𝑆, 𝜋) =  𝛾.      (5.21) 

5.4 Fill Rate with Multiple Customers 

In Section 5.2, we were looking for the model for the FR in an SLA with one customer. 

Now, we will extend our analysis to more than one customer. We note that similar results 

discussed in the previous section will apply to each customer independently. In this 

section, we will study the results that stratify to all customers’ cases, which can be 

straightforward generalisations of the results in Section 5.2. For an example of these 

generalisations, we will examine the case of two customers 𝐶1and 𝐶2 who demand items 

from a supplier with base stock level 𝑆. Most of the results in Section 5.2 are applicable 
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to this case, provided we assume that demands from each customer are independent and 

identically distributed, and also independent between customers. 

The aggregated FR is now defined as: 

𝛼𝑇
(2)(𝑆) =  

𝑌1
(1) + ⋯ +  𝑌𝑇

(1) + 𝑌1
(2) + ⋯ + 𝑌𝑇

(2)

𝑋1
(1) + ⋯ +  𝑋𝑇

(1) + 𝑋1
(2) + ⋯ +  𝑋𝑇

(2)
 

Where 𝑌𝑖
(1), 𝑌𝑖

(2), 𝑋𝑖
(1) 𝑎𝑛𝑑 𝑋𝑖

(2) have the obvious interpretations of customer specific 

demands. Let the probability density function of 𝐶1′s demand and of 𝐶2′s demand be 

denoted by 𝑓1(𝑥) and 𝑓2(x), respectively. The mean and variance of 𝑋𝑗, j = 1, 2 will be 

denoted by 𝐸(𝑋𝑗) and 𝑉𝑎𝑟(𝑋𝑗 ), respectively. Similarly, the mean and variance of 𝑌𝑗 ,   j 

= 1,2 will be denoted by 𝐸(𝑌𝑗  ) and 𝑉𝑎𝑟(𝑌𝑗), respectively. The Folk Theorem presented 

in section 5.3.2 generalises to: 

Theorem 5 

With probability 1, 

𝛼𝑇
(2)(𝑆) → 

𝐸(𝑌1)+ 𝐸(𝑌2)

𝐸(𝑋1)+ 𝐸(𝑋2)
 

and, in addition 𝐸 (𝛼𝑇
(2)(𝑆)) → 

𝐸(𝑌1)+ 𝐸(𝑌2)

𝐸(𝑋1)+ 𝐸(𝑋2)
 

as T → ∞. Here 𝐸(𝑌𝑗) =  ∫  min (𝑆, 𝑥) 𝑓𝑗  (𝑥)
∞

0
 𝑑𝑥 

= ∫  x 𝑓𝑗  (𝑥)

𝑆

0

 𝑑𝑥 +  𝑆 Pr( 𝑋𝑗  ≥ 𝑆) , 𝑓𝑜𝑟 𝑗 = 1, 2. 

Now we apply between a pair of sums of two independent random variables, the standard 

results for the variance and covariance of two independent random variables and 

covariance: the first-order approximation to the variance of 𝛼(2)
(𝑇)(𝑆), indicated by 

𝑣𝑎𝑟 (𝛼(2)
(𝑇)(𝑆)), can simply be deducible from Equation (5.10) with apparent changes. 
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If we let 𝜎(2)
2 = 𝑇 𝑉𝑎𝑟 (𝛼𝑇

(2)(𝑆)), then the asymptotic normality theorem for the FR is 

now given by the following result: 

Theorem 6 

The following asymptotic normal convergence property holds for the joint FR: 

√𝑇 (𝛼𝑇
(2)(𝑆) −  

𝐸(𝑌1)+ 𝐸(𝑌2) 

𝐸(𝑋1)+ 𝐸(𝑋2)
 ) 

𝑑
→ N (0, 𝜎(2)

2 )              (5.22) 

Next, we introduce a similar measure of reliability to Equation 5.17 (i.e. the FR exceeds 

a target π with probability of at least 𝛾 where 0 <  𝛾 <  1) but we will invoke this under 

two customers: 

 𝑃𝑇
(2)

 (𝑆, 𝜋)  ≥  𝛾       (5.23) 

Where 𝑃𝑇
(2) (𝑆, 𝜋) = 𝑃𝑟 (𝛼𝑇

(2)(𝑆) >  𝜋 ) . For large T and using the asymptotic result of 

Theorem 6 , 𝑃𝑇
(2)

 (𝑆, 𝜋) and it can be approximated by: 

1 − 𝛷𝑍 (
√𝑇 

𝜎(2)
(π −  

𝐸(𝑌1)+ 𝐸(𝑌2) 

𝐸(𝑋1)+ 𝐸(𝑋2)
 ). 

Therefore, similar to (5.18), the target 𝜋 that satisfies the reliability criterion (5.23) must 

also be satisfied by the next inequality: 

            𝜋 ≤  
𝐸(𝑌1)+ 𝐸(𝑌2) 

𝐸(𝑋1)+ 𝐸(𝑋2)
+  

𝜎(2)

√𝑇 
 𝛷𝑍

−1(1 −  𝛾)    (5.24) 

Finally, the base stock level S for two customer-cases under the optimisation problem in 

(5.19) has a unique solution specified by the following theorem. 

Theorem 7 

The solution 𝑆∗ to the problem (5.19) with two customers is given by: 

 𝑆∗ = inf  { 𝑆 ∶  𝑃𝑇
(2)

 (𝑆, 𝜋) = 𝛾}     (5.25) 
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5.5 Numerical Examples Under the FR SLAs Measure 

In this section, we conduct some simulation examples and studies, assuming that the 

supplier uses a static, periodic review, base stock policy with backorders. We analyse the 

impact of performance review period length on the average FR and the probability of 

exceeding the target FR for a supplier with single and multiple customers. The simulation 

was run for the one and two-customer cases, with customer demand Erlang distribution. 

We compare the results over several performance review phase durations. 

In example 1, for two cases (one and two customers), we study the sampling distributions 

for the FR SLA measure when we increase the size of the review periods length (i.e., T = 

5, 10, 20, 100). So, in example 1, eight scenarios in total were considered. For each 

scenario, the simulation was run for 18,445 performance review periods. We consider 

that for each customer, the demand is Erlang distributed with mean 𝐸(𝑋)  =  9. The long-

run FR is set at 
𝐸 (𝑌)

𝐸 (𝑋)
= 0.95. Base stock level (S) is calculated so as to achieve a long-run 

FR of 0.95 (in the case of multiple customers, the long-run FR is for aggregated demand), 

resulting in a base stock level of 𝑆 =  24. In Figures 5.2 and 5.3 the distributions are 

captured. When we increase T it leads to a change in shape, and that confirms the 

consistency and asymptotic normality shown in Theorem 3. 
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Figure 5.2: The sampling distribution of the FRs as T increases with a single customer. 

 

a. One customer with demand distribution of 

Erlang(9) and T = 5, and scale = 1 

c. One customer with demand distribution of 

Erlang(9) and T = 20, and scale = 1 
d. One customer with demand distribution of 

Erlang(9) and T = 100, and scale = 1 

b. One customer with demand distribution of 

Erlang(9) and T = 10, and scale = 1 
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Figure 5.3: The sampling distribution of the FRs as T increases with multiple customers. 

 

  

b. Two customers with total demand 

distribution of Erlang(9) and T = 10, and 
scale = 1 

 

a. Two customers with total demand distribution of 
Erlang(9) and T = 5, and scale = 1 

 

d. Two customers with total demand 

distribution of Erlang(9) and T = 100, and 
scale = 1 

c. Two customers with total demand distribution of 
Erlang(9) and T = 20, and scale = 1 
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In example 2, for single and two-customer cases for each of the various scenarios, we 

found the required base stock level for realising a specified PS (i.e., exceeding and 

meeting the target FR level π with probability at least 𝛾, c.f. equations 5.20 and 5.25). We 

let π = 0.95 and set 𝛾 =  0.5, 0.6, 0.7, 0.9, 0.95 and 0.99. In each case we numerically 

searched for the lowest base stock level (S) that can satisfy the given PS. 

In Figure 5.4, the overall distribution of demand for one customer was Erlang with shape 

= 1, and scale = 8, we compare that with two customers with aggregate demand Erlang 

distributed with shape = 2, and scale = 16. It can be seen in the graphs that the minimum 

stock level required to realise an agreed confidence level 𝛾 is greater for the two-customer 

case than the one-customer case, and that this difference is greater as the review period 

duration increases.  
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Figure 5.4: Comparison between one and two customers in terms of base stock levels required 

to meet target level 0.95 with various probabilities (50%, 60%, 70%, 90%, 95% and 99%). 

 

  

50% success  60% success  

99% success 

90% success  

95% success  

 

70% success  
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In example 3 we apply (5.18) to find the upper bounds for the target π for several 

combinations of confidence level 𝛾 and different period length T = 30, 40, 50 …, 100. By 

applying formula (5.10), the asymptotic variance of the FR was calculated and considered 

to equal 𝜎2 = 31.66. The calculated upper bounds are tabulated (Table 5.1). An entry 

with an asterisk indicates that (5.18) gave a negative value, so the confidence level 𝛾 is 

lower than the acceptable range using the normal approximation. From Table 5.1 it can 

be seen that the upper bounds of these target values increase with the number of periods 

(except when 𝛾 = 0.5), and decrease as the confidence levels increase. This is also 

obvious in Figure 5.2, which displays sampling distributions that are heavily skewed to 

the left and move to the right when increasing the period lengths T, finally realising 

symmetry with large 𝑇 centred at the long-run SLA FR. 

 

Table 5.1: Upper bounds for target values for combinations of 𝛾 and T values 

 

 

  

 𝑇 

𝛾 30 40 50 60 70 80 90 100 

0.50 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

0.60 0.69 0.72 0.75 0.77 0.78 0.79 0.8 0.81 

0.70 0.41 0.48 0.53 0.57 0.6 0.62 0.64 0.65 

0.80 0.09 0.2 0.28 0.34 0.38 0.42 0.45 0.48 

0.90 * * * 0.02 0.09 0.14 0.19 0.23 

0.95 * * * * * * * 0.02 
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5.6 Chapter Summary 

In inventory management systems, the FR is an important performance measure 

commonly used as an indicator of reliable and efficient service by suppliers to customers. 

In this chapter, we discussed several results related to the FR SLA measure. essentially 

associated with the measure’s variability, such as consistency and asymptotic normality. 

Variability is important when measuring the risk involved in applying the FR, to 

coordinate SLAs between suppliers and their customers. Moreover, we introduced the 

results for a single customer, then extended those to multiple customers. Specifically, we 

extended our analysis to a two-customer case because, based on the assumptions imposed 

on our model, further increasing the number of customers does not contribute any 

additional insights into how to improve performance in the current systems. This chapter 

demonstrated that the upper bounds of these target values usually increase with number 

of periods, and decrease as confidence levels increase, finally realising symmetry for the 

long-run contract FR. These are the optimal stock levels for the SC to retain reliability 

over time.  
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Chapter 6: SLA: Ready Rate Analysis with Lump-Sum and 

Linear Penalty Structures 

6.1 Introduction 

This chapter examines the impact on the supplier’s costs for ready rate SLAs measure 

with single and multiple customers given base stock levels, lump-sum and linear 

penalties, variety ready rate thresholds, and different review periods. Specifically, we 

examine two different types of contracts the suppliers face. Via these types of contracts, 

we study several impact factors, such as the base stock level, two types of penalties (lump-

sum and linear penalties) and the review period duration on the supplier’s cost function, 

and the impact of several behavouirs of the ready rate faced by the supplier. 

The ready rate is the proportion of replenishment periods in which stock is available. In 

a typical supplier–customer contract within an SC, the ready rate is periodically measured 

and a financial penalty is incurred if the set target is not met. In Chapter 3, the assumption 

was that the FR had zero lead time. In Chapter 4, the measure was an FR with a positive 

lead time. This chapter uses the ready rate as the SLA performance measure, defined as 

the long-run fraction of periods in which all customer demand is filled immediately from 

on-hand stock. The scenarios considered in this chapter assume either single or multiple 

customers. In the first scenario, the supplier has a single customer with a large demand 

𝐷. We compare this to the second scenario, in which the supplier has more than one 

customer, whose combined demands are the same as the single-customer case. Separate 

contracts are held between the supplier and each customer, and a financial penalty is 

imposed if the supplier cannot fulfil the contract conditions. 
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6.1.1 Ready rate 

The ready rate was described in Chapter 1. For the purposes of this thesis, Larsen and 

Thorstenson’s (2014) description of the ready rate is adopted: the proportion of the time 

that items are available immediately to the customer. The supplier agrees to predefined 

service levels over a constant finite period, known as the performance review phase. The 

supplier’s inventory performance (a random variable) is measured and evaluated over a 

finite time horizon. In practice, a supplier will fill up the inventory up to a base stock level 

at a specified time interval, the replenishment review period (e.g., days, or weekly), and 

then supplier performance is evaluated at a regular performance review phase (e.g., 

monthly). Such inventory policies minimise holding and shortage costs for suppliers 

in an integrated SC (Taleizadeh & Noori-daryan 2016). Suppliers’ service to customers 

may fail as inventory becomes unavailable due to unexpected demand, transport or 

distribution issues, pricing or inclement weather (Spiegler, Naim & Syntetos 2016). 

Agreements between the supplier and customer can incur a flat fee or linear penalties for 

missing targets over a certain period, or a finite review horizon (Larsen & Thorstenson 

2014). Penalties that a supplier may incur considered in this study are lump sum (a set 

penalty) and linear (where there is a scaled penalty based on amount of deviation from 

performance targets) (Giard & Sali 2013). These penalties are examined within a scenario 

of multiple customers, where each has a separate contract with a supplier employing a 

periodic review base-stock model with zero lead time. 

6.2 Notations 

The following notations are used in Chapter 6: 

𝐷𝑖  : a random variable defined as the stationary demand of customer i where 

i=1,…,n and n is the number of customers. In the case of one customer, this is 

simply shown by 𝐷. In this study, the aggregated demand distribution for 

multiple-customer cases is the same as the distribution of the one-
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customer case. Therefore, D in multiple-customer cases refers to the 

aggregated demand (i.e., 𝐷 = 𝐷1 + ⋯ + 𝐷𝑛 ); 

𝐷𝑖(𝑚): the demand of customer i in 𝑚 periods, where i=1,…,n and n is the number 

of customers. Index i drops in the one-customer case; 

𝐷𝑖[𝑡, 𝜏]: the demand of customer i in the interval [𝑡, 𝜏], where i=1,…,n and n is 

the number of customers. Index i drops in the one-customer case; 

𝐹𝐷𝑖
(. ): the CDF of demand of customer i, where i=1,…,n and n is the number of 

customers. Index i drops in the one-customer case or in the case of referring to 

aggregated demand in multiple-customer cases; 

𝑓𝐷𝑖
(. ): the probability density function of demand of customer i, where i=1,…,n 

and n is the number of customers. Index i drops in the one-customer case or in the 

case of referring to aggregate demand in multiple-customer cases; 

𝑆 ∶ the base stock (order-up-to) level; 

ℎ : the unit inventory holding cost per period; 

𝑋𝑡
𝑖: a variable that indicates whether all demand is satisfied in period 𝑡 for 

customer i, 𝑋𝑡
𝑖 is 0 or 1. Index i drops in the one-customer case; 

𝑅: the length of performance review phase (i.e., the number of replenishment 

periods in a performance review phase); 

𝜂𝑅
𝑖 : the cumulative inventory performance (i.e., number of periods where all 

demand is satisfied) during a performance review phase with length R for 

customer 𝑖, 𝜂𝑅
𝑖 = ∑ 𝑋t

i.R
t=1  Index i drops in the one-customer case; 

𝐴𝑅
𝑖 : the ready rate in a performance review phase for customer 𝑖, 𝐴𝑅

𝑖 = 𝜂𝑅
𝑖  / 𝑅. Index 

i drops in the one-customer case; 
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∝𝑖=: the performance threshold for 𝐴𝑅
𝑖  (i.e., the target-ready rate for customer i). 

Index i drops in the one-customer case; 

𝐾𝑖: the penalty paid by the supplier to the customer i for performance below 

threshold ∝𝑖. Index i drops in the one-customer case; 

𝑉0(𝑆): the supplier’s average cost under a static base stock 𝑆 policy. 

6.3 Distribution of the Ready Rate 

Our model in this Chapter 6 is an SC consisting of a single supplier who serves (manages 

the demands for) either a single or multiple customers. In the first scenario the supplier 

has one customer with a large demand D. We compare this to the second scenario, in 

which the supplier has more than one customer, whose aggregated demand is the same as 

in the single-customer case. 

To study the impact of R on the supplier’s cost function, a variety of performance review 

phase lengths are considered, R ϵ {5, 10, 30, 50}. Similarly, two types of penalty (lump-

sum and linear) are applied. We suppose that the supplier incurs a fixed unit inventory 

holding cost h for each period. Moreover, we assume that the supplier applies a periodic 

review base stock policy with a base stock level S. A customer order placed at the 

beginning of period t must be fulfilled within the same period, and any unmet demand is 

backordered. Let 𝑋𝑡  ∈ {0, 1} be the ready rate for period 𝑡, (where 1 ≤  𝑡 ≤  𝑅). 𝑋𝑡 = 1 

if all demand is filled in period t, conversely 𝑋𝑡 = 0 if some demand is not filled in period 

t and requires backordering. When the supplier has a contract with a single customer, the 

probability that all customer demand in a single period is satisfied equals: 

Pr{𝑋𝑡 = 1} = 𝑃𝑟 {𝐷[𝑡, 𝑡 + 1) ≤ 𝑆 } = Pr{ 𝐷(1) ≤ 𝑆} =  𝐹(𝑆)   (6.1) 

When the demand is independent and identically distributed, and a stationary base stock 

policy is used (i.e., S is fixed for all t), the ready rate 𝑋𝑡 for each period t has an identical 

distribution. So, the cumulative ready rate 𝜂𝑅 has a binomial distribution: 
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Pr{ 𝜂𝑅  = 𝑖 |𝑆 } =  (𝑅
𝑖
) [ 𝐹(𝑆)]𝑖[1 −  𝐹(𝑆)]𝑅−𝑖      (6.2) 

Where R is the number of trials and 𝐹(𝑆) is the probability of a success. 

When the supplier has an agreement with two customers (buyers), then 𝐷1 and 𝐷2 are the 

respective random demands of customers 1 and 2 in each replenishment review period, 

with corresponding probability density function 𝑓𝐷1
(. ) and 𝑓𝐷2

(. ). The demand 

summation for both customers per replenishment review period is given by 𝐷 = 𝐷1+𝐷2.. 

Note that replenishment review periods here refer to equally spaced time intervals with 𝑅 

periods in a single performance review phase. Due to the stationarity of demand 

assumption, the events occurring in each replenishment review period are statistically 

identical to other replenishment review periods. 

We assume that the customers are served in accordance with an FCFS policy, and that 

once a customer comes, their demand should be met in full. In the case of two customers, 

there is a 50% chance that customer 1 will come first. The sequence of the customer 

arrivals is defined by a binary variable (Y), such that Y = 1 when customer 1 arrives 

first, and Y = 0 otherwise. We assume P (Y = 0) = P (Y = 1) = 0.5. Therefore, the 

average ready rate for customer 1 of a supplier with two customers (buyers) is 

given by the following equation ( recall that 𝐷 = 𝐷1 +  𝐷2): 

𝐴𝑅
1 = 𝑃 (𝐷 ≤  𝑆) +  𝑃 (𝑌 =  1, 𝐷1 ≤  𝑆, 𝐷 >  𝑆)             (6.3) 

Similarly, the average ready rate for customer 2 is given by: 

𝐴𝑅
2 =P (D ≤ S) + P (Y = 0, D2 ≤ S, D> S)                                                       (6.4) 

Here we define the following disjoint events and their probabilities: 

𝜉1 = probability that both customer demands are fully satisfied within a period; 

𝜉2 = probability that only customer 1’s demand is satisfied within a period; 
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𝜉3 = probability that only customer 2’s demand is satisfied within a period; 

𝜉4 = probability that neither customer’s demands are fully satisfied within a period. 

A demand is fully satisfied if it is less than or equal to the base stock level 𝑆. To find the 

above probabilities, we partition the region {𝐷1  ≥ 0}  ∪ {𝐷2  ≥ 0} as: 

  E1 = {D ≤ S} 

  E2 = {Y = 1, D1 ≤ S, D > S} 

  E3 = {Y = 0, D2 ≤ S, D > S} 

  E4 = {Y = 1, D1 > S, D > S} U {Y = 0, D2 > S, D > S} 

Therefore: 

𝜉1 = 𝑃(𝐸1) = 𝑃(𝐷 ≤ 𝑆) =  ∫ ∫ 𝑓𝐷1

𝑆−𝑥1

0
(𝑥1)𝑓𝐷2

(𝑥2)𝑑𝑥2𝑑𝑥1
𝑆

0
               (6.5) 

 

𝜉2 = 𝑃(𝐸2) = 0.5 ∗ 𝑃(𝐷1 ≤ 𝑆 |𝐷 > 𝑆 ) ∗ 𝑃(𝐷 > 𝑆) 

= 0.5 ∫ ∫ 𝑓𝐷1

∞

𝑆−𝑥1
(𝑥1)𝑓𝐷2

(𝑥2)𝑑𝑥2𝑑𝑥1
𝑆

0
                  (6.6)

      

       𝜉3 = 𝑃(𝐸3) = 0.5 ∗ 𝑃(𝐷2 ≤ 𝑆 |𝐷 > 𝑆 ) ∗ 𝑃(𝐷 > 𝑆) 

= 0.5 ∫ ∫ 𝑓𝐷1

∞

𝑆−𝑥2
(𝑥1)𝑓𝐷2

(𝑥2)𝑑𝑥1𝑑𝑥2
𝑆

0
                  (6.7) 

 

𝜉4 = 𝑃(𝐸4) = 1 − 𝜉1 − 𝜉2 − 𝜉3        (6.8) 

Since the four events are mutually exclusive and exhaustive, 

        𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 = 1                    (6.9) 

Now we can explain the following multinomial distribution concerning the number of 

possible events in a performance review phase that supports us to derive the ready rate: 
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Pr{ 𝑚, 𝑖, 𝑗, 𝑅 − 𝑖 − 𝑗 − 𝑚 |S } =  ( 𝑅
𝑚 𝑖 𝑗 𝑅−𝑖−𝑗−𝑚

) 𝜉1
𝑚 𝜉 𝐼

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚
             (6.10) 

For instance, the probability that in exactly g time periods out of R time periods, the 

demand of customer 1 is satisfied (that means 𝜂𝑅
1 = g) is given by: 

∑ ∑ (
𝑅

𝑚 𝑔 − 𝑚 𝑗 𝑅 − 𝑔 − 𝑗
)

𝑅−𝑔

 𝑗=0

𝜉1
𝑚 𝜉2

𝑔−𝑚
 𝜉3

𝑗
 𝜉4

𝑅−𝑔−𝑗
 

𝑔

𝑚=0

 

This expression calculates all possible combinations that in g periods out of R, the demand 

of customer 1 is fully satisfied. 

6.4 The Supplier Cost Function Under a Lump-Sum Penalty SLA 

First, we consider the supplier’s cost function under the application of a fixed lump-sum 

penalty for two scenarios: when the supplier has one customer, and when the supplier has 

multiple customers. A lump-sum penalty SLA is one in which a supplier must pay a fixed 

penalty 𝐾 to its customer whenever the ready rate for this customer is less than 

a specified threshold, that is AR < ∝ or, equivalently, ηR < ∝ 𝑅. 

Therefore, the formula for the supplier’s average cost with backlogging under a static 

base stock 𝑆 policy and one customer is (Liang & Atkins 2013): 

𝑉0(𝑆) = ℎ𝐸 [𝑆 −  𝐷]+ +  
𝐾

𝑅
 ∑ Pr {

⌈∝𝑅⌉−1
𝑖=0 𝜂𝑅 = 𝑖 | 𝑆}                      (6.11) 

Where Pr {𝜂𝑅 = 𝑖 | 𝑆} is given by (6.2). 

In the second scenario, where the supplier has two customers, the supplier’s average cost 

formula under the lump-sum penalty is obtained as: 
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𝑉0(𝑆) =  ℎ 𝐸 [ 𝑆 − 𝐷]+ 

+ 
𝐾1

𝑅
 ∑  ∑ ∑ (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

𝑅−𝑖−𝑚

 𝑗=max(0,⌈∝2𝑅⌉−𝑚)

⌈∝1𝑅⌉−1−𝑚

𝑖=0

 𝜉1
𝑚 𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚

 

⌈∝1𝑅⌉−1

𝑚=0

 

+ 
𝐾2

𝑅
 ∑ ∑ ∑ (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

𝑅−𝑗−𝑚

 𝑖=max(0,⌈∝1𝑅⌉−𝑚)

 

 ⌈∝2𝑅⌉−𝑚−1

 𝑗=0

 𝜉1
𝑚 𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚
 

⌈∝2𝑅⌉−1

𝑚=0

 

 

+ 
(𝐾1 + 𝐾2)

𝑅
 ∑  ∑  ∑ (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

min(⌈∝2𝑅⌉−𝑚,𝑅−𝑚−𝑖)

𝑗=0

⌈∝1𝑅⌉−1−𝑚 

𝑖=0

 𝜉1
𝑚  𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚
 

min(⌈∝1𝑅⌉−1,⌈∝2𝑅⌉−1)

𝑚=0

 

 

                     (6.12) 

 

 

 

The first term of Equation (6.12) computes the holding cost. The second term of Equation 

(6.12) calculates the penalty incurred when the target-ready rate of customer 1 is not 

achieved, but the target-ready rate of customer 2 is met. Thus, in the second term, the 

summation of the number of periods when only customer 1’s demand is satisfied 

(with probability 𝜉2), and those periods when both customers are satisfied 

(with probability 𝜉1) is less than ⌈∝1 𝑅⌉ − 1. Conversely, the summation of the number 

of periods when only customer 2’s demand is satisfied (with probability 𝜉3) and those 

periods when both customers are satisfied (with probability 𝜉1) is greater than or equal 
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to ⌈∝2 𝑅⌉. The third term of Equation (6.12) is similar to the second term but calculates 

the penalty incurred when the target-ready rate of customer 2 is not achieved. The last 

term calculates the penalty incurred when neither customer’s demand is satisfied. 

6.5 The Supplier Cost Function Under a Linear Penalty SLA 

In the linear penalty SLA, the supplier is imposed to pay the customer a penalty 

proportional to the time that the supplier’s inventory performance is insufficient 

to satisfy the SLA. This means that the penalty K is charged over (αR− 𝜂𝑅)+ 

periods of the review phase R. 

The formula below shows the supplier’s cost function under a linear penalty SLA, with a 

backlog assumption in the one-customer case (Liang & Atkins 2013): 

 

𝑉0(𝑆) = ℎ𝐸 [𝑆 −  𝐷]+ +  
𝐾

𝑅
 ∑ Pr {

⌈∝𝑅⌉−1
𝑖=0 𝜂𝑅 = 𝑖 | 𝑆}                (6.13) 

where Pr {𝜂𝑅 = 𝑖 | 𝑆} is given by (6.1). 

𝑉0(𝑆)

=  ℎ 𝐸 [ 𝑆 − 𝐷]+

+ 
𝐾1

𝑅
 ∑  ∑ ∑ (⌈∝1 𝑅⌉ − 1 − 𝑖 − 𝑚) (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

𝑅−𝑖−𝑚

 𝑗=max(0,⌈∝2𝑅⌉−𝑚)

⌈∝1𝑅⌉−1−𝑚

𝑖=0

 𝜉1
𝑚 𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚

 

⌈∝1𝑅⌉−1

𝑚=0

+ 
𝐾2

𝑅
 ∑ ∑ ∑ (⌈∝2 𝑅⌉ − 1 − 𝑗 − 𝑚) (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

𝑅−𝑗−𝑚

 𝑖=max(0,⌈∝1𝑅⌉−𝑚)

 

 ⌈∝2𝑅⌉−𝑚−1

 𝑗=0

 𝜉1
𝑚 𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚

 

⌈∝2𝑅⌉−1

𝑚=0

+ 
𝐾1

𝑅
 ∑  ∑  ∑ (⌈∝1 𝑅⌉ − 1 − 𝑖 − 𝑚) (

𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

min(⌈∝2𝑅⌉−𝑚,𝑅−𝑚−𝑖)

𝑗=0

⌈∝1𝑅⌉−1−𝑚 

𝑖=0

 𝜉1
𝑚 𝜉 2

𝑖  𝜉3
𝑗
 𝜉4

𝑅−𝑖−𝑗−𝑚
 

min(⌈∝1𝑅⌉−1,⌈∝2𝑅⌉−1)

𝑚=0

+ 
𝐾2

𝑅
 ∑  

min(⌈∝1𝑅⌉−1,⌈∝2𝑅⌉−1)

𝑚=0

∑  ∑ (⌈∝2 𝑅⌉ − 1 − 𝑗 − 𝑚) (
𝑅

𝑚 𝑖 𝑗 𝑅 − 𝑖 − 𝑗 − 𝑚
)

min(⌈∝2𝑅⌉−𝑚,𝑅−𝑚−𝑖)

𝑗=0

⌈∝1𝑅⌉−1−𝑚 

𝑖=0

 

                         (6.14) 
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The first term of Equation (6.14) calculates the holding cost. The second term of Equation 

(6.14) calculates the penalty incurred when the target-ready rate of customer 1 is not 

reached but that of customer 2 is met. However, in the second term, the summation of the 

number of periods that only customer 1’s demand is fulfilled (with probability 𝜉2) and 

the number of periods that the demands of both customers are fulfilled 

(with perobability 𝜉1) is less than ⌈∝1 𝑅⌉ − 1. Conversely, the summation of the number 

of periods that only customer 2’s demand is met (with perobability 𝜉3) and the number 

of periods that the demands of both customers are satisfied (with perobability 𝜉1) is 

greater than or equal to ⌈∝2 𝑅⌉. The third term of Equation (6.14) is like the second term, 

but calculates the penalty incurred when the target-ready rate of customer 2 is not 

achieved. The fourth and fifth terms calculate the penalty incurred when neither 

customer’s demand is satisfied. In contrast to Equation (6.12), this requires a separate 

calculation for each customer, to account for differences in the amount each customer’s 

realised ready rate deviates from the target-ready rate. 

6.6 Numerical Examples 

Numerical examples of the two types of penalty (fixed and linear) are used to answer the 

chapter's questions. The assumption is that the supplier applies a static, periodic review, 

base stock policy with backorders.1 First, the multiple-customer case is run, then 

compared to the single customer scenario. Due to the number of variables in the first case, 

a Monte Carlo simulation approach with 14,000 replications is used to estimate the cost 

function and expected total cost (Abbasi et al. 2017; Thomas 2005).  

                                                 
1 As there are backorders, the linear order cost is not included in the cost function, and the backorder 

cost is captured in the penalty term. 
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6.7 Related Research Question for Chapter 6 

For each type of penalty, we address the following questions: 

 (Q6.1) What base stock level is required to minimise the supplier’s expected cost? 

 (Q6.2) How is the supplier’s expected cost affected by different performance 

review phase durations? 

 (Q6.3) How does increasing demand affect the supplier’s expected cost? 

 (Q6.4) What is the impact of different target ready rate levels on expected total 

cost of the supplier for one and multiple-customer cases? 

All experiments were performed on an Intel Core i7 CPU with a 2.2 GHz processor and 

16 GB RAM. The codes were written in Python programming language (Python 3.4 

version). To solve these models we applied other packages to solve methods, such as 

Numpy, Sicipy, Matplotlib and Anaconda. The computational time taken was around 15 

minutes (for three and four-customer cases under two types of penalties). When solving 

the numerical formulas (6.4 and 6.6 for two customers), it took a long time (1–2 hours, 

especially when we increased the performance review period length) due to many loops 

and the multiple summations in both formulas. 

6.7.1 Numerical study for lump-sum penalty SLA 

In our numerical experiments, we considered that demand follows an Erlang  distribution 

with shape parameter 𝜁 and scale parameter 1, this was consistent with previous numerical 

studies of SLAs (Abbasi et al. 2017; Thomas 2005). In the case of multiple customer, the 

demand distribution of each customer is similarly Erlang with parameter 𝜁𝑖, where i 

indicates the customer number i,…,n. When comparing the one-customer case and the 

several customer cases, the aggregated demand distribution is similar for all. In the next 
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numerical examples, we examine the impact of increasing the number of customers and 

the effect of different performance review phase durations R ϵ {5, 10, 30, 50}. All 

numerical examples were examined under the ready rate with zero lead time. 

Numerical Example 1 

The first numerical example examines the case of when a supplier serves one customer 

and the demand distribution is Erlang with shape parameter 𝜁 = 10 and the scale 

parameter 1. Other parameters are set as ℎ = 1, 𝑅 = 5, 10, 30, 50, 𝐾 = 16 × 𝑅, and α 

= 0.9. The results from this single-customer case are compared with the multiple (two, 

three and four) customer cases, where the demand distribution for each customer is 

Erlang with the shape parameter 𝜁𝑖 =
10

𝑛
, where 𝑛 is the number of customers  

and 𝑖 indicates the customer number, and scale parameter is 1, ∝𝑖= 0.9 𝐾𝑖  =  16 ×

𝑅

𝑛
 for 𝑖 = 1, … , 𝑛. 

Numerical Example 2 

The next second numerical example is same as the previous numerical example, but we 

increase the shape parameter of the one customer case and aggregated demand to 20. 

i.e., 𝜁 = 20 to study the effect of expected total cost for the supplier. 
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Figure 6.1: The results of Example 1. Cost of fixed-sum penalties: comparison of one, two, 

three and four-customer cases with varying base stock levels and review period durations. 

 

Figure 6.1 shows the results of one, two, three and four-customer cases examined under 

a lump-sum penalty. It can be seen that the expected total cost changes when the base 

stock level increases for several performance review phase lengths. When we increase S, 

the penalty decreases and is lowered for the multiple-customer cases more than the one-

customer cases. We also noticed the following pattern: when we increased the base stock 

level S, the cost function is first quite flat and then starts to rise. As S is further increased, 

R = 5 
R = 10 

R = 30 R = 50 
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a marked drop in cost is observed, followed by a steep and continued rise. For all 

performance review phase durations, this pattern was consistent and corresponds with 

what Liang and Atkins (2013) found in their study of the lump-sum penalty SLA in the 

single-customer case. We also examined, in numerical example 2, the increase in 

customer demand, and found that the pattern also holds when customer demand increases.  

 

Figure 6.2: The results of Example 2. Cost of fixed-sum penalties: comparison of one, two, 

three and four-customer cases with varying base stock levels and review period durations. 

  

R = 10 

R = 50 R = 30 

R = 5 
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Table 6.1: Optimal base-stock and cost for fixed sum penalty contract – Numerical 

Example 1 

 

 

Table 6.2: Optimal base-stock and cost for fixed sum penalty contract – Numerical 

Example 2 

 

Under the lump-sum penalty SLA, Tables 6.1 and 6.2 show the base stock levels (S) that 

minimise the expected total cost. When the number of customers increases, the optimal 

total cost decreases too. As mentioned, aggregated demand is the same in the one-

R 
Optimal S Expected total cost 

One 

customer 

Two 

customers 

Three 

customers 

Four  

customers 

One  

customer 

Two  

customers 

Three  

customers 

Four  

customers 

5 

10 

17 

16 

15 

15 

15 

14 

14 

14 

8.98 

7.26 

7.70 

5.86 

7.05 

5.20 

6.72 

4.88 

30 16 15 14 13 6.68 5.42 4.66 4.47 

50 16 14 14 13 6.45 5.22 4.12 4.07 

R 

Optimal S Expected total cost 

One 

customer 

Two 

 customers 

Three 

customers 

Four 

 customers 

One  

customer 

Two 

 customers 

Three  

customers 

Four 

 customers 

5 

10 

28 

28 

28 

25 

25 

25 

24 

24 

11.41 

9.47 

9.90 

7.52 

8.68 

6.54 

8.11 

5.85 

30 28 26 25 24 8.99 7.07 6.24 5.50 

50 28 26 25 24 8.72 6.76 5.76 5.11 
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customer case and in all multiple-customer cases, but despite this equality of demand, we 

see that having the aggregate demand split over a greater number of customers will assist 

the supplier to lower costs. The explanation for this observed effect is that in instances 

where there is insufficient stock to satisfy the aggregate demand, when the demand 

distribution is split amongst multiple customers there is a chance that at least some of the 

customers will have their demand satisfied in full and hence a penalty need not be paid to 

these parties. We also found that a lower base stock level is needed to achieve the cost 

minima when the number of customers is increased. In Figures 6.1 and 6.2 this effect can 

be clearly observed. These results will assist the supplier and provide the following 

management insight under a lump-sum penalty SLA. If the aggregate demand is divided 

between more customers, the base stock level necessary for optimal performance will be 

lower and lower total costs will be incurred. 

Finally, we examine the effect of increasing demand (for one and multiple-customer 

cases) on the supplier’s expected cost. In comparing Tables 6.1 and 6.2 when the optimal 

base stock level is employed, it can be seen that an increase in demand leads to an increase 

in expected cost. This effect is observed in the one-customer and in all multiple-customer 

cases, and across all performance review phase durations. 
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Figure 6.3: The expected total cost of lump-sum penalty, comparison of different 

performance review phase durations. 

 

Figures 6.3 and 6.4 display the relationship between the expected total cost and the 

performance review phase duration of R for the supplier, when R = {5, 10, 30 and 50} 

(the same as in numerical example 1 for Figure 6.1, and numerical example 2 in Figure 

6.2). The optimal expected total cost becomes lower as the performance review phase 

duration rises for all (single or multiple-customer) cases. 

1 Customer 2 Customers 

3 Customers 4 Customers 
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Figure 6.4: The expected total cost of lump-sum penalty when increasing the demand, 

comparison of different performance review phase durations. 

 

It can be seen that the optimal total cost decreases as the number of customers increase, 

and for more customers a lower base stock level is necessary to fill demand. In real-life 

multiple customer scenarios, it is also likely that in the event of a stock-out, the supplier 

2 customers 1 customer 

4 customers 3 customers 

2 customers 
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can elect to fill demand for the highest penalty customer first. However, an increase in 

demand leads to an increase in expected costs (and profits) as the supplier expands. 

 

6.7.2 Numerical study for linear penalty SLA 

In this subsection, the results for SLAs with a linear penalty are presented. All notations 

and parameters are similar to the numerical examples presented in Section 6.7.1. 

Numerical Example 3 

In this numerical example, all parameters are similar to numerical example 1, except the 

penalty coefficients. The penalty structure is assumed to be linear (see equations (6.5) and 

(6.6)). We defined the penalty parameter as 𝐾 = 4 × 𝑅. The demand distribution of each 

customer is Erlang with shape 𝜁𝑖 =
10

𝑛
 where n is the number of customers (𝑖 = 1, … , 𝑛) 

and the scale parameter of the Erlang distribution is set to one in all experiments. 

Numerical Example 4 

To examine the impact of increased demand, the fourth numerical example is similar to 

numerical example 3. The only difference is the shape parameter of the demand 

distribution. In this example 𝜁𝑖 =
20

𝑛
 where n is the number of customers. 
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Figure 6.5: The results of Numerical Example 3, cost of linear penalties: comparison of 

one, two, three and four-customer cases with varying base stock levels and review period 

durations. 

R = 5 R = 10 

R = 50 R = 30 
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Figure 6.6: The results of Numerical Example 4, cost of linear penalties: comparison of 

one, two, three and four-customer cases with varying base stock levels and review period 

durations. 

 

In Section 6.8.1 we presented the numerical results for the lump-sum penalty SLA. In 

contrast to the previous results, Figures 6.5 and 6.6 display that in multiple-customer 

cases under a linear penalty, the supplier’s cost function is unimodal. This result is 

analogous with Liang and Atkins’ (2013) result for a supplier with a single customer under 

R = 5 

R = 50 R = 30 

R = 10 
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a linear penalty SLA. When compared to the previous results in Figures 6.1 and 6.2 for 

the lump-sum penalty SLA, Figures 6.5 and 6.6 show that the cost of choosing too small 

a base stock level S is much higher when there is a linear penalty in place. This result 

occurs because under a linear penalty the expected cost rises based on how much the 

performance target is missed by, while under a lump-sum SLA penalty, once the target 

has been missed, any additional performance deterioration is costless. This phenomenon 

has been already mentioned by Liang and Atkins (2013) for the one-customer case. 

 

Table 6.3: Optimal base-stock and cost for linear penalty contract (Numerical 

Example 3) 

 

  

R 

Optimal S Expected total cost 

One  

customer 

Two  

customers 

Three 

customers 

Four  

customers 

One  

customer 

Two  

customers 

Three  

customers 

Four  

customers 

5 

10 

15 

15 

13 

14 

13 

13 

12 

13 

7.17 

6.53 

5.80 

5.10 

5.15 

4.42 

4.81 

4.11 

30 16 14 13 13 6.41 4.94 4.44 4.01 

50 16 14 13 13 6.22 4.87 4.25 3.77 
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Table 6.4: Optimal base-stock and cost for linear penalty contract (Numerical Example 

4) 

 

Tables 6.3 and 6.4 show that as the number of customers increases, the optimal expected 

total cost decreases, as does the base-stock level needed to achieve the cost minima. These 

findings are different from what was observed for the lump-sum penalty SLA in Section 

6.8.1. Conversely, in a linear penalty SLA, the results specify that the supplier’s optimal 

expected total cost is not monotone with respect to the different performance review phase 

duration (R). This can be seen in Tables 6.3 and 6.4; that is, as R increases, the optimal 

expected total cost may decrease or increase. Under a lump-sum penalty SLA, the supplier 

always benefitted from a longer R. Similarly to the lump-sum penalty SLA, in comparing 

Tables 6.3 and 6.4 it is obvious that under a linear penalty SLA, an increase in demand 

leads to an increase in expected cost. 

R 

Optimal S Expected total cost 

One  

customer 

Two  

customers 

Three 

customers 

Four  

customers 

One  

customer 

Two  

customers 

Three  

customers 

Four  

customers 

5 

10 

26 

27 

24 

25 

22 

23 

21 

23 

9.02 

8.48 

7.06 

6.62 

6.04 

5.54 

5.49 

5.01 

30 28 25 24 24 8.63 6.75 5.66 5.08 

50 27 25 24 24 8.39 6.52 5.42 4.86 
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Figure 6.7: The expected total cost of linear penalties, comparison of different 

performance review phase durations. 

1 Customer 

4 Customers 3 Customers 

2 Customers 
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Figure 6.8: The expected total cost of linear penalties when increasing demand, 

comparison of different performance review phase durations. 

 

The relationship between the expected total cost and the performance review phase 

duration (R) for all cases given a linear penalty structure are elucidated in Figures 6.7 and 

6.8. It can be seen that it is beneficial to the supplier to have a shorter review phase length, 

as the supplier can achieve a lower penalty than for a longer review phase.  

 

4 Customers 

1 Customer 2 Customers 

3 Customers 
4 Customers 
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6.8 Studying the SLA of Ready Rate Threshold 

Previously, the ready rate performance threshold was fixed as α = 0.90. In this section, 

the two forms of penalties (lump sum and linear) are examined for one customer or more 

customers, with the ready rate as α = 0.60, 0.70, 0.80 and 0.90, and the review period as 

R = 30 in all scenarios. 

6.8.1 Lump-sum penalty SLA 

Numerical example 5 

This numerical example uses the lump-sum penalty. The parameters are (α, K) with one 

or more customers, and the demand distribution is Erlang with shape parameter 𝜁 = 10 

and the scale parameter 1: 

R = 30, h = 1, lump-sum (α, K) ∈ {(0.60, 200), (0.70, 170), (0.80, 130), (0.90, 110)} ⊂ 

Θ. 

Figure 6.9 shows how the suppliers’ cost function changes when dealing with single or 

multiple customers under different ready rate performance thresholds. In Figure 6.9 we 

observed the following pattern: for both cases (one and multiple-customers), when the 

ready-rate threshold is increased and the penalty is decreased, the expected total cost is 

lower. In all cases as S get larger, the expected total cost is initially quite steady, then as 

S increases a marked drop in cost is observed, followed by a steep and continued rise. 

This was observed when α = 0.60, 0.70, 80. However, for both cases when α = 0.90, the 

expected total cost rises up without decreasing, as long as S increases, whereas the optimal 

base stock level S = 0. This pattern was consistent through all multiple-customer cases 

modelled, and mirrored what Liang and Atkins (2013) observed in their study of the lump-

sum penalty SLA for the single-customer case. 
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Figure 6.9: The expected total cost of lump-sum penalty, comparison of single and 

multiple customers when ready rate performance α=0.60, 70, 80 and 0.90. 

 

Under different ready rate thresholds, Table 6.5 display the base stock levels (S) that 

minimise the expected total cost for the lump-sum penalty SLA. Table 6.5 shows that the 

optimal expected total cost decreases as the number of customers increases. It can be seen 

from Table 6.5 that spreading the demand over more customers will lead to lower costs 

and base stock levels. In examples where there is insufficient stock to satisfy the aggregate 

1 Customer 
2 Customers 

3 Customers 4 Customers 
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demand, when the demand distribution is divided over multiple customers there is a 

chance that at least some customers will have their demand satisfied in full, so a penalty 

need not be paid to these parties. Moreover, as the number of customers increases, a lower 

base stock level is needed to realise the cost minima. This result can be observed in Figure 

6.9. 

 

Table 6.5: Optimal base stock and cost for fixed penalty contracts, ready rate 

thresholds 

 

6.8.2 Linear penalty 

Numerical example 6 

In this section, the effect of a supplier’s ready rate performance threshold is studied for 

SLA contracts with a linear penalty. Except for the penalty coefficients, the parameters 

remain the same as the numerical example of the lump-sum penalty. The ready rate 

thresholds for linear penalties are (α, K) ∈ {(0.60, 120), (0.70, 100), (0.80, 80), (0.90, 

60)} ⊂ Θ. 

Ready rate 

thresholds 

Optimal S Expected total cost 

One  

customer 

Two  

customers 

Three 

customers 

Four  

customers 

One  

customer 

Two  

customers 

Three  

customers 

Four  

customers 

0.60 

0.70 

12 

13 

10 

11 

9 

10 

9 

10 

2.58 

3.47 

1.38 

2.02 

0.94 

1.50 

0.84 

1.36 

0.80 13 12 11 11 4.40 2.89 2.32 2.08 

0.90 0 0 12 12 3.67 3.67 3.67 3.33 
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In contrast to the results for the lump-sum penalty SLA presented in Section 6.7.1, Figure 

6.10 shows that for both cases (single and multiple customers) under a linear penalty with 

different ready rate performance thresholds, the expected total cost is unimodal. This 

finding is consistent with Liang and Atkins’ (2013) results for a supplier with a single 

customer under a linear penalty SLA. In comparison to the results in Figures 6.9 for the 

lump-sum penalty SLA, in Figures 6.10 we found that the cost of choosing too small a 

base stock level S is much higher when there is a linear penalty in place. This arises 

because under a linear penalty, the expected cost rises based on how much the 

performance target is missed by, while under a lump-sum penalty, once the target has 

been missed any additional performance deterioration is costless. This phenomenon has 

been previously noted for the one-customer case by Liang and Atkins (2013). 
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Figure 6.10: The expected total cost of linear penalty, comparison of single and multiple 

customers when ready rate performance α=0.60, 70, 80, and 0.90. 
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Table 6.6: Optimal base stock and cost for linear penalty contracts, ready rate 

thresholds 

 

The results in Table 6.6 show that under a linear penalty SLA it is preferable for a supplier 

to deal with multiple customers, as this will lead to lower expected costs and lower 

inventory necessary to avoid penalties. 

6.9 Chapter Summary 

In this chapter, we examined SLAs that employ the ready rate as the performance measure 

from the perspective of a supplier in both the one and multiple-customer contract cases. 

We examined the supplier’s cost function for both lump-sum and linear penalty SLAs, 

and in particular, we considered the influence of several factors, such as the base stock 

level, the two different types of penalty, the ready rate performance threshold and the 

performance review phase duration. The results of this chapter provide insights that 

can benefit suppliers in the design and negotiation of future SLAs, and in devising 

strategies for realising compliance and hence avoiding higher penalties once an SLA is in 

place. 

Ready rate 

thresholds 

Optimal S Expected total cost 

One  

customer 

Two  

customers 

Three 

customers 

Four  

customers 

One  

customer 

Two  

customers 

Three  

customers 

Four  

customers 

0.60 

0.70 

12 

13 

10 

11 

9 

10 

9 

10 

2.71 

3.51 

1.41 

2.12 

1.06 

1.64 

0.87 

1.40 

0.80 14 12 11 11 4.49 3.05 2.55 2.22 

0.90 15 14 12 12 5.88 4.63 3.89 3.63 
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Our main findings for a supplier with multiple customers are as follows. First, under a 

lump-sum penalty contract, it is beneficial for the supplier to have a longer performance 

review phase. Under a linear penalty contract, the relationship between performance 

review phase duration and the expected total cost is not monotone, so we cannot 

definitively say whether the supplier will benefit from a shorter or a longer review phase 

duration. Second, for both penalty types (lump-sum and linear), if the optimal base stock 

level is implemented, having the aggregate demand split among multiple customers leads 

to lower expected costs. Moreover, the desired base stock level necessary for optimal 

performance will be lower as the number of customers is increased. Finally, under 

different ready rate performance thresholds, the expected total cost decreased much lower 

and faster in the case of multiple-customer contracts when base stock-level S increased. 

This is demonstrated under lump-sum and linear penalties in both Figures 6.9 and 6.10. 

Chapter 6 contains the first research to analyse the SLAs with ready rate measures in a 

multiple-customers setting over different review phases, and different ready rate 

performance thresholds. Using a methodology based on a numerical study approach (for 

one and two customers) and Monte Carlo Simulation for more than two customers, cost 

results under different SLA contracts were systemically examined. 

This chapter finalises the objectives of the thesis. The next chapter discusses the 

implications of the thesis, conclusions and possible avenues for further research.  
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Chapter 7: Conclusion and Future Work 

This Chapter of this dissertation discusses general conclusions on meeting the objective 

and the findings from an integrated approach to analysing service level measures. A 

review of the current literature found that, while considerable attention has been paid to 

aspects of supply chain (SC) dynamics, there has been no integrated or concerted attempt 

to understand the effects on multiple customers on service levels such as: the FR, the 

ready rate as determined by varied performance review periods, and replenishment 

periods. Subsequent sections present the contributory models of the thesis, which will 

assist the supplier before engaging in any type of SLA contract. Recommendation and 

opportunities for future research are discussed in the penultimate section. 

7.1 Thesis Summary 

Chapter 1 explained the objectives of the research, and set out the issues of 

conceptualisation and nomenclature for world trade as it has evolved over the decades. 

The aim was to produce models of an efficient SC from the perspective of one supplier 

and to compare the outcomes from modelling the supplier’s interactions with one or more 

customers. To establish the contracts for the supplier and customers, measures used, in 

this dissertation, were FR, ready rate and a base stock policy. The scenarios established 

for the simulations were for static demand across (finite horizon) replenishment review 

periods. This modelling approach allows for the production of a series of plots to assist 

in establishing performance measures for the contract. Further, two distinct customer 

prioritisation schemes were adopted as firms’ rationing policies: FCFS and PLFR. A 

modelling approach adapted from Thomas (2005) was used to build the simulations. 
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The first objective was to model FR distributions for a supplier with a base stock policy 

and a single-customer, which was then extended to test for multiple customers, each with 

their own agreement. The customer's total demand was assumed to be constant, different 

across review periods to establish a target FR. The second objective was to explore the 

impact of lead time on the FR over finite horizons with variable review period lengths. 

The third objective assessed the variability of these results on consistency and asymptotic 

normality to determine an optimal stock level. The fourth objective was to model ready 

rate SLAs performance for a supplier with a single-customer, which was then extended 

to test for multiple customers to examine the impact of the base stock level, the type of 

penalty (lump-sum or linear), and differences in ready rate thresholds on the supplier’s 

costs for multiple customers. 

Chapter 2 presented the concept of FR and issues in its calculation (Nahmias & Olsen 

2015; Vollmann, Berry & Whybark 1997). Johnson et al. (1995) observed that the 

traditional expression for line item FR should exceed 95% to avoid underestimation. 

Guijarro et al. (2012) approximated the FR, outperforming Johnson et al.’s (1995) 

estimation, while others used FR as service level measures for call centres (Hasija, Pinker 

& Shumsky 2008; Milner & Olsen 2008). 

The review period used for FR calculation, from one replenishment to the next, was also 

of interest to researchers. In the standard periodic review, the interval is a single unit of 

time. In calculating FR real instances, the interval is (R ≥ 1). Banerjee and Paul (2005) 

and Katok, Thomas and Davis (2008) found that, in a base stock inventory system, the 

average FR decreased when the review period increased. Dubois et al. (2013) and Wan, 

Evers and Dresner (2012) used a service industry (retail) setting to estimate FR on storage 

capacity and product variety. Choi et al. (2004) argued that the end customer cannot be 

guaranteed delivery because of variables along the SC and between supplier and 

customer, which included inventory, storage and transport issues. This view was 

supported by Zhang and Sobel (2012), who advocated for shorter SCs. 
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The concept of finite and infinite horizons attracted more studies. Chen et al. (2003) 

showed that the expected value of the FR for a finite horizon is higher than that for an 

infinite horizon. Using volume FR and order FRs, Larsen (2011) found that volume FR 

was more accurate for an infinite horizon, and an order FR for a finite horizon model. 

Boyaci and Gallego (2001) and Shang and Song (2006) developed infinite horizon 

continuous review inventory models. 

The incentives of reward and penalties for supplier performance were also substantially 

researched. Yin and Ma (2015) considered bonuses for the supplier, while Liang and 

Atkins (2013) found linear penalties a greater incentive than either reward or set penalties. 

The second performance measure considered in this thesis, ready rate, had not been 

subject to the same depth of research as the FR concepts, although it was popular earlier 

(Feeney & Sherbrooke 1966; Rosling 2002; Schneider 1981; Silver 1972). However, 

Larsen and Thorstenson (2008, 2014) consistently used ready rate as a measure, as did 

Liang and Atkins (2013). Other recent studies included Srivathsan and Kamath (2012) and 

Rossetti et al. (2013). Rossetti and Xiang (2010) commented that there were issues in 

unpredictable demand and variable reorder quantities, so the ready rate and FR could 

differ markedly. 

Minimising lead time can reduce high inventory levels and increase customer satisfaction. 

For example, a stock-out could occur (Bertazzi et al. 2013; Li & Liu 2013). Modelling 

lead time has engendered interest in a number of recent studies (Heydari 2014; Louly & 

Dolgui 2013; Priyan & Uthayakumar 2014). Spiegler et al. (2016) found that as the lead 

time increased, inventory orders were made higher to compensate. Muckstadt and Sapra 

(2010) advocated for establishing continuous reviews of lead times. 

Chapter 3 focused on the first of the research objectives, exploring the FR over a number 

of review period durations with multiple customers. The FR methodology was established 

that demand was the same for a single customer, or as aggregated demand for multiple 

customers, and these were investigated for both service policies, FCFS and PLFR. The 
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supplier’s FR for inventory was measured over varying performance review period 

lengths for single and multiple customers with zero lead time. The simulation showed that 

in both the single and multiple-customer cases, when the performance review period 

increases, the average FR decreases. Further, it was found that the probability of 

exceeding a target FR is dependent on T, the length of time between performance reviews. 

For a shorter T, less stock is required for multiple customers than for a single customer. 

Other findings for this objective were that for a negative correlation of multiple 

customers’ demands, a higher base stock level is required than in the case of independent 

customers (not correlated), while a lower inventory level is needed when the correlation 

between customers’ demands is positive. The last finding under this objective was that a 

customer with higher average demand receives better service. 

Chapter 4 examined objective 2: exploring the effect of varying lead times on the FR. In 

scenarios of one large single customer and multiple smaller customers, the chapter 

findings were that as lead times increase, the supplier needs more inventory for a defined 

service level. There is a higher probability of exceeding a fixed FR with longer lead times, 

and this probability is higher for multiple customers rather than one large customer, given 

the same aggregate demand. However, for any lead time if customer demands are 

correlated with high positive variance, for a supplier having one large customer is always 

preferable to multiple smaller customers. Further findings from this set of simulations 

showed that negative correlation in demand results in lower required base stock levels. 

Multiple customers with either negatively or positively correlated demand are more 

profitable for the supplier for short review periods, then beyond a threshold review period 

duration one larger customer is preferable. Lead times have no effect on the larger 

customer receiving a better service level than smaller customers. 

Objective 3 concerned reliability measures for the FR, the topic of Chapter 5. This was to 

assess consistency and asymptotic normality to determine an optimal base stock level for 

single or multiple customers. The findings were that an average FR decreases with 

performance review duration, although variations in the FR occur due to fluctuating or 
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seasonal demand. Reliability was established with a set of equations, then numerically 

tested first for one customer, then extended to two customers. The results were that the 

upper bounds for reliability increased with increasing performance review duration and 

decreased as confidence levels rose, reaching symmetry over the long-run contract FR. 

In summary, the optimal stock levels for reliability in the SC were established. 

The last objective concerning the ready rate and using penalties to test six scenarios for a 

range of customers was considered in Chapter 6. For multiple customers with similar 

lump-sum penalty contracts, longer performance review periods were found to be more 

advantageous, as there was a set penalty and no further costs (Liang & Atkins 2013). 

Assuming a scenario with a proportional linear penalty preferred contract performance 

review period durations could not be calculated using the simulation, due to uncertainty 

(non-monotonic cost function). For both types of penalty, multiple customers were 

preferable to a single customer as, all variables being equal, the supplier was more likely 

to be able to service at least some customers from inventory, thereby being able to elect 

the most advantageous conditions. Further, optimal base stock levels are lower as the 

number of customers increase, and the penalty costs incurred are likewise lower for 

multiple customers. 

7.2 Models Developed 

The overall contribution of this dissertation is the development and comparison of 

numerous SLAs models for a single and multiple customer. This thesis comprises a series 

of contiguous studies, the contributory models appearing in the thesis are listed and 

described in this sub-section. 

7.2.1 Fill Rate-based model 

A new model of FR was developed for multiple customers over various periods. The 

variables were customer numbers, firm service policies, review periods and two customer 
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demand distributions (Erlang and Normal). The impact of correlated customer demands 

on the finite horizon FR was analysed with aggregated mean and variance of demand held 

constant for one customer or more. Multiple customers were assessed for different 

demand distributions, with the base stock level set for a long-run FR for overall demand 

across all customers. Customers were serviced according to either FCFS or PLFR 

policies. 

7.2.2 Lead time 

A model to analyse the effect of lead times on the FR performance of a base stock system 

for one or more customers was developed. A further model investigated correlated 

customer demands and lead times. 

The lead time model analysed the finite horizon FR and required base stock levels for one 

or more customers, for various review period lengths. For a long-run FR, as the lead time 

increases, more stock is required. However, the probability of exceeding the target FR 

(the PS) rises as the lead time increases. This effect is especially evident for shorter review 

period durations. The customer demand model addressed two situations, first where the 

marginal demand distribution of each correlated demand customer is unchanged; second, 

when in various correlations the marginal demand distribution of each customer has 

changed but the total variance is fixed in all cases. 

7.3 Ready rate based model 

A ready rate model was constructed to analyse the supplier’s costs for one or more 

customers for both lump-sum and linear penalty contracts. Variables included base stock 

level, the type of penalty (lump-sum and linear) and review period duration. When three 

and four customers were estimated, a more complex model was required to simulate the 

supplier’s cost function. 
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7.3.1 Recommendations for future research 

In this section, we provide some ways that this thesis could be extended. For example, in 

Chapter 3, several directions for future research arose. In the multiple-customer case we 

considered two different policies for fulfilling customers’ demands: an FCFS policy and 

a second policy (called PLFR throughout) based on prioritising customers based on 

current measured FR performance. One extension would be analysing the penalty 

structure in SLAs (such as lump-sum and linear penalties) when the supplier has multiple 

customers, and then designing an optimal service policy based on this analysis. 

Chapter 4 could be extended by examining the effect of lead time together with different 

policies for fulfilling customers’ demands, such as an FCFS policy, a second PLFR policy 

based on prioritising customers, and an optimal service policy based on analysis of the 

penalty structure. Another extension would be investigating the impact of lead time on 

other service level measures, such as the ready rate. 

In Chapter 5, our work can extend in other directions. There are several possible 

extensions of the model considered in this chapter, such as including lead times and 

shortages, and in considering correlated demands and non-static stock levels. Other 

possible directions could be to investigate other demand distributions and other base 

stock-policies. 

In Chapter 6 there are several possible directions for future research. One is to use an 

analytical approach to better understand and obtain formal, provable results regarding 

ready rate behaviour and resultant penalties in the multiple (more than two) customer 

case. We suspect that the difficulties attendant in such work partially explains why all 

analytical studies so far have been limited to the single-customer case. Another possible 

research topic is to expand on the present work to consider the effect of non-zero lead 

times, both fixed and random. In multiple-customer cases it could be worthwhile to 

investigate the effect of correlated demand distributions (positive and negative) on 
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supplier costs. Finally, the design of optimal SLAs for a supplier with multiple customers 

would also appear to be worthwhile. 

This thesis was intended to bring together concepts measuring service levels in SCs or 

supply networks. While organisations may be highly efficient in developing some 

elements of trade services, the complexity arising from the multitude of variables, 

performance measures and cost estimates are such that models developed to date, are at 

best fragmentary and inconclusive. Even with several years’ work, this study is but a step 

forward in the evolution of firms’ trading arrangements. The models and insights 

presented in this thesis are increasingly important due to the prevailing business 

environment featuring volatility of trade, mergers of firms, loss of corporate knowledge 

and the resultant disruption of commerce and regional economies. We trust that the 

contents of this study add to greater knowledge of the effects of the variables and 

measures for service contracts. 
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