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Abstract27

Lactic acid bacteria (LAB) produce a wide variety of antimicrobial peptides28

(bacteriocins) which contribute to the safety and preservation of fermented foods.29

This review discusses strategies that have or could be employed to further enhance the30

commercial application of bacteriocins and/or bacteriocin-producing LAB for food31

use.32



4

Introduction33

Bacteriocin production is a desirable trait among LAB from the perspective of34

controlling microbial populations in fermented foods in order to extend product shelf-35

life and safety. Bacteriocins produced by LAB are a diverse group of ribosomally-36

synthesized antimicrobial peptides which may be divided into two main groups i.e.37

class I peptides, which contain post-translational modifications, and class II, or38

unmodified, peptides [1]. Broad spectrum bacteriocins, such as nisin (class I), inhibit39

Gram positive food-borne pathogens and spoilage microbes and, when combined with40

additional hurdles, Gram negative targets [2]. Narrow spectrum bacteriocins can also41

be of value, for example, lactococcin A (class II) has a lytic effect on sensitive42

lactococci which, through the release of key enzymes, can accelerate cheese ripening43

and enhance the development of important organoleptic properties [3]. Bacteriocins44

may be introduced into a food via in situ production by bacterial starter or adjunct45

strains in fermented foods, by the addition of purified or semi-purified preparations46

(e.g. nisin containing powders such as Nisaplin) or as an ingredient based on a47

fermentate of a bacteriocin producing strain (such as ALTA2431 which contains48

pediocin PA1). However, the commercial application of specific bacteriocins can be49

hindered by low or inconsistent production levels, high production costs, a non-ideal50

antimicrobial spectrum and potency, the risk of the emergence of resistance and the51

poor/lack of growth of some producing strains in particular foods. This review52

discusses some of the strategies developed to overcome such limiting factors.53

54

Influence of growth parameters55

Many studies have been dedicated to optimising bacteriocin production by56

manipulating growth media composition, temperature or pH [4-6]. Investigations of57
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alternative carbon, nitrogen and mineral sources have successfully led to increased58

bacteriocin yields or more cost effective production [7-9]. Another strategy has been59

the inclusion of additional stimuli. In the case of Lactobacillus plantarum NC8, a60

starter strain used in Spanish-style green olive fermentations, and Leuconostoc61

citreum GJ7, a kimchi isolate, this occurs through the addition of specific adjunct62

strains that induce bacteriocin-production [10,11].63

64

Use of conjugation to transfer a bacteriocin producing phenotype65

Conjugation provides a natural mechanism by which genes can be transferred from66

one LAB to another while maintaining the food grade status of the recipient strain. As67

many bacteriocins are plasmid encoded, this approach has been widely exploited to68

disseminate bacteriocin-producing phenotypes. This is exemplified by the generation69

of over 30 food grade Lactococcus strains that produce the broad spectrum two-70

component class I bacteriocin lacticin 3147 through the transfer of pMRC01, a71

conjugative plasmid which contains the corresponding genetic determinants [12].72

Although the presence of pMRC01 may impose an additional metabolic burden on73

LAB, which can increase cell permeability and autolysis, it does not impact on the74

acidification capacity of the strain [13]. In addition to the transfer of the bacteriocin75

producing phenotype itself, bacteriocin production (and the associated bacteriocin76

immunity phenotype) can also serve as a food grade selectable marker when77

transferring additional, plasmid-linked, industrially relevant traits. Indeed, while78

conjugal transfer of pMRC01 to the lacticin 481 producing host Lactococcus lactis79

DPC5552 generated a co-producing transconjugant which exhibited synergistic80

activity [14], both bacteriocins have served as effective food grade selectable markers81

for the transfer of bacteriophage resistance phenotypes to important commercial dairy82
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starter strains, thereby reducing phage sensitivity [15,16]. It should also be noted that83

the conjugal transfer of plasmids encoding other traits, such as lactose utilisation and84

protease activity, can facilitate increased bacteriocin production by adapting the85

producing strain for better growth in food environments. Indeed, Garcia-Parra et al,86

reported a 40-fold increase in nisin production by one such transconjugant in milk87

[17]. The genetic determinants for nisin are also located on a conjugative transposon88

enabling its food-grade transfer to other LAB [18], and the nisin resistance phenotype89

has also been widely exploited as a selection marker for food grade improvement of90

starter strains [19,20].91

Strategies have also been adapted to mobilize bacteriocin-encoding non-conjugative92

plasmids for the improvement of starter strains in a food grade manner [21,22]. Such93

plasmids, unable to mediate their own transfer, require the sequence of the origin of94

transfer (oriT) and mobA gene, while the genes encoding other conjugal functions are95

supplied in trans from a conjugative plasmid or sex factor. L. lactis IFPL35996

transconjugants generated in this way to harbour the lacticin 3147-encoding non-97

conjugative plasmid pBaC105 successfully accelerated proteolysis and development98

of sensory characteristics of semi-hard goat cheese [21].99

Aside from the ‘donor’ strain from which these plasmids and transposons are being100

mobilised, it should also be noted the genetic composition of recipient strains can101

ultimately influence the success of the conjugative approach. Indeed, L. lactis subsp102

lactis IL1403 is frequently selected for studies of lactococcin A (LcnA; class II)-type103

bacteriocins as this strain contains chromosomal analogues of the genes involved in104

LcnA secretion and maturation (i.e. lcnC and lcnD). Indeed, the extent of bacteriocin105

production by this strain following the conjugal transfer of pS140, a plasmid106

harbouring the genetic determinants for a lactococcin A-like bacteriocin, was greater107
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than that of other lactococcal transconjugants, presumably as a consequence of the108

additional copies of lcnCD already present [23].109

110

Subcloning and expression of bacteriocin genes or gene clusters111

Subcloning and expression of bacteriocin genes and gene clusters has also been112

applied as a means of conferring a bacteriocin positive phenotype on LAB strains or113

to facilitate over-production in a strain that is already a natural bacteriocin producer.114

Indeed, a particularly effective strategy employed for the overproduction of various115

class I bacteriocins has been the introduction of additional copies of biosynthesis-116

associated genes to an existing bacteriocin-producing host. This has led to greater117

yields of nisin [24,25] and of the individual lacticin 3147 component peptides, Ltn118

and Ltn, as well as improved yields of bioengineered lacticin 3147 variants [26].119

Such studies have also established that the introduction of additional copies of120

immunity (self-protection) genes can be important to overcome self-toxicity-121

associated limitations when overproducing these peptides.122

The heterologous production of class II bacteriocins by LAB is dependant on several123

factors such as the host strain, the expression and secretion systems employed,124

plasmid stability and copy number and the presence of the cognate bacteriocin125

immunity genes. While expression systems employing constitutive promoters and126

inducible promoters (such as the nisin-inducible promoter, (PnisA, of the NIsin127

Controlled gene Expression (NICE) system [27]) have both been highly exploited,128

inducible systems have in general been more successful. Regardless of promoter, the129

strategies involved have varied from cloning of the entire, intact bacteriocin130

biosynthetic gene cluster [28,29] to the creation of gene fusions (to facilitate efficient131

bacteriocin transport) through the exploitation of bacteriocin leader or secretion132
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signals [30-37]. Yeast based platforms have also shown considerable promise. These133

may be useful for the large-scale production of bacteriocins or for yeast based134

fermentations [38-41].135

Although these recombination techniques can facilitate increased levels of bacteriocin136

production and activity, and the construction of improved multi-bacteriocin producing137

strains, they remain genetically modified organisms (GMO) which may limit their138

application in the wider Food Industry.139

140

Bioengineering of bacteriocin peptides141

There have been a number of instances in which bioengineering of bacteriocin142

structural genes (through manipulation of the gene in a natural producer or in a strain143

which produces the bacteriocin heterologously) has been employed with a view to144

expanding or altering the associated antimicrobial spectrum. This strategy initially145

evolved from a desire to gain a better appreciation of the importance of specific146

residues or domains within these peptides, i.e. to assess the negative consequences of147

mutating these regions. However, this approach has evolved such that strains with148

greater antimicrobial potency have resulted which can potentially provide for the149

better control of spoilage or pathogenic microbes.150

Bioengineering-based strategies were first applied to LAB producers of class I151

bacteriocins, with the targeting of nisin [42-44] being of greatest relevance to this152

review. Subsequent, manipulations of nisin were crucial with respect to elucidating153

the mechanism of action of the peptide [45-48]. From these, and more recent studies,154

some bioengineered nisins are notable by virtue of possessing enhanced antimicrobial155

activity against at least one, albeit non-pathogenic, Gram positive target [49-52].156

Other bioengineered derivatives of nisin have been identified which more effectively157
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inhibit one or more pathogenic targets. The majority of these are derivatives in which158

residues within a central, 3-amino acid, stretch known as the ‘hinge’ region have been159

altered. Here, examples include nisins N20K and M21K [53], nisin M21V [54-56],160

nisin K22T (figure 1), [55] and nisin N20P [54]. Recently, nisin peptides in which161

serine 29 has been altered have drawn attention by virtue of exhibiting enhanced162

activity against both Gram positive and Gram negative pathogens [57]. It should also163

be noted that there have also been instances in which the nisin structural gene has164

been altered to facilitate the production of other natural variants of nisin (nisin Z, F165

and Q; [58]) or in a manner that has resulted in peptides which exhibit enhanced166

diffusion through complex matrices [59]. Other class I bacteriocin producing LAB,167

i.e. the producers of lacticin 3147 and lacticin 481, have also been the focus of168

bioengineering-based strategies. In these cases, the outcomes have been of greater169

importance from a fundamental science, rather than applied, perspective [60-66], with170

only one example of a partial enhancement having been described to date [64]. Aside171

from the lantibiotics, as derivatives of the unmodified class II bacteriocins can be172

generated both synthetically [67,68] or through heterologous expression [69-77] with173

relative ease, there are relatively few examples of instances in which LAB producers174

of the class II bacteriocins have themselves been engineered. However, the potential175

exists to reconstitute production of some of the more interesting derivatives in the176

original host strain should the need or desire arise.177

It is important to note that while all bioengineering based strategies are valid if the178

aim is to create bacteriocins for fundamental analyses or applications by the179

pharmaceutical industry, the application of bioengineered bacteriocin peptides as food180

preservatives is a bigger obstacle in some jurisdictions. Indeed, many of the strategies181

employed to produce the engineered bacteriocins described above involve approaches182
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that result in the producer needing to be described as a GMO. However, alternatives183

exist. Indeed, self cloning of non-pathogenic microorganisms is not considered to lead184

to a GMO as long as containment of the organism is guaranteed (directive185

90/219/EC). Accordingly, the temporary introduction of plasmids, the deletion of186

specific DNA sequences, or introduction of DNA from another micro-organism187

belonging to the same species fall within the definition of self-cloning. Thus, subtle188

alterations to bacteriocin structural genes (such as the changing of single codons)189

made using food grade strategies [78] fall outside the remit of the Contained Use190

legislation and therefore are not regulated as GMOs.191

192

Conclusions193

There are various methods available to improve the bacteriocin-mediated protection194

provided by food grade LAB. While genetic manipulation by recombinant and195

bioengineering based approaches offer great promise, only strains which have been196

modified through non-recombinant approaches can be directly added to food. In197

addition to the further improvement of existing strains, advances with respect to high198

throughput screening strategies are likely to result in the identification of novel199

antimicrobials with considerable potential for food applications. Few naturally200

occurring multi-bacteriocin producing LAB have been identified [79-83]. However,201

ongoing developments in traditional microbiological, mass spectrometric, molecular202

and bioinformatic screening techniques [84,85] has led to the isolation [86-94] and203

characterisation of several novel bacteriocins [95-98] reported this year alone which204

may find applications in food. Regardless of the strain and bacteriocin in question, it205

is fair to say that the application of bacteriocin producing LAB, alone or in206

combination with additional antimicrobial hurdles [2], continues to be a relatively207
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underutilised strategy that, through various enhancements such as those described208

here, could be more widely applied by the food industry.209
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Figure 1. Enhanced activity of bioengineered L. lactis producing nisin derivatives569

mutated within the ‘hinge’ region, K22T and K22S, against Streptococcus agalactiae570

ATCC13813 as compared with the respective nisin A producing controls (as adapted571

from Field et al., (2008)).572
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