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Abstract

The Discrete Logarithm Problem (DLP) has been the subject of interest
among many mathematicians and cryptographers in recent times because of
its computational di¢ culty. For the former, the enormity of the mathematics
involved and the intellectual challenge that it entails are certainly motivating
factors; for the latter, its usefulness in the �eld of cryptography. Cryptosystems
rest their security on some assumptions that certain mathematical problems are
di¢ cult to solve. The ElGamal cryptosystem, for instance, is considered secure
because of the computational assumption that it is di¢ cult to solve the Discrete
Logarithm Problem. The di¢ culty of the DLP lies in the fact that it has a
�one-way� property. Its computational complexity is roughly measured by
the computing time of the algorithm used to solve this mathematical problem.
This paper is a brief survey of some of the best known algorithms for solving
the DLP, examines their computing time, and considers the DLP over two
particular �nite groups.
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1. Introduction

The Discrete Logarithm Problem (DLP) presents itself as a simple mathe-
matical problem but there is a computational presumption that it is di¢ cult. It
is important because of its wide applications in the �eld of cryptography. Nev-
ertheless, its study always bears great academic signi�cance. Indeed, it has
become the subject of interest among cryptographers and mathematicians in
recent times because of its computational di¢ culty. Cryptosystems are consid-
ered secure under certain computational assumptions. For instance, the RSA
scheme of Rivest, Shamir, and Adleman rests its security on the di¢ culty of
the Factoring Problem [9]. Many others, such as ElGamal [3], are based on
the assumption that the Discrete Logarithm Problem is di¢ cult to compute for
certain groups.

De�nition 1.1 The Discrete Logarithm Problem states: � Given a
multiplicative group G and elements g ; h 2 G; �nd an integer n; if it exists,
such that gn = h �: This number n is the discrete logarithm of h to the base g;
written more concisely as n = logg(h):

In cryptographic applications, the existence of such an integer n is naturally
presumed. Consequently, the problem is reduced to �nding the number n: The
word �discrete� is used to distinguish those situations involving �nite groups,
like the ones being dealt herein, from the classical (continuous) case.

In 1976, Whit�eld Di¢ e and Martin Hellman published a paper in which
they proposed the Discrete Logarithm Problem as a good source of a �one-way�
function [2]. That marked the inception of the Discrete Logarithm Problem
in cryptography. For the purpose of this study, we may think of a �one-way�
function as a function f : X ! Y for which given x 2 X; it is easy to compute
f(x); however, given y 2 Y; it is di¢ cult to compute a value x 2 X such
that f(x) = y; at least for most values of y [6]. In other words, from the
standpoint of realistic computability, the function f is not invertible;without
further information, and it is for this reason that such function is otherwise
known as a �trapdoor�function.

Application

In a public key cryptosystem, anyone who has an enciphering key, and thus
knows how to encipher, cannot make use of this enciphering key to �nd the
deciphering key. In other words, any enciphering function is a �one-way�
function.

The most notable example of a public key cryptosystem whose security rests
on the assumption that discrete logarithms are hard to compute is the Di¢ e-
Hellman Key Exchange Protocol. This is a method whereby two users, say
Alice and Bob, hereinafter being referred to as A and B, respectively, exchange
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a cryptographic key (string of bits) over an insecure channel of communication.
Under the traditional cryptosystems, in order for two parties to be able to
communicate with each other, they needed to meet beforehand to agree upon
a secret key, or were constrained to use a courier for the purpose. This was a
great obstacle to the free and spontaneous �ow of secure communications. The
Di¢ e-Hellman key exhange algorithm solved this problem.

Under this cryptographic scheme, the key exhange between A and B is
accomplished as follows:

(1) A and B agree on a �nite group G and an element g 2 G of large order.
(2) A randomly chooses an exponent a, computes ga and sends this value

to B. She keeps the exponent a private.
(3) Similarly, B chooses an exponent b at random, computes gb and sends

this value to A. He also keeps the exponent b private.
(4) Using the value gb received from B, A computes

Ka = (g
b)a:

(5) Similarly, from the value ga which he received from A, B computes

Kb = (g
a)b:

From this fairly simple exchange of values by A and B, they now have created
their secret key:

Ka = (g
b)a = gba = gab = (ga)b = Kb;

and they can use this private key to communicate each other using any cryp-
tographically safe communication protocol. We note that since the channel of
communication being used by the parties is insecure, during this key exchange,
the values g; ga; and gb are publicly visible. Thus, an e¢ cient discrete logarithm
algorithm would enable the cryptanalyst or any eavesdropper to determine a;
and then eventually, determine the key used by A and B, making this scheme
insecure. Di¢ e and Hellman have conjectured that breaking their scheme is
equivalent in di¢ culty to computing discrete logarithms. This conjecture, how-
ever, remains unproven. Thus, although unlikely, there exists the possibility
that one can �nd a way to compute gab by mere knowledge of ga and gb without
computing either of the discrete logarithms a or b:

The Di¢ e-Hellman scheme has found a widespread use in practical cryp-
tosystems, as for example in the optional security features of the NFS �le sys-
tem of the SunOs operating system (NFS and SUNOS are trademarks of Sun
Microsystem, Inc.) [6].

In the sections that follow, we will deal with the most commonly known
computational algorithms for solving the Discrete Logarithm Problem (DLP),
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examines the running time of each of them, and describes the DLP over two
particular groups: Z=m1Z � Z=m2Z�:::� Z=mkZ and over Pm, the group of
all signed permutation matrices of order m:

2. General Attacks and Running Time

The computational complexity of the DLP is roughly measured by the run-
ning time of the algorithm used to solve this mathematical problem. Thus, one
who analyzes a cryptographic algorithm is usually interested to know how much
computing time and how much storage it requires, that is, how long it takes to
solve the problem in terms of the size of the input. Typically, one measures
the size of the input by its number of bits since that is how much storage it
takes to record the input. An integer n satisfying bk�1 � n < bk can easily be
shown to have k digits to the base b; and so a k-bit number, in particular, is
approximately 2k:

De�nition 2.1. (Order Notation) Let f(x) and g(x) be functions of x
taking values that are positive. We say that � f is big O of g � and write
f(x) = O(g(x)) if there are positive constants c and C such that f(x) � cg(x)
for all x � C: In particular, we write f(x) = O(1) if f(x) is bounded for all
x � C:

Proposition 2.2. If the limit lim
x!1

f(x)
g(x) exists and is �nite, then f(x) =

O(g(x)):
(See [4] p. 76.)

De�nition 2.3. Suppose that there is a constant A � 0 independent of
the size of the input, such that if the input is O(k) bits long, then it takes
O(kA) steps to solve the problem. Then the problem is said to be solvable in
polynomial time.
Polynomial time algorithms are considered to be fast algorithms.

If there is a constant c > 0 such that for inputs of size O(k) bits, there is an
algorithm to solve the problem in O(eck) steps, then the problem is solvable in
exponential time.
Exponential time algorithms are considered to be slow algorithms.

Intermediate between polynomial time algorithms and exponential time al-
gorithms are subexponential time algorithms. These have the property that
for every � > 0 they solve the problem in O�(e�k) steps. This notation means
that the constants c and C appearing in the de�nition of the order notation are
allowed to depend on �:

Proposition 2.4. (Trivial Bound for the DLP) Let G be a group and let
g 2 G be an element of order N: Then the Discrete Logarithm Problem gx = h
can be solved in O(N) steps, where each step consists of multiplication by g:
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Proof: We simply create a list of the values gx for x = 0; 1; 2; :::; N � 1;
where each successive value is obtained by multiplying the previous value by g:
If a solution to gx = h exists, then h will certainly appear in our list. �

From the standpoint of an attacker of a cryptographic scheme, such math-
ematical equation always has a solution inasmuch as he knows the existence of
a secret key that is actually being shared only by A and B, and for which he
seeks to uncover by solving the underlying discrete logarithm problem. We
may observe at this point that this brute-force-like method runs in exponential
time since we measure the input by the number of bits and N is approximately
2k, that is, exponential in k.

General Attacks

Algorithms that involve �nding matching elements from within one or more
lists are variably called either as collision algorithms, meet-in-the-middle algo-
rithms, birthday paradox algorithms, and square-root algorithms. The last is
so called because of the fact that the running time of a collision algorithm is
generally a small multiple of the square root of the running time required by an
exhaustive search [4]. When anyone of these algorithms is used to break a cryp-
tosystem, the word �attack�instead of �algorithm�is used. Thus, meet-in-the-
middle attacks, square-root attacks, etc., are familiar phrases in cryptography.
This may involve searching a space of keys or plaintexts or ciphertexts, or for
public key cryptosystems, they may be aimed at solving the underlying hard
mathematical problems, like that of the DLP. On the other hand, an algorithm
is called �generic�if it does not exploit any special properties of the objects to
which it is applied.

The following is a discussion of two of the best known �generic attack�
algorithms for solving the DLP. These are the Shanks�Baby-step Giant-step
Algorithm and the Pollard�s Rho Algorithm. They both work in the absence
of any extra information concerning the group, that is, they work for arbitrary
groups.

Shanks�Baby-step Giant-step Algorithm

Proposition 2.5 Let G be a group and let g 2 G be an element of order
N � 2: The following algorithm solves the discrete logarithm problem gx = h
in O(

p
N logN) steps.

(1) Let n = 1+ b
p
N c, where b

p
Nc denotes the greatest integer less than

or equal to
p
N; so in particular, n >

p
N:

(2) Create two lists:

List 1 : e; g; g2; g3; :::; gn:

List 2 : h; hg�n; hg�2n; hg�3n; :::; hg�n
2

:
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(3) Find a match between the two lists, say gi = hg�jn:
(4) Then x = i+ jn is a solution to gx = h:

Proof: In creating List 2; we start by computing the quantity u = g�n;
and then compile List 2 by computing h; hu; hu2; hu3; :::; hun: Thus, creating
the two lists takes approximately 2n multiplications. Assuming that a match
exists, we can �nd a match in a small multiple of log(n) steps using standard
sorting and searching algorithms, so step (3) takes O(log n) steps. Since
lim
n!1

2n+n logn
n logn = 1, the total running time for the algorithm is O(n log n): Since

n �
p
N; n log n =

p
N log

p
N = 1

2

p
N logN; and thus the total running time

for the algorithm is O(n log n) = O(
p
N logN):

In order to show that we can always �nd a match from List 1 and List 2,
let x be the unknown solution to gx = h; and write x as x = nq + r; where
0 � r < n: Since the order of g is N; we know that 1 � x < N; and so
q = x�r

n < N
n < n since n >

p
N: Thus, we can rewrite the equation gx = h as

gr = hg�nq; where 0 � r < n; and 0 � q < n: Now, gr belongs to List 1 and
hg�nq belongs to List 2, showing that List 1 and List 2 always have a common
element. �

Pomerance [7] notes that one of the ground rules on these algorithms to
work is the assumption that we can label group elements in such a way that
they can be sorted. For the Baby-step Giant-step algorithm, we need to sort
the elements in the �rst list. Then sequentially run through the second list to
check for membership in the �rst list. The sorting can be done in O(n log n)
comparisons, and each membership check, via a binary search, can be done
in O(log n) comparisons. A binary search involves identifying the midpoint
of the sorted list, deciding if the searched-for element is in the �rst half or
the second, and then iterating in the appropriate half. So in total we do
O(n log n) = O(

p
N logN) comparisons after the list.

Example:

We illustrate Shanks�Baby-step Giant-step Method to solve 5x � 3 (mod
2017); that is, the discrete logarithm of 3 to the base 5 in (Z=2017Z)�: For
this problem, g = 5 + 2017Z; h = 3 + 2017Z; n = b

p
2017c +1 = 45; and

g�1 = 807+2017Z: The baby-steps (gk) and the giant-steps (hg�nk) are listed
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as follows:

k gk hg�nk k gk hg�nk k gk hg�nk

1 5 269 16 1121 414 31 10 1282
2 25 1261 17 1571 816 32 50 656
3 125 790 18 1804 556 33 250 1673
4 625 914 19 952 102 34 1250 82
5 1108 603 20 726 1078 35 199 1974
6 1506 1627 21 1613 517 36 995 1523
7 1479 1336 22 2014 639 37 941 751
8 1344 1464 23 2002 821 38 671 1451
9 669 167 24 1942 332 39 1338 346
10 1328 183 25 1642 859 40 639 1442
11 589 273 26 142 1050 41 1178 1556
12 928 275 27 710 1368 42 1856 1693
13 606 1799 28 1533 1644 43 1212 1203
14 1013 1295 29 1614 171 44 9 968
15 1031 477 30 2 1214 45 45 1411

So we have 540 = 639 = 3 � 5�22(45); and therefore, 540+22(45) = 3: The
solution to the DLP is x = 40 + 22(45) = 1030:

Pollard�s Rho Algorithm

This is another method that has a �square-root�complexity, but in contrast
to Shanks�Baby-step Giant-step method, this has negligible space requirements.
The down side is that the �-method requires the group order, while Shanks�
algorithm will work even if n is only an upper bound for the order of the group
element g: Again, we want to solve the discrete logarithm problem gx = h:

The �rst step of the Pollard Rho Algorithm is to split the elements of the
group into three disjoint subsets G1; G2; and G3 of roughly equal size, so
G1 \G2 = G2 \G3 = G1 \G3 = ? and G1 [G2 [G3 = G: Then we de�ne a
function f : G! G by

f(�) =

8<:
g� if � 2 G1;
�2 if � 2 G2;
h� if � 2 G3:

Now, let �0 = g
x0hy0 ; where x0 is a random element in the set f1; 2; :::; ng ;

so �0 is a random element of G: Then we compute the sequence (�i) by the
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recursion �i+1 = f(�i): Each element in the sequence can then be written as
�i = g

xihyi with

xi+1 =

8<: xi + 1 (mod n) if �i 2 G1;
2xi (mod n) if �i 2 G2;
xi (mod n) if �i 2 G3:

and

yi+1 =

8<: yi (mod n) if �i 2 G1;
2yi (mod n) if �i 2 G2;
yi + 1 (mod n) if �i 2 G3:

Since G is a �nite group, there will eventually be two elements in the se-
quence, �i and �i+l for some i � 0 and l > 0; such that �i = �i+l; and therefore,
gxihyi = gxi+lhi+l: It follows that gxi�xi+l = hyi+l�yi ; and since h = gx; then
gx1�xi+l = gx(yi+l�yi): This implies that xi � xi+l � x(yi+l � yi)(modn):

Now, if gcd(yi+l � yi; n) = 1; then the element (yi+l � yi) is invertible, and
solving for x using the last congruence gives x � (xi�xi+l)(yi+l� yi)�1modn:
If, on the other hand, (yi+l � yi) is not invertible, then we reduce the con-
gruence by dividing it by the greatest common divisor d of all the three ele-
ments (xi � xi+l); (yi+l � yi) and n; and then �nding z such that xi�xi+l

d �
z(yi+l�yi)

d mod(nd ): This gives x � z + k(
n
d ) where 0 � k < d: We then test all

possible values of x and choose that which solves the DLP. If there are exceed-
ingly many values of x to test, we start the algorithm again using a di¤erent
value for x0:

Pollard�s Rho Method to solve the Discrete Logarithm Problem was �rst
introduced in 1978 [7]. It is called as such because the algorithm, in e¤ect,
produces a sequence of numbers such that if we present them graphically by
connecting successive elements of the sequence by a line, the trail looks like
the Greek letter, �: The rationale behind it and the reason why it works is
based on the famous �birthday paradox�in statistics which states that if there
are at least 23 (approximately

p
366) people in a room then the probability

that some pair of them have the same birthday is more than 1=2: In more
familiar terms, the paradox is otherwise stated that the probability of �nding
two numbers in a randomly chosen sequence that are congruent modulo p is
greater than 1=2 once approximately

p
p numbers have been chosen. More

generally, everytime elements are randomly selected from a set, say of size n; we
only need to select O(

p
n) of them in order to have more than 50% chance of

selecting the same element twice. Indeed, this is the fundamental idea behind
any collision algorithm [4]. Applying this to the Pollard Rho Algorithm tells
us that the probability of �nding a match, �i = �i+l; in the sequence (�i) is
greater than 1=2 once we have O(

p
jGj) group elements in it. To have that many

elements of the sequence corresponds to having gone once around the loop of
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the �; which is of period l. This implies that (i+ l) is O(
p
jGj) and that the

method requires O(
p
N) steps to solve the DLP, where N = jGj:

Example:

Using the Pollard Rho Algorithm, we again solve the congruence, 5x � 3
(mod 2017): We let all the residue classes to be represented by their smallest
nonnegative representatives and set

G1 = f1; :::; 672g
G2 = f673; :::; 1344g
G3 = f1345; :::; 2016g:

As a starting value, we use x0 = 1037: A few of the stored triples and the
�nal triple which is a match are given below:

j �j xj yj
0 1209 1037 1
1 1373 58 2
2 85 58 3
4 108 60 3
8 793 125 6
16 1366 1008 53
32 1580 31 453
45 704 1024 442
79 704 860 816

So we have �45 = 510243442 = 704 = 58603816; which gives 5164 = 3374 =
5x(374): We then have to solve the congruence 374x � 164 (mod 2016) which
can be reduced to 187x � 82mod 1008: The solution is x = 22 + k(1008);
0 � k < 2: We �nd k = 1; giving us the discrete logarithm x = 1030:

3. The Index Calculus Method

For a given group, an algorithm may exist that takes advantage of some
special arithmetic properties of the group. This algorithm is no longer generic
since it is not applicable to any group with a di¤erent structure. The index
calculus method is one such method. For a given prime p; it is used to solve the
discrete logarithm problem in a �nite �eld Fp. It makes use of the fact that
it has certain elements that can be labeled as �smooth� and can therefore be
written as a product of other elements from some relatively small factor base.
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De�nition 3.1 Let B be a given natural number. An integer n is called
B-smooth if all of its prime factors are less than or equal to B:

De�nition 3.2 Let p be a prime number. A primitive root modulo p is a
natural number A < p such that for every natural number B relatively prime
to p there exists some e 2 Z such that Ae � B mod p:

We now consider the discrete logarithm problem over a �nite �eld Fp: The
DLP is to solve gx � h (mod p); where the prime p and the integers g and h
are given. We further assume that g is a primitive root modulo p, so that it
generates all of F�p : The �rst step is to choose B and solve the DLP gx � l

(mod p) for all primes l � B: Then we look at the quantities hg�k(mod p) for
k = 1; 2; 3; ::: until we obtain a value k such that hg�k(mod p) is B-smooth. For
this particular value of k; we have hg�k = �

l�B
lel(mod p) for certain exponents

el: Writing this in terms of the discrete logarithms, we have

logg(h) = k + �
l�B

el(logg(l))(mod p� 1): (�)

Since we have already computed logg(l) for every prime l � B; this gives the
value logg(h); and this solves the DLP.

Solving logg(l) for all primes l � B works as follows: For a randomly chosen
exponent i; we compute gi = gi(mod p) with 0 < gi < p: If gi is B-smooth;
we write gi as gi = �

l�B
lul(i); otherwise, we discard it. For these values of i in

which gi is B-smooth, we then express gi as a product of powers of its prime
factors and obtain

i = logg(gi) (mod p� 1)

=
X
l�B

ul(i)(logg(l))(mod p� 1): (��)

The unknowns in this equation are the discrete logarithm values, logg(l); for
l � B: Thus, in order to solve these logg(l) �variables�, we must have at least
�(B) equations like (��); where �(B) is the number of primes less than or equal
to B; and use linear algebra to solve for the values of these �variables�.

Example: Suppose we want to solve 2x � 13 (mod 2027): We �rst choose
a bound B; say B = 11: The factor base is the set of primes f 2; 3; 5; 7; 11g and
�(B) = 5: We then take random powers of g = 2 (mod 2027) and pick out the
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ones that are B-smooth: We obtain

32(7) = 63 � 2293 (mod 2027);
5(7)(11) = 385 � 2983 (mod 2027);
27(11) = 1408 � 21318(mod 2027);
3(11) = 33 � 21593 (mod 2027);
26(52) = 1600 � 21918 (mod 2027):

This gives relations for the discrete logarithms of 2; 3; 5; 7; and 11. For conve-
nience, we let

x2 = logg(2);

x3 = logg(3);

x5 = logg(5);

x7 = logg(7);

x11 = logg(11);

and by substitution, the above system of congruences becomes

293 � 2x3 + x7 (mod 2026);

983 � x5 + x7 + x11 (mod 2026);

1318 � 7x2 + x11 (mod 2026);

1593 � x3 + x11 (mod 2026);

1918 � 6x2 + 2x5 (mod 2026):

Now, 2026 = 2(1013) and 1013 is prime, so we can solve the system (mod 2)
and (mod 1013): We obtain

x3 + x11 � 1 (mod 2);

x5 + x7 + x11 � 1 (mod 2);

x2 + x11 � 0 (mod 2);

x7 � 1 (mod 2):

Clearly, x2 = 1 since g = 2. Consequently, we get x2 � x5 � x7 � x11 � 1
(mod 2) and x3 � 0 (mod 2): Similarly, we compute the discrete logarithms of
the same factor base elements (mod 1013): Again, since x2 = 1; we obtain

x3 + x11 � 580 (mod 1013);

x5 + x7 + x11 � 983 (mod 1013);

x11 � 298 (mod 1013);

2x3 + x7 � 293 (mod 1013);

2x5 � 899 (mod 1013):

We easily �nd x11 � 298 (mod 1013); and x5 � 956 (mod 1013) since 2�1 (mod
1013) � 507 (mod 1013): We next obtain x7 � 742 (mod 1013) and x3 � 282
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(mod 1013): Combining this solution with that of the system (mod 2); we
�nally obtain

x2 = 1;

x3 = 282;

x5 = 1969;

x7 = 1755;

x11 = 1311:

Finally, we compute the value of 13 � 2�k(mod 2027) for random values of
k until we �nd a value that is B-smooth. We �nd 2(5)(11) = 110 � 13 �
21397(mod 2027): From (�); we get

log2 13 = (�1397 + 1 + 1969 + 1311)(mod 2026) = 1884;

and thus, we have solved the given DLP over Fp; with p = 2027:

De�nition 3.3 Let x; �; c be real numbers and let x be greater than the
Euler constant e = 2:718::: We de�ne Lx[�; c] = ec(log x)

�(log log x)1�� : Thus, if
� = 0; Lx[0; c] = (log x)

c; if � = 1; Lx[1; c] = ec log x:
(1) If an algorithm has running time Lx[0; c]; then it is a polynomial time

algorithm. Its complexity is bounded by a polynomial in the size of the input.
The algorithm is considered e¢ cient, although its real e¢ ciency depends on the
degree c of the polynomial.
(2) If the algorithm has running time Lx[1; c]; then it is exponential. Its

complexity is bounded by an exponential function in the length of the input.
The algorithm is considered ine¢ cient.
(3) If the algorithm has running time Lx[�; c] with 0 < � < 1; then it

is subexponential: The algorithm is slower than polynomial but faster than
exponential.

Proposition 3.4 Let N be a large number, and B = LN [1=2; 1=
p
2]: Then

we expect to check approximately LN [1=2;
p
2] random numbers modulo N in

order to �nd �(B) numbers that are B-smooth. (See [4], p.150.)

The running time of the index calculus method can be roughly estimated
as follows: Using a factor base consisting of primes less than B; we need
to �nd approximately �(B) numbers of the form gi(mod p) that are B-smooth:
Proposition 3.4 above suggests that we take B = Lp[1=2; 1=

p
2]; and then we will

have to check approximately Lp[1=2;
p
2] values of i: Choosing an optimal value

of B; and using Lenstra�s elliptic curve factoring method to recognize B-smooth
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integers, the expected complexity of the method is exp(
p
2+o(1))

p
log p log log p;

where o(1) denotes a function that tends to 0 as p ! 1: Moreover, once the
initial work is done to �nd the discrete logarithms of the small primes, the
additional time to �nd the discrete logarithms of a given group element takes
only about ((1=

p
2+o(1))

p
log p log log p [4]. This shows that the index calculus

is a subexponential algorithm for solving the discrete logarithm problem in F�p :

4. The Discrete Logarithm Problem Over Some

Speci�c Groups

In this section, we consider the Discrete Logarithm Problem over the group,
G = (Z=m1Z)� (Z=m2Z)� :::� (Z=mkZ); where mi 2 Z+; i = 1; 2; :::; k; and
over the group, Pm of all signed permutation matrices of order m:

The DLP over G = (Z=m1Z)� (Z=m2Z)� :::� (Z=mkZ)

Let g; h 2 G = (Z=m1Z)�(Z=m2Z)�:::�(Z=mkZ); where g = (g1; g2; :::; gk)
and h = (h1; h2; :::; hk); gi; hi 2 Z=miZ for every i: The discrete logarithm
problem (DLP) in this case, consists in computing, if it exists, an integer n such
that h = ng: This involves solving a system of k linear congruences modulo
mi; i = 1; 2; :::; k; which may or may not have a solution. As a problem in
cryptography, however, such an integer n is guaranteed to exist so that the
problem is reduced to that of �nding n:

The idea behind the Algorithm for solving for the integer n relies largely on
the Chinese Remainder Theorem.

Theorem 4.1 (The Chinese Remainder Theorem) Let m1;m2;m3; :::;mr

be pairwise relatively prime positive integers. Then the system of congruences8>>>>>><>>>>>>:

x � a1 (mod m1);
x � a2 (mod m2);
: :
: :
: :
x � a2 (mod m2);

has a unique solution modulo M = m1m2 � �� mr:
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Theorem 4.2 The system of linear congruences8>>>>>><>>>>>>:

x � c1 (mod m1);
x � c2 (mod m2);
: :
: :
: :
x � cr (mod mr);

has a solution if and only if or all i 6= j; ci � cj (mod(mi;mj)); where (mi;mj)
denotes the greatest common divisor of the integers mi and mj : The solution,
if it exists, is unique mod[m1;m2; :::;mr]; where [m1;m2; :::;mr] denotes the
least common multiple (LCM) of the integers m1;m2; :::;mr:

Proof of Theorem 4.2

We consider the �rst case when r = 2: If the system of congruences has a
solution x = x0; then we can write

x0 � c1 (mod m1) and x0 � c2 (mod m2)

which implies
x0 = k1m1 + c1 and x0 = k2m2 + c2

for some integers k1; k2: Then

c1 � c2 = k2m2 � k1m1 = (m1;m2)(k2
m2

(m1;m2)
� k1

m1

(m1;m2)
)

and therefore,
c1 � c2mod(m1;m2):

Now suppose that c1 � c2mod(m1;m2): This means (m1;m2)j(c1; c2): Then
c1 � c2 can be written as a linear combination of m1 and m2; say c1 � c2 =
k2m2 � k1m1: Then

c1 + k1m1 = c2 + k2m2:

Let x0 = c1 + k1m1: Then x0 is a solution to x � c1 (mod m1) and

x0 = c1 + k1m1 = c2 + k2m2 � c2(modm2):

Note that if x � c1(modm1) then

x � c1 + k1m1 = c1 + k1(m1;m2)(
m1

(m1;m2)
);
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and thus
x � c1(mod

m1

(m1;m2)
):

Hence, any solution to x � c1(modm1) and x � c2(modm2) is also a solution
to x � c1( m1

(m1;m2)
) and x � c2 (mod m2): By the Chinese Remainder Theorem,

there can be at most one solution mod m1

(m1;m2)
m2 = [m1;m2]:

For r = 2; we apply mathematical induction on r: Suppose that the �rst
r congruences has a unique solution A (mod M); where M = [m1;m2; :::;mr]:
Then by the �rst part of the proof, the system x � A (mod M); x � ar+1(mod
mr+1) has a unique solution mod([M;mr+1]) = mod([m1;m2; :::;mr+1]):

An Algorithm for Solving the DLP

Given g = (g1; g2; :::; gk) and h = (h1; h2; :::; hk) 2 G = (Z=m1Z)�(Z=m2Z)�
:::� (Z=mkZ); we want to �nd an integer n such that h = ng: We consider the
following cases:

Case 1. g�1 = (h01; h
0
2; :::; h

0
k) exists.

If g�1 2 G then n = (ng)g�1 = hg�1 = (n1; n2; :::; nk) 2 G: This gives the
following system of congruences:8>>>>>><>>>>>>:

n � n1 (mod m1);
n � n2 (mod m2);

:
:
:

n � nk(modmk):

Note that g�1exists if 8i = 1; 2; 3; :::; k; (gi;mi) = 1: If (mi;mj) = 1 for
i 6= j; then by the Chinese Remainder Theorem, the system has a unique
solution mod M = m1m2 � � � mk: If, on the other hand, (mi;mj) = d > 1
for some i 6= j; then by Theorem 4.2, a unique solution mod [m1;m2; :::;mk ]
exists.
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Examples:

(1) Let G = (Z=6Z)� (Z=29Z); g = (5; 11) and h = (0; 11): We want to
�nd n 2 Z+ such that h = ng:

Solution: We have g�1 = (5; 8) and n = (ng)g�1 = hg�1 = (0; 11)(5; 8) =
(0; 1): Thus, n � 0 (mod 6) and n � 1 (mod 29): Note that (6; 29) = 1 and we
can easily infer that n = 30 (mod 174):

(2) Let G = (Z=9Z)� (Z=10Z)� (Z=12Z); g = (5; 7; 5); and h = (6; 1; 9):
We want to �nd n 2 Z+ such that h = ng:

Solution: We have g�1 = (2; 3; 5) and n = (ng)g�1 = hg�1 = (6; 1; 9)(2; 3; 5) =
(3; 3; 9): This gives rise to the following system of congruences:8<: n � 3 (mod 9);

n � 3 (mod 10);
n � 9 (mod 12);

which is equivalent to the system:8<: n � 3 (mod 9);
n � 1 (mod 2); n � 3 (mod 5);
n � 1 (mod 4); n � 0 (mod 3):

We can reduce the system to give us8<: n � 3 (mod 9);
n � 3 (mod 5);
n � 1 (mod 4):

Applying the method used in the proof of the Chinese Remainder Theorem,
we �nd that M = 9(5)(4) = 180: It follows that:8<: M1 = 20 and y1(20) � 1 (mod 9); and so y1 = 5;

M2 = 36 and y2(36) � 1 (mod 5); and so y2 = 1;
M3 = 45 and y3(45) � 1 (mod 4); and so y3 = 1:

Thus, n = 3(5)(20) + 3(1)(36) + 1(1)(45) � 93 (mod 180):
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Case 2. g�1 does not exist.

This gives rise to the following system of congruences:8>>>>>><>>>>>>:

ng1 � h1 (mod m1);
ng2 � h2 (mod m2);

:
:
:

ngk � hk (mod mk):

In this case, we divide each congruence through by (gi;mi) and then mul-
tiply by the inverse of the coe¢ cient gi

(gi;mi)
mod ti; where ti =

mi

(gi;mi)
: The

simpli�ed form is the system8>>>>>><>>>>>>:

n � s1 (mod t1);
n � s2 (mod t2);

:
:
:

n � sk (mod tk);

which can be solved using the method in Case 1.

Example:

Let G = (Z=6Z) � (Z=9Z) � (Z=10Z); g = (5; 6; 3); and h = (1; 3; 9): We
want to �nd n such that h = ng:

Solution: Note that since (9; 6) = 3 > 1; g�1 does not exist. This gives the
following system of congruences:8<: 5n � 1 (mod 6);

6n � 3 (mod 9);
3n � 9 (mod 10);

which can be reduced to the following system:8<: n � 5 (mod 30);
2n � 1 (mod 3)() n � 2 (mod 6);
n � 63 (mod 70):
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Now,8<: n � 5 (mod 30)() n � 1 (mod 2);n � 2 (mod 3);n � 0 (mod 5);
n � 2(mod 6)() n � 2 (mod 3);n � 0 (mod 2);
n � 63(mod 70)() n � 1 (mod 2);n � 3 (mod 5);n � 0 (mod 7):

The resulting system is 8<: n � 1 (mod 2);
n � 2 (mod 3);
n � 3 (mod 5):

By the Chinese Remainder Theorem, M = (2)(30(5) = 30: This gives8<: M1 = 15; y1(15) � 1 (mod 2); and so y1 = 1;
M2 = 10; y2(10) � 1 (mod 3); and so y2 = 1;
M3 = 6; y3(6) � 1 (mod 5); and so y3 = 1:

Therefore, n = 1(1)(15) + 2(1)(10) + 3(1)(6) = 23 (mod 30):

The computing time for the above described algorithm can be roughly es-
timated as follows: The elements of Z=mZ which have multiplicative inverses
are those which are relatively prime to m; that is, all elements a such that
gcd(a;m) = 1: Moreover, if gcd(a;m) = 1; we can use the Euclidean algorithm
to �nd an element b such that ab � 1(mod m); and such an inverse can be
found in O(log3m) bit operations [5]. In other words, inverting an element in
Z=mZ can be done in polynomial time in the length of m: Since the Euclid-
ean algorithm involves adding and multiplying two elements in Z=mZ; we can
fairly infer that either operation can be done in at most quadratic time (also
polynomial) in the length of m: Thus, the computing time for this algorithm,
which uses the Chinese Remainder Theorem, can only be O(lognm) for some
n 2 N: It is a polynomial time algorithm with a running time that is bounded
by the size of the input, m: The group G is not, therefore, an ideal object over
which to de�ne the DLP if we are to protect any cryptosystem that relies its
security on the computational di¢ culty of this problem.

The Discrete Logarithm Problem Over Pm

De�nition 4.4 (Signed Permutation Matrices) Let ej denote the column
vestors of Rn whose jth entry is 1 and the remaining entries are each equal to 0:
A signed permutation matrix is a square matrix of size m whose columns are of
the form (�e�(1);�e�(2); :::;�e�(m)); where � 2 �m is a permutation. The set
of all signed permutation matrices of size m forms a group Pm of order 2mm!
called the hyper-octahedral group.
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Let A;B 2 Pm: The discrete logarithm problem over Pm involves �nding
an integer n such that B = An: We recall some important concepts in linear
algebra.

De�nition 4.5 Let A be an n�n matrix over a �eld k: The characteristic
polynomial of A denoted by pA(�) is the polynomial de�ned by pA(�) = det(�I�
A); where I denotes the n�n identity matrix and the determinant is being taken
in k[�]; the ring of polynomials in � over k:

The polynomial pA(�) is monic and its degree is n: It encodes several im-
portant properties of the matrix, most notably its eigenvalues, its determinants,
and its trace. Its constant coe¢ cient is equal to (�1)n detA; and the coe¢ cient
of �n�1 is equal to �tr(A); the trace of the matrix A:

Theorem 4.6 (Cayley-Hamilton Theorem) Every matrix satis�es its own
characteristic equation.

By its properties, the characteristic polynomial of an m � m signed per-
mutation matrix A is of the form �m � 1; �m + 1; or a product of any of the
factors of these two polynomials whose degree is n. Consequenty, by the Cayley-
Hamilton Theorem, the element of Pm having the highest order is that whose
characteristic polynomial is �m + 1; that is, whose order is 2m:

Let f�1; �2; :::; �mg and f�1; �2; :::; �mg be the sets of eigenvalues of A and
B, respectively. Since B = An; �j = �

n
i for some i; j = 1; 2; 3; :::;m: For any

eigenvalue � of A; de�ne the order of �; j�j to be the smalllest positive integer
k, such that �k = 1: Then the order of A; jAj = lcm(j�1j; j�2j; j�j3;...,j�jm):
Suppose jAj = r and jBj = k; then k � r; and k divides r: Moreover, we
have Bk = Ank = Ar = Im:This says nk is a multiple of r: Hence, to solve
for n; we only have to check such powers n0 of A for which n0k = rd for some
integer positive integer d; where 2 � n0 � r � 1: If k = r; all possible values
of n0 may need to be checked as the right value for n; while if k < r; fewer such
exponentiations of A are needed to �nd n: In either case, granting we have
determined all the eigenvalues of both A and B; this still requires multiples of m
multiplications. Hence, the run-time is still O(m) = O(2k); i. e., exponential.

Example:
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Let us consider P3; and let A =

240 1 0
0 0 �1
1 0 0

35 and B =

24 0 �1 0
0 0 1
�1 0 0

35 :
We want to �nd n such that B = An:

Solution: The characteristic polynomial of A is pA(�) = �3 + 1; which
implies the order of A is 6; while the characteristic polynomial of B is pB(�) =
�3 � 1; implying its order is 3. We have 2 � n0 � 5; so we only have to check
for n0 = 2 and n0 = 4. This gives n = 4:

5. The Elliptic Curve Discrete Logarithm Problem

(ECDLP)

De�nition 5.1. An elliptic curve over a �eld of characteristic 6= 2; 3 is the
set of solutions to a Weierstrass equation E : Y 2 = X3+Ax+B; together with
an extra point O; where the constants A and B must satisfy 4A3 + 27B2 6= 0:

The set where A; B; x; and y belong to will have to be speci�ed. Usually,
they are taken to be elements of a �eld. The quantity �E = 4A3 + 27B2 is
called the discriminant of E: The condition that �E 6= 0 is equivalent to the
condition that the cubic polynomial X3+Ax+B has no repeated roots. The
addition law de�ned below does not work well on curves in which �E = 0:

De�nition 5.2. (Addition Law on E) Let P and Q be two points on E:
Let L be the line connecting P and Q; or the tangent line to E at P if P = Q:
Then the intersection of E and L consists of three points P; Q; and R; counted
with appropriate multiplicities and with the understanding that O lies on every
vertical line. Writing R = (a; b); the sum of P and Q is de�ned to be the
re�ection R0 = (a;�b) of R across the X�axis: This sum is denoted by P �Q;
or simply by P +Q:

Theorem 5.3. Let E be an elliptic curve. Then the addition law on E has
the following properties:8>><>>:

P +O = O + P = P for all P 2 E [Identity];
P + (�P ) = O for all P 2 E [Inverse];
(P +Q) +R = P + (Q+R) for all P;Q;R 2 E [Associativity];
P +Q = Q+ P for all P;Q 2 E [Commutativity].

In other words, the addition law makes the points of E into an abelian group.

Theorem 5.4 (Elliptic Curve Addition Algorithm). Let
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E : Y 2 = X3 +Ax+B

be an elliptic curve and let P1 and P2 be points on E:
(a) If P1 = O; then P1 + P2 = P2:
(b) Otherwise, if P2 = O; then P1 + P2 = P1:
(c) Otherwise, write P1 = (x1; y1) and P2 = (x2; y2):

(i) If x1 = x2 and y1 = �y2; then P1 + P2 = O:
(ii) Otherwise, de�ne � by

� =

(
y2�y1
x2�x1 if P1 6= P2;
3x21+A
2y1

if P1 = P2;

and let

x3 = �
2 � x1 � x2 and y3 = �(x1 � x3)� y1:

Then P1 + P2 = (x3; y3):

In order to apply the theory of elliptic curves to cryptography, we need to
look at elliptic curves whose points have coordinates in a �nite �eld Fp: Then
an elliptic curve over Fp; where p 6= 2; 3 is an equation of the form

E : Y 2 = X3 +Ax+B with A;B 2 Fp satisfying 4A3 + 27B2 6= 0;

and then we look at the points of E with coordinates in Fp: We denote this
set by

E(Fp) = f(x; y) : x; y 2 Fp satisfy y2 = x3 +Ax+Bg [ fOg:

We next de�ne the sum of P1 + P2 to be the point (x3; y3) obtained by
applying the elliptic curve addition algorithm above (Theorem 5.4). Since the
only operations in the algorithm are addition, subtraction, multiplication and
division involving the coe¢ cients of E and the coordinates of P and Q which
are all belonging to Fp; the result is a point (x3; y3) also in Fp:

Theorem 5.5. Let E be an elliptic curve over Fp and let P and Q be
points in E(Fp); where p 6= 2; 3:
(a) The elliptic curve addition algorithm applied to P and Q yields a point

in E(Fp): We denote this point by P +Q:
(b) This addition law on E(Fp) satis�es all the properties listed in Theorem

5.3. In other words, this addition law makes E(Fp) into a �nite abelian group.

De�nition 5.6. Let E be an elliptic curve over the �nite �eld Fp; and
let P and Q be points in E(Fp):The Elliptic Curve Discrete Logarithm Problem
(ECDLP) is the problem of �nding an integer n such that Q = nP: We denote
this integer n by
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n = logP (Q)

and we call n the elliptic discrete logarithm of Q with respect to P:

Since the points of E(Fp);together with the addition operation, forms a �-
nite abelian group, it is isomorphic to the �nite abelian group G = (Z=m1Z)�
(Z=m2Z) � ::: � (Z=mkZ) in section 4. However, because of the complicated
nature of the addition of points on elliptic curves, it is quite di¢ cult, if not
impossible, to determine such an isomorphism between the two groups. Thus,
the algorithm described previously for solving the DLP over G will not be ap-
plicable.

The collision algorithms can easily be adopted to any group, and so for the
group of points E(Fp) on an elliptic curve. The Index Calculus Method is seen
as a faster way to solve the Discrete Logarithm Problem over F�p ; to wit, it has
a subexponential running time. The principal reason that elliptic curves are
used in cryptography is the fact that there are yet no index calculus algorithms
to solve the ECDLP in fewer than O(

p
p) steps. Currently, Pollard�s Rho

Method is the fastest algorithm available to solve the ECDLP, running
p
�n=2,

where n is the order of point P [17]. There are, however, special cases of elliptic
curves for which an attack to the ECDLP could run faster. One such case is
described below.

A Special Case of the ECDLP

One special situation in which the ECDLP can be reduced to an essentially
trivial additive Discrete Logarithm Problem is when #E(Fp) = p: Rightly
called "anomalous curves" will be the subject of this last section, but �rst, we
need some preliminaries.

The Formal Group of An Elliptic Curve

Let E be an elliptic curve given by a Weierstrass equation

(1) Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3:

In order to de�ne the addition law of the elliptic curve "close to the origin", we
�rst make a change of variables:

Z = �X=Y and W = �Z=Y

Dividing (1) by Y 3 and then doing the change in variables, (1) becomes

(2) W = Z3 + a1ZW + a2Z
2W + a3W

2 + a4ZW
2 + a6W

3:
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The speci�ed basepoint O on E is now the point (Z;W ) = (0; 0): Next, we
express W as a power series by substituting (2) into itself recursively as follows:

W = Z3 + (a1Z + a2Z
2)W + (a3 + a4Z)W 2 + a6W

3

= Z3 + (a1Z + a2Z
2)[Z3 + (a1Z + a2Z2)W + (a3 + a4Z)W

2 + a6W
3]

+a6[Z
3 + (a1Z + a2Z

2)W + (a3 + a4Z)W
2 + a6W

3]3

= Z3 + a1Z
4 + (a21 + a2)

5 + (a31 + 2a1a2 + a3)Z
6 + :::

= Z3(1 +A1Z +A2Z2 + :::);

where An 2 Z[a1; a2; a3; :::; a6] is a polynomial in the coe¢ cients of E: What has
been done is we have obtainedW (Z) =W; by de�ning a sequence of polynomials
by

f1(Z;W ) = f(Z;W ) and fm+1(Z;W ) = fm(Z; f(Z;W )):

In order to show that this sequence of polynomials converge toW (Z) 2 Z[a1; a2; a3; :::; a6][[Z]];
and we need W (Z) = f(Z;W (Z)) to be true in the ring Z[a1; a2; a3; :::; a6][[Z]]:

Proposition 5.7. (a) The procedure described above gives a power series

W (Z) = Z3(1 +A1Z +A2Z
2 + :::) 2 Z[a1; a2; a3; :::; a6][Z]:

(b) The series W (Z) is the unique power series in Z[a1; a2; a3; :::; a6][[Z]] satis-
fying W (Z) = f(Z;W (Z)):

Claims (a)and (b) of the preceding proposition are special cases of Hensel�s
Lemma whose proof is given below. First, we need the following de�nition.

De�nition 5.8. Let R be a ring, I � R an ideal, and let an be a sequence
in R: (i) an converges to a; denoted by lim

n!1
an = a if and only if for each

� 2 N; there exists N such that for all n � N; an ! a 2 I�: We call a the
limit of an: In mod notation, an � a mod I�: (ii) A sequence an is a Cauchy
sequence if and only if for each � 2 N; there exists an N such that for all
n;m � N; we have am � an 2 I� : In other words am � an(mod I�): (iii) A
ring R is I-complete if and only if every Cauchy sequence converges to a unique
limit in R:

Lemma 5.9. (Hensel�s Lemma). Let A be a ring which is complete with
respect to an ideal I � A; and let F (w) 2 A[w] be a polynnomial. If for some
m � 1; we have

F (0) 2 Im and F 0(0) � 1mod(I);

then there is an element � 2 Im with F (�) = 0 and the recursion

w0 = 0; wn+1 = wn � F (wn) for n � 0
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converges to �: If moreover, A is a domain, � is the unique zero of F in I:

Proof: Note that since F (0) 2 I; wn 2 Im implies wn � F (wn) 2 Im:
Hence, by induction on n; wn 2 Im for all n � 0: Next, we prove by induction
on n; that

wn+1 � wn(mod Im+n) for n � 0:

Suppose that the congruence holds for n� 1: Let x and y be new variables,
and write

F (x)� F (y) = (x� y)(F 0(0) + xG(x; y) + yH(x; y)); where G;H 2 A[x; y]

are certain polynomials. Then we have

wn+1 � wn = (wn � F (wn))� (wn�1 � F (wn�1))
= (wn � wn�1)� (F (wn)� F (wn�1))
= (wn � wn�1)� (wn � wn�1)(F 0(0) + wnG(wn; wn�1)

+wn�1H(wn; wn�1))

= (wn � wn�1)(1� F 0(0)� wnG(wn; wn�1)� wn�1H(wn; wn�1))
2 Im+n;

since (wn�wn�1) 2 Im+n�1 by the induction hypothesis and the second factor
is in I: This proves that (wn+1 � wn) 2 Im+n for all n � 0:
Since A is complete with respect to I; the sequence fwngn�0 converges

to a unique element � 2 A. Moreover, since wn 2 Im for all n � 0; then
� 2 Im: Taking the limit of the relation wn+1 = wn � F (wn) as n!1 gives
� = �� F (�); and so F (�) = 0:

To prove uniqueness, suppose � 2 Im also satis�es F (�) = 0: Then

0 = F (�)� F (�) = (�� �)(F 0(0) + �G(�; �) + �H(�; �)):

If � 6= �; then F 0(0) +�G(�; �) + �H(�; �) = 0; and so F 0(0) = ��G(�; �)�
�H(�; �) 2 I: This is a contradiction since F 0(0) � 1(mod I): Hence, � = �:
�

From the power series W (Z); we obtain Laurent series for X and Y

X(Z) =
Z

W (Z)
=

1

Z2
� a1
Z
� a2 � a3Z � (a4 + a1a3)Z2 � :::

Y (Z) = � 1

W (Z)
= � 1

z3
+
a1
Z2

+
a2
Z
+ a3 + (a4 + a1a3)Z � :::
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and the invariant di¤erential

!(Z) =
dX(Z)

2Y (Z) + a1X(Z) + a3

= (1 + a1Z + (a
2
1 + a2)Z

2 + a31 + 2a1a2 + 2a3)Z
3

+(a41 + 3a
2
1 + 6a1a3 + a

2
2 + 2a4)Z

4 + :::)dZ

all of whose coe¢ cients are in Z[a1; a2; a3; :::; a6][[Z]]: The pair (X(Z); Y (Z))
provides a formal solution to the Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

that is, a solution in the quotient �eld of the ring of formal power series.

De�nition 5.10. (The Formal Addition Law). Let Z1 and Z2 be inde-
pendent indeterminates, and let W1 =W (Z1) and W2 =W (Z2): Then

F (Z1; Z2) = Z1 + Z + 2� a1Z1Z2 � a2(Z21Z2 + Z1Z22 )
+(2a3Z

3
1Z2 + (a1a2 � 3a3)Z21Z22 + 2a3Z1Z32 ) + :::

2 Z[a1; a2; a3; :::; a6][[Z1; Z2]]:

F (Z1; Z2) has the following properties:8<: F (Z1; Z2) = F (Z2; Z1) (Commutativity);
F (Z1; F (Z2; Z)) = F (F (Z1; Z2); Z) (Associativity);
F (Z; i(Z)) = 0 (Inverse),

where i(Z) = X(Z)
Y (Z)+a1X(Z)+a3

= Z�2�a1Z�1�:::
�Z�3+2a1Z�2+::: 2 Z[a1; a2; a3; :::; a6][[Z]]:

De�nition 5.11. (Formal Group). Let R be a ring. A (one-parameter
commutative) formal group z over R is a power series F (X;Y ) 2 R[X;Y ] with
the following properties:8>>>><>>>>:

F (X;Y ) = X + Y + (terms of degree � 2);
F (X;F (Y; Z)) = F (F (X;Y ); Z) (Associativity);
F (X;Y ) = F (Y;X) (Commutativity);
There is a unique power series i(T ) 2 R[T ] such that F (T; i(T )) = 0 (inverse);

F (X; 0) = X and F (0; Y ) = Y:

We call F (X;Y ) the formal group law of z: The formal additive group,
denoted by bGa is de�ned by

F (X;Y ) = X + Y

28



and the formal multiplicative group, denoted by bGm is de�ned by

F (X;Y ) = X + Y +XY = (1 +X)(1 + Y )� 1:

De�nition 5.12. (The Formal Group Associated to an Elliptic Curve).
Let E be an elliptic curve given by a Weierstrass equation (1) with coe¢ cients
in a ring R: Then the formal group asssociated to E, denoted by bE; is de�ned
by the power series F (Z1; Z2) described in De�nition 5.10.

In other words, bE(X;Y ) 2 R[[X;Y ]] and it satis�es the following conditions:bE(X;Y ) = X + Y + (terms of degree � 2)bE(X; bE(Y;Z)) = bE ( bE(X;Y ); Z)bE(X;Y ) = bE(Y;X):
A formal group can be thought of as merely a group operation with no

underlying group. However, if R is a complete local ring, and if the variables
are assigned values in the maximal idealM of R; then power series de�ning the
formal group converge and giveM the structure of a group [14].

Let R be a complete local ring , and let K be the quotient �eld of R: Let
M be the maximal ideal of R; and let k be the residue �eld R=M. Let F be
a formal group de�ned over R; with formal group law F (X;Y ); and let F(M)
denote the setM endowed with the group operations�

X �F Y = bE(X;Y ) (addition) for X;Y 2M;
	FX = �(X) (inversion) for X 2M:

The assumption that R is complete ensures that the power series bE(X;Y ) and
�(X) converge in R for all X;Y 2 M: The formal group axioms immediately
imply that F(M) is a group. Similarly, F(Mn

) is the subgroup of F(M)
consisting of the setMn with the above-described group operations.

Note that, in particular, if R = Zp; the ring of p-adic integers, then we have
K = Qp;the �eld of p-adic numbers,M = pZp, and k = Zp=pZp = Fp:

We now let p be a prime number, and E be an elliptic curve de�ned over
Qp; given by a Weierstrass equation (1); with coe¢ cients in Zp; and assumed to
have a good reduction at p: What this means is that if we reduce the coe¢ cients
of E modulo p; we can obtain an elliptic curve eE over Fp; where Fp is the residue
�eld k = Zp=pZp: Let E1(Qp) denote the set of points in E(Qp) which reduce to
zero modulo p; and let E0(Qp) denote the set of points in E(Qp) which reduce
modulo p to an element of eE(Fp): Since E is assumed to have a good reduction
at p; E(Qp) = E0(Qp): Then we have an exact sequence of abelian groups [14],

0! E1(Qp)! E0(Qp)
�! eE(Fp)! 0;
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where � is the reduction map, and E1(Qp) is ker (�): Thus, if we multiply an
element of E0(Qp) by the number of elements in eE(Fp); or a multiple thereof,
what we get is an element in E1(Qp):The p-adic elliptic logarithm of E is given
by

log (z) =

Z
!(z)dz

= z +
a1
2
z2 +

a21 + a2
3

z3 + ::: 2 Qp[[z]]:

This p-adic elliptic logarithm induces a group homomorphism:

logE : E1(Qp)! Q+p ;
z 7! logE(z);

where Q+p denotes the additive group of Qp: Moreover, the group E1(Qp) is
isomorphic to the formal group associated to E; F(M) = bE(M) = bE (pZp) and
the isomorphism is given by

bE (pZp) ! E1(Qp);

z 7!

8<:
O if z = 0

( z
w(z) ;�

1
w(z) ); if otherwise,
i:e:; z = �x

y :

(See [14], p.191).

Proposition 5.13. (Semaev [11], Satoh-Arakaki [12], Smart [15]) Let
p � 3 and let E=Fp be an (anomalous) elliptic curve satisfying

#E(Fp) = p:

The following algorithm solves the ECDLP in E(Fp).

(1) Let P;Q 2 E(Fp) be nonzero points satisfying Q = [m]P; where
modulo p; the integer m is not known.
(2) Choose an elliptic curve E0=Qp whose reduction modulo p is E=Fp:
(3) Use Hensel�s Lemma to lift the points P; Q to points P 0; Q0 2 E0(Qp):
(4) The points [p]P 0 and [p]Q0 are in the formal group E

0

1(Qp): Let

logE : E
0
1(Qp)! Ĝa(pZp) �= pZ+p

be the formal logarithm map, and compute
pa = logE([p]P

0) 2 pZp and
pb = logE([p]Q

0) 2 pZp:
(5) Then m � a�1b(mod p):
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Proof: Using the fact that #E(Fp) = p; we have

g[p]P = [p]P = O and ][p]Q0 = O in E(Fp);

so [p]P 0 and [p]Q0 are in the kernel of reduction modulo p: Hence, they are in
the formal group E1(Qp) by Theorem 5.14. Similarly, if we let R0 = Q0� [m]P 0;
then the reduction of R0 modulo p is

fR0 = fQ0 � [m]P 0 = [m]P = O in E(Fp)

so R0 2 E01(Qp): We then compute

log([p]Q0 = logE([p]([m]P
0 +R)) (since R0 = Q0 � [m]P 0)

= m logE [p]([p]P
0 + p logE(R

0) (valid since [p]P 0; R0 2 E1(Qp))
= m logE([p]P

0)(mod p2) (since logE(R
0) 2 pZp):

Substituting the values logE([p]P
0) = pa and logE([p]Q

0) = pb of the algorithm
gives pb � mpa(mod p2); so m � a�1b(mod p) [14].

We note, in conclusion, that currently, the best known algorithms to solve
the Discrete Logarithm Problem may well be categorized into two: collision
search algorithms and index-calculus algorithms. They di¤er in the kind of
objects on which they can be applied and also in their computing time. A
collision search algorithm works for any �nite group, while an index-calculus
method requires certain arithmetic properties of the group for it to be success-
ful. The former has purely exponential running time, the best general method
of which, so far, is the Pollard Rho Algorithm which runs O(

p
n); with n the

size of the group. The latter runs in subexponential running time, not as fast as
polynomial time algorithms, but considerably faster than the exponential time
methods. Because of its requirement for special properties of the group, the
index-calculus method cannot be used to attack any elliptic curve discrete loga-
rithm based cryptosystem. For the Elliptic Curve Discrete Logarithm Problem
(ECDLP), the fastest algorithm currently available is the Pollard Rho Algo-
rithm which takes about

p
�n=2 steps, where a step here is an elliptic curve

addition, and n the order of a point P 2 E(Zp) in the ECDLP as de�ned in
section 5 of this paper .

Quite remarkably, for over three decades, the Discrete Logarithm Problem
has received enormous attention from leading mathematicians and cryptogra-
phers around the world, but no signi�cant weakness of it has yet been discovered.
Until the Di¢ e-Hellman conjecture is controverted, and proven otherwise, the
Discrete Logarithm Problem will continue to fascinate people fortunately en-
dowed with the mathematical mind and curiosity, and whence, it will never be
devoid of its practical or academic signi�cance.
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