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Space radiation effects mitigation has been identified as one of the highest priority 

technology development areas for human space flight in the NASA Strategic Space 
Technology Investment Plan (Dec. 2012).   In this paper we review the special features of 
space radiation that lead to severe constraints on long-term (>180 days) human flight 
operations outside Earth’s magnetosphere.  We then quantify the impacts of human space 
radiation dose limits on spacecraft engineering design and development, flight program 
architecture, as well as flight program schedule and cost.  A new Deep Space Habitat (DSH) 
concept, the hybrid inflatable habitat, is presented and shown to enable a flexible, affordable 
approach to long term manned interplanetary flight today.   

 
 

Nomenclature 
ALARA = “As Low As Reasonably Achievable” 
BFO  = Blood Forming Organs 
CFR = Code of Federal Regulation 
CPDS = Charged Particle Directional Spectrometer 
DAM = Debris Avoidance Maneuver 
Dose = Total energy deposited in matter by ionizing radiation in units of Grays (1 Gy = 1 J/kg of 

matter) 
Dose Equivalent = Weighted averages of absorbed dose designed to be more representative of the stochastic 

health effects of different types of ionizing radiation in tissue in units of Sieverts  
  (1 Sv = 1 Gy * radiation quality factor). 
E = Equivalent Dose 
ECLSS = Environmental Control and Life Support Systems 
Effective Dose  = Whole body weighted averages of absorbed dose designed to be more representative of the 

stochastic health effects of different types of ionizing radiation in different tissues in units of 
Sieverts (1 Sv =∑i 1 Gy * radiation quality factor * tissue weighting factori). 

ELV = Expendable Launch Vehicle 
GCR = Galactic Cosmic Ray 
GTO  = Geostationary Transfer Orbit 
IP = International Partner 
IR = Ionizing Radiation 
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Isp = Specific Impulse 
ISS = International Space Station 
LEO = Low Earth Orbit 
MM/OD = MicroMeteoroid/ Orbital Debris 
NASA = National Aeronautics and Space Administration 
NCRP = National Council on Radiation Protection and Measurements 
NDS = NASA Docking System 
OWS = (Skylab) Orbital Workshop 
PNP = Probability of No Penetration 
RAM = Radiation Area Monitor 
REID = Radiation Exposure Induced Death 
SPE = Solar Particle Event 
SSP = Space Station Program 
TEPC = Tissue Equivalent Proportional Counter 
TRL = Technology Readiness Level 
VABD = Van Allen Belt Dosimeter 
VASIMR = Variable Specific Impulse Magnetoplasma Rocket 

I. Introduction 
In this paper we report the results of a systems engineering study aimed at quantifying the effects of changing 

NASA flight crew ionizing radiation dose limits on long duration manned interplanetary flight programs.  We then 
demonstrate the benefits of a relatively mature hybrid inflatable Deep Space Habitat (DSH) technology in mitigating 
the negative impacts of severe human space radiation dose limits employing only technology that has a high-TRL 
level today. 

NASA ionizing radiation career exposure limits for flight crew personnel are derived from a not-to-exceed limit 
of 3% radiation-exposure-induced death (REID), from cancer, with a 95 % confidence level (29 Code of Federal 
Regulation 1960.18), where the cancer fatality can occur many years after the space flight exposure1,2. 

The slow accumulation of whole body ionizing radiation dose from galactic cosmic rays (GCR) limits the 
duration of manned space operations outside Earth’s magnetosphere to times on the order of 180 days, assuming 
historically typical manned spacecraft shielding mass of 20 to 30 g/cm2 aluminum and the 3% REID requirement3.   
Uncertainties in the dose-REID relationship for space radiation, combined with the required 95% confidence level 
have driven the spaceflight crew career dose limit from 100.0 E cSv to 15.0 E cSv in recent years4,5.   However, 
ongoing work focused on both reducing the uncertainty in the dose-REID relationship and developing biomedical 
countermeasures promise to ultimately reduce shielding mass requirements dramatically4,5.  

GCRs have substantially higher kinetic energies than solar particle event cosmic rays or geomagnetically trapped 
radiation so that substantially thicker, and hence heavier, shielding mass is needed to mitigate human GCR dose 
during long duration interplanetary space missions4,5.  Collisions of GCR nuclei with stationary nuclei in the 
spacecraft and/or human occupants of the spacecraft can generate intense secondary particle showers that contribute 
a substantial percentage of the total dose4,5.  Including the contributions to radiation dose from GCR-induced 
secondary particle showers in the spacecraft structure and in the human body dramatically reduces the benefits of 
low-atomic-number, high-hydrogen-content materials for spacecraft shielding against galactic cosmic rays that were 
long believed to produce adequate shielding at relatively lower total shielding mass4,5. 

The overall programmatic effects (launch costs, program architecture, schedule, and ultimately dollar cost) of 
meeting the ionizing radiation crew dose requirements using technologically mature passive shielding materials so 
as to extend the 180 day limit to three years seem prohibitive at first sight.  Baseline spacecraft structure and 
consumables cannot provide sufficient shielding mass, in themselves, as is shown in section IV below.   

In the following, we first review the space radiation environment and human dose effects, as well as the various 
proposed approaches to mitigate those effects.  Alternatives to low-atomic-number, high hydrogen-content passive 
shielding materials are discussed, though all the alternatives display low technological maturity and carry with them 
significant cost and schedule risks at this time.  Some of these technologies could become available to support 
human interplanetary flight programs in about 10 to 15 years, but only if development is supported by continued and 
reliable funding.    

Next we show that hybrid inflatable DSH technology offers a set of affordable solutions to the radiation dose 
problems accompanying long duration human space operations outside the Earth’s magnetosphere, using mature 
technology available today while remaining flexible and adaptable enough to incorporate more advanced mitigation 
technologies as they becomes available without costly re-work and redesign.  
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Expected future NASA budget limits and corresponding annual spending limits for manned interplanetary 
programs make affordability and cost control key considerations in planning future manned interplanetary space 
flight activities.   

 
II. Space Radiation Environments for Interplanetary Flights 

The space radiation environment as it affects spacecraft avionics systems and human health is dominated by 
energetic charged particles6-9.  Energetic photons (X-rays and gamma rays) make only a very small contribution in 
most cases of interest6-9.   The energetic charged particle environment is composed of three distinct charged particle 
populations, each with a different range of particle kinetic energies.  In low Earth orbit (LEO), the primary 
contributors to the spacecraft radiation environment are geomagnetically trapped electrons and protons, and the 
higher energy GCRs that can penetrate the geomagnetic field.  Outside Earth’s magnetosphere, the spacecraft is 
subjected to a continuous radiation environment from galactic cosmic rays (GCRs), as well as intermittent, short 
lived, solar storms known as solar particle events (SPEs)6-9. 

 
A. Low Earth Orbit – Trapped particles 

In low Earth orbit (LEO), as well as in most Earth escape trajectories, the Van Allen radiation belts are an 
important concern.  These belts are composed of both protons and electrons. The protons are higher energy and 
more penetrating, thus of greater concern.  The radiation belts are created by particles, primarily protons and 
electrons, becoming trapped by the Earth’s magnetic field.  The number of particles within the belt changes slightly 
as a result of the solar cycle.  Furthermore, because the magnetic axis is tilted from the Earth’s rotational axis, there 
is a location known as the South Atlantic Anomaly where the radiation belts are much closer to the surface of the 
Earth.  Therefore, spacecraft flying through this area tend to accumulate more radiation exposure. 

In general, the LEO radiation environment is well characterized and radiation can be minimized through 
strategic passive shielding and materials selection9.  For interplanetary missions, the importance of trapped radiation 
will depend on the amount of time spent in LEO, as well as the total exposure to trapped radiation during the Earth 
escape trajectory.  Long, slow spiral escape trajectories, typical of electric propulsion, will expose the spacecraft to 
substantial trapped radiation doses while transiting the radiation belts.  Chemical propulsion can enable rapid 
radiation belt transit and minimal spacecraft exposure through the most severe parts of the radiation belts9.  

 
B. Solar Particle Events 

Solar particle events (SPEs) are either solar flares or coronal mass ejections that originate from the sun and are 
primarily composed of protons.  The sun follows an approximately 11 year cycle where it goes through periods of 
intense activity, followed by periods of decreased activity (Fig. 1)9.  These periods are known as solar maximum and 
solar minimum, respectively.  The cycle of the sun is characterized by the number of sunspots visible.  Solar particle 
events originate in these sun spots9,10.   
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Figure 5. Proton flux of the historical GCR environment as a function of GCR proton kinetic energy23. 

 
Additionally, if we compare the GCR flux during solar minimum of the manned spaceflight era in Fig. 5 with the 

data collected in Fig. 3 we see that the dose equivalent is fairly consistent per solar modulation parameter, which 
corresponds to the regularity of the GCR flux during solar minimum.  Thus, if the predictions of the solar cycle are 
correct, then over the next thirty to fifty years, we will see an increase in the overall GCR flux.  The flux during 
solar maximum will be similar to the flux we are currently experiencing at solar minimum and the flux at solar 
minimum will be 1.5 to 2 times higher than we’ve ever experienced.  Consequently, we will not be able to complete 
a three-year Mars mission without heavily shielded spacecraft and faster traverse times (via new propulsion 
methods). 

III. Space Radiation Crew Dose Limits 
A. Background 

Aware of the risks presented by the space radiation environment, the Gemini program (1965-1966) astronauts 
were the first crewmembers to wear passive radiation film badges24 that were read out post-flight. During the Apollo 
lunar landing program (1969-1972), crew radiation exposure guidance was governed by U.S. Atomic Energy 
Commission regulations (Title 10, Code of Federal Regulations, 1971) and U.S. Department of Labor Standards 
(Title 29, Code of Federal Regulations, 1971)25. Each Apollo crewmember wore a personal radiation dosimeter, and 
a Van Allen Belt Dosimeter (VABD) was mounted within the Command Module. The VABD contained two 
detectors: one for skin measurements and the other for depth-dose measurements. 

During the Skylab program (1973-1974), each crewmember wore a personal dosimeter, and a VABD was 
mounted outside the Wardroom in the Orbital Work Shop (OWS) module.  

For the Space Shuttle and International Space Station (ISS) programs, flight crews are assigned personal 
dosimeters that are read out post-flight. In addition, other radiation instruments, Tissue Equivalent Proportional 
Counter (TEPC), Radiation Area Monitors (RAM), and the Charged Particle Directional Spectrometer (CPDS), are 
placed at various locations internal and external to the spacecraft. The TEPC also flew on the Russian Mir space 
station for approximately 5 years (~half a solar cycle). 
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B. Crew Exposure 
Space flight radiation exposure standards, requirements, and guidance are documented in NASA Standard 3001, 

Volume 1 and 2, and include26,27. 
 

 Planned career exposure for radiation shall not exceed 3 percent risk of exposure induced death 
(REID) for fatal cancer. 
 

 NASA shall assure that this risk limit is not exceeded at a 95 percent confidence level using a 
statistical assessment of the uncertainties in the risk projection calculations to limit the cumulative 
effective dose (in units of Sievert) received by an astronaut throughout his or her career. 

 
 Exploration Class Mission radiation exposure limits shall be defined by NASA based on National 

Council on Radiation Protection (NCRP) recommendations. 
 

 Planned radiation dose shall not exceed short-term limits as defined Appendix F.8, NASA 
Standard 3001, Vol. 1. 
 

 In-flight radiation exposures shall be maintained using the “as low as reasonably achievable” 
(ALARA) principle.  The ALARA principle is a legal requirement intended to ensure astronaut 
safety.  An important function of ALARA is to ensure that astronauts do not approach radiation 
limits and that such limits are not considered as “tolerance values.”  ALARA is especially 
important for space missions in view of the large uncertainties in cancer and other risk projection 
models.  Mission programs and terrestrial occupational procedures resulting in radiation exposures 
to astronauts are required to find cost-effective approaches to implement ALARA. 

 
As a result the following career crew radiation exposure limits as a function of age and gender were 
established and are reported here in Table 1 below.  Table 1 lists examples of career effective dose (E) 
limits for a REID of 3% for missions of one-year duration or less.  Limits for other career or mission 
lengths vary and can be calculated using the appropriate life-table formalism.  The numbers in Table 1 are 
based on absolute probabilities of a 3% REID at the indicated age and gender.  Application of the 95% 
confidence level leads to career limit on the order of a factor of ten smaller than those shown in Table 1. 
 

Table 1: Career exposure by age and sex for missions of one year duration or less26,27. 

Sex 
Age 

25 35 45 55 
Male 52 cSv 72 cSv 95 cSv 147 cSv 

Female 37 cSv 55 cSv 75 cSv 112 cSv 
 

These flight crew exposure limits have been recommended to NASA by the National Council on Radiation 
Protection and Measurements (NCRP) and have been legally adopted as NASA’s supplementary standard in 
accordance with 29 Code of Federal Regulation (CFR) 1960.18. 

 

IV. Approaches to Space Radiation Effects Mitigation for Long Term Human Interplanetary Flight 
 

A. Problem Statement: Controlling Program Schedule and Costs Despite Dynamic and Uncertain Human 
Radiation Dose Requirements 
As described in the proceeding paragraphs, uncertainty in the relationship between space radiation dose and the 

3% REID requirement4,5 drive any long-term interplanetary flight program immediately to habitat areal shielding 
density of hundreds of grams per square cm using currently available high-TRL materials and systems.  Hundreds of 
grams per square cm of areal shielding density on the habitat correspond to hundreds of metric tons of net habitat 
mass, which ultimately drives the scale and cost of the entire spacecraft and program.   However, as the uncertainty 
in the relationship between crew dose and % REID is reduced and biomedical mitigations become available, crew 
dose limits corresponding to the 3% REID are expected to increase dramatically and reduce shielding mass needs 
correspondingly4,5.  In parallel, advanced propulsion and active shielding technologies may become available during 
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the development phase of the DSH project.   The problem is to find an approach to accommodating reduced 
shielding mass and/or new technologies in a DSH development program without costly re-design, re-work, or the 
development of a costly architecture with multiple habitat designs.      
 
B. Compromises that will be required to incorporate radiation shielding on crewed, deep space vehicles: An 

ISS analog 
“Our true genius is for compromise.” – Shelby Foote, Civil War Historian 

 
During the late 1980’s and early 1990’s the challenge of providing Micrometeoroid and Orbital Debris 

(MM/OD) protection to Space Station Freedom (SSF) appeared, at times, to be intractable. The specification for the 
low-earth orbit (LEO) MM/OD environment was in the process of being defined and the scientific community knew 
that whatever environment was specified would change over time as more data were collected.  

Another aspect of the problem that the SSF Program struggled with was just how much MM/OD protection 
should be provided for the habitable modules and for other “MM/OD critical” items (hardware that if impacted by 
MM/OD would cause a catastrophic hazard to the Station and/or crew). The question of how to uniformly test 
MM/OD shielding concepts to determine their effectiveness against hypervelocity impacts had to be resolved. 
MM/OD particles have a wide range of densities, shapes and velocities and a standard test method across all of the 
hardware developers, including the International Partners (IPs), had to be found for hardware development and 
verification to proceed.  

The proposed verification methods to determine the probability of crew loss over the life of the SFF varied 
widely as well. There were proposals to fire hypervelocity impactors at full-scale pressurized modules, analyses to 
determine the critical crack size that an aluminum module would fail from unstable crack growth and analyses of 
shield performance using the BUMPER analysis code based on experimentally determined ballistic limit equations.  

When the SSF Program was transitioned to the International Space Station (ISS) Program, the Russians were 
brought on as an International Partner and the inclination of the ISS orbit was raised to 51.6 degrees, further 
exacerbating the MM/OD protection problem.  The Orbital Debris flux became much greater and the shielding on 
the Russian elements of the ISS was designed to protect against meteoroids only.  

Eventually, compromises were made among all of the stakeholders to solve the problem of protecting the ISS 
against MM/OD. This series of compromises are analogous to the type of compromises that will have to be made by 
the stakeholders responsible for providing radiation protection for crewed, deep space missions. A summary of the 
compromises is given in the following paragraphs along with how they can help guide those responsible for working 
through similar issues with regards to providing radiation protection for deep space, crewed vehicles. 

 
1. The Environment Compromise 
 During the requirements definition phase of the ISS Program, SSP 30425, Space Station Program Natural 
Environment for Design, was updated to include the MM/OD environment for low-Earth orbit that the scientific 
community could achieve consensus on as of 1994. This environment model was used for developing designs of 
MM/OD shielding and assessing Probability of Non-Penetration (PNP) risk to ISS MM/OD critical items. The 
scientific community as well as the ISS engineers and Program management knew that our understanding of this 
environment would change over time. So even though the shield design was based on the LEO MM/OD 
environment as it was known in 1994, a documented ISS Program risk was tracked and a revised ISS PNP 
calculation was performed when an updated LEO MM/OD environment was baselined. (Currently ORDEM 2000 is 
used for ISS PNP assessment, with ORDEM 3.0 currently under review by the broad community.) 
 In order to develop radiation shielding concepts for deep space missions, the scientific community must achieve 
consensus on the SPE and GCR environments beyond LEO. Even though the solar max and solar min duration, 
intensity, and frequency of SPE events have uncertainty bands around them, a natural environment against which to 
evaluate vehicle configuration and shielding environments must be baselined. A process will have to be put in place 
by the deep space vehicle Program that incorporates assessments of the revised environments on the spacecraft 
shielding design.  
 
2. The Risk Compromise 
 Perhaps the most difficult compromise that was required in solving the ISS MM/OD protection problem was 
determining the PNP risk that the ISS Program was willing to accept.   The BUMPER analysis code had recently 
been developed.  This code took ballistic limit equations for MM/OD shielding concepts, mapped these equations 
onto a mesh that could be tailored to represent a spacecraft geometry, accounted for spacecraft attitudes and 
shadowing, and then exposed that mesh to an MM/OD environment flux. The BUMPER analysis code or its 
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recognized equivalent code was used for PNP verification, and the software was kept under strict configuration 
control. Using BUMPER, shielding concepts could be quickly assessed and a shielding mass vs. PNP curve could be 
developed for individual ISS elements or for the entire station configuration. 
 In addition, several catastrophic failure modes due to MM/OD impacts were assessed, including unstable crack 
growth in module pressure walls, time of useful consciousness based on the hole size due to an MM/OD impact, loss 
of attitude control or structural integrity due to module venting, and the probability of a crewmember being injured 
by secondary ejecta inside the impacted module. These assessments resulted in the minimum module wall thickness 
being increased to 3/16” in order to mitigate the risk of catastrophic rupture of a module due to unstable crack 
growth. It also produced a rough estimate that one of two penetrations would be catastrophic to the ISS. 
 Based on these data, the ISS program allocated PNP requirements based on an “equal area penetration risk” to 
MM/OD critical items. In other words, each square meter of the ISS would have equal shielding protection based on 
BUMPER analysis of the configuration. Overall, the ISS would have a 0.90 PNP over a ten-year, on-orbit duration 
assuming one of two penetrations were catastrophic. When the Russians were brought into the ISS Program, this 
criterion was changed to 0.81 PNP over a ten-year period, since their modules would have roughly the same area as 
the U.S., European and Japanese elements. Also, more refined analysis of the catastrophic risk reduced the 
likelihood of a penetration being catastrophic to about one in four. 
 A similar process will have to be followed for determining the extent of radiation shielding that will be required 
for crewed, deep space vehicles. First, an analytical tool for evaluating radiation shielding effectiveness will have to 
be agreed upon by all stakeholders. Also, the ALARA (As-Low-As-Reasonable-Achievable) principle will have to 
be codified into a maximum radiation dosage over a period of time, a cancer risk level or some other agreed-to 
criteria, so that radiation shielding concepts can be traded against an allowable crew dosage. With the analytical tool 
and allowable dosage criteria in place, shielding estimates can be traded against risk, weight, vehicle configuration 
and cost considerations during the conceptual design phase.  
 
3. The Verification Compromise 
 The question of formal verification of the ISS PNP requirements had huge cost implications. Many proposed 
solutions, such as firing projectiles at full-scale pressurized elements to verify unstable crack growth predictions 
were cost-prohibitive. Also, since MM/OD particles came in all shapes and sizes, and the hypervelocity guns were 
limited to about 7-km/second, a consensus had to be developed on how to uniformly perform testing and how to 
incorporate those test results in a verifiable analysis. 
 The test community agreed that the representative hypervelocity test particle would be an aluminum sphere. 
They also agreed on extrapolation criteria to estimate the shield ballistic limit beyond the maximum velocity 
achievable during ground tests. A representative altitude of 215 nautical miles, a 51.6 degree orbital inclination and 
a solar flux value were also agreed upon for the purpose of analytical assessments of ISS PNP. A ten-year on-orbit 
lifetime was used to design the shielding and the ISS would be reanalyzed as the lifetime of the vehicle was 
increased.  
 For the purpose of verifying radiation shielding performance for deep space vehicles, similar compromises will 
have to be made when developing a verification strategy in order to meet cost and schedule constraints. The 
transport code used to assess shield performance must be agreed-upon by all stakeholders, as well as its limits of 
applicability. Radiation environments will have to be truncated to some degree in order to exclude conceivable 
worst-case events in order to develop shielding designs that can be pragmatically implemented. Representative 
vehicle configurations, solar flux values and in-space lifetimes will have to be specified up front in order for 
shielding design to proceed without placing an undue analytical or test verification burden on the engineering 
community. Test resources will be limited. So only those test activities that can be tied to verifying radiation shield 
performance should be included in the verification planning. 
  
4. The Augmentation Compromise 
 The fourth compromise that had to be made in order to successfully implement MM/OD shielding on the ISS 
was to allow augmentation of the MM/OD shielding. In practice, this required the vehicle developers to scar certain 
areas of the ISS in order to permit EVA installation of additional MM/OD shielding. Since it was understood that 
the orbital debris environment would increase over time, that the ISS would probably be in-service longer than the 
ten-year, on-orbit lifetime used to design the MM/OD shielding, and that it may fly attitudes of additional modules 
to produce vehicle configurations that were not initially considered, the ISS Program management knew that 
additional shielding might have to be added once the ISS was operational.  
 On-orbit MM/OD shield augmentation has been installed on the ISS Russian Service Module, since this vehicle 
was initially designed to a 1980’s LEO micro-meteoroid environment and launch vehicle lift constraints prevented 
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“A compass will point you true north. But it won’t show you the swamps between you and there. If you don’t avoid 
the swamps, and get bogged down, what’s the use of knowing true north?” – Abraham Lincoln – Lincoln (2012) 

 
C. Space Radiation Human Dose Mitigation Technologies 

Total ionizing dose is simply the product of average long-term dose rate multiplied by exposure time.   The 
definition suggests a mitigation method – simply limit exposure time.   Limiting exposure time is the basic radiation 
dose management method used by the ISS program.  ISS has no system wide requirements that drive additional 
shielding mass to meet crew ionizing radiation (IR) dose requirements29.   In the ISS flight environment (nominally 
360 km altitude and 51.6° inclination), the baseline spacecraft structure provides more than adequate shielding to 
meet medical operations crew dose requirements for a six month expedition stay time.   Limiting the duration of 
human flight operations outside the Earth’s magnetosphere to times on the order of 100 to 300 days for spacecraft 
with typical shielding mass and materials is another example of limiting exposure time to meet IR dose 
requirements30.   

Human flight operations to Mars or the asteroid belt would have to be completed in mission times on the order of 
100 to 300 days to meet existing career IR dose limits.   To our knowledge, only the high thrust/high specific 
impulse capabilities offered by nuclear-electric Variable Specific Impulse Magnetoplasma Rocket (VASIMR) 
technology could achieve the 100 to 300 day round trip flight times to Mars or the asteroid belt31.  While the TRL of 
the VASIMR engine is relatively high31, the flight-ready light-weight nuclear reactor needed to power the engines is 
not yet in development and is likely to require a long and costly development program. 

Chemical, nuclear thermal, and solar electric propulsion options for human space flight to Mars and the asteroid 
belt all lead to IR exposure times on the order of one to four years and gross violations of the worst-case career IR 
dose limit for the nominal 20 to 30 g/cm2 aluminum structural shielding.  Long term human interplanetary flight will 
require IR dose control and dose effects mitigation other than limiting exposure times.  

Biomedical studies aimed at better quantification of the relationship between space radiation dose and health 
effects, in combination with pharmaceutical IR dose effect countermeasures and enhanced post-flight health services 
for flight crews, are expected to dramatically reduce the need for supplemental IR shielding mass in the future4,5.  
However, the development lead time for usable products is estimated to be on the order of ten years, at best, and the 
technical risk is high.    

Active magnetic shielding approaches suffer from the same limitations as nuclear electric propulsion and 
biomedical mitigations, i.e. long development lead time, high technical risk and high development costs, but may 
eventually prove useful if long term reliable funding can be made available32.     

 
D. Shielding with Materials 

Spacecraft structural and consumable materials can provide a measure of space radiation human dose mitigation, 
and materials with improved shielding properties have been the subject of considerable development work over the 
past twenty years33.  Point dose calculations, ground based accelerator studies and a limited number of space flight 
experiments have demonstrated that  low-Z, high-hydrogen content materials can provide better space radiation 
shielding performance than structural aluminum or other higher Z materials33.   

However, GCR secondary particle shower effects in the human body contribute significantly to human dose, and 
have the effect of reducing the benefits of low-Z, high-hydrogen materials.  Although the benefits of low-Z, high-
hydrogen materials compared to structural aluminum are still of value for the lower kinetic energy SPEs and trapped 
protons4,5.  

Shielding against GCR and SPEs using low-Z, high-hydrogen content materials offers an affordable, high TRL 
approach to solving the space radiation crew dose problem for long term interplanetary missions.   However, as can 
be seen by inspection of Fig. 3, areal density of shielding materials needed to provide adequate protection during the 
entire solar cycle is between 100 and 500 g/cm2 water (depending on the crew dose limit for the mission) and it is 
often assumed that the total mass of the shielded DSH will be too large to be practical.   As is demonstrated in the 
following paragraphs, the assumption that high shielding mass is necessarily impractical is shown to be potentially 
groundless, even in the present and future challenging NASA budgetary environment. 

 As an example, consider a cylindrical DSH hybrid habitat with an inflatable storage volume.   The outside 
diameter of the hard pressure shell is four meters and the length is six meters.   An inflatable pressurized storage 
volume is attached to the lateral surface of the cylinder and launches collapsed so the diameter of the habitat prior to 
inflation is less than 4.5 meters, so as to accommodate a standard Delta IV, Atlas V launch vehicle payload faring, 
or the somewhat larger SLS payload fairing.  Once orbit is achieved, the storage volume is inflated and can be 
accessed by the crew through a hatch.   The Hybrid habitat is shown in launch and on-orbit configuration in Fig. 10, 
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The launch cost vs. BFO dose equivalent for the three-year interplanetary flight examined here (Fig. 9) is a 
central consideration for implementation of the As Low As Reasonably Achievable (ALARA) approach to crew 
dose management, as described in NASA Standard 3001, and is driven by a cost vs. risk analysis.   For example, the 
launch costs associated with the shielding needed to limit the three-year BFO dose equivalent to 100 cSv is  on the 
order of one billion dollars for direct launch to GTO and about half that for direct launch to LEO.  The shielding 
mass needed to limit the three-year BFO dose to 20 cSv costs on the order of two billion dollars for launch to LEO 
and over four billion dollars for direct launch to GTO.   The high cost of direct launch to GTO compared to LEO 
suggests that a solar electric tug spacecraft could be profitably employed for moving large masses from LEO to 
GTO, but only if the subject tug can be designed, built, launched, and operated for less than about two to three 
billion dollars total program cost.   

Another consideration in the ALARA analysis is the direct effect of large shielding masses on spacecraft and 
mission architecture (see Figs. 8 and 9) and cost in dollars.  The rocket equation determines the payload mass 
fraction for a particular mission delta V and propulsion system specific impulse (Isp).  Assuming an 11 km/sec delta 
V requirement for a three-year Mars mission, the payload mass fractions is less that 10% for both storable (Isp = 325 
s) and cryogenic (Isp = 450 s) propulsion systems36.  For a solar electric system with an Isp of 2000 s, the payload 
mass fraction is 58%36.  A 200 metric ton habitat implies a total Earth departure mass of more than 2000 metric tons 
using chemical propulsion.  If a high impulse solar electric system is used, the Earth departure mass can be only 344 
metric tons.   Low Isp chemical propulsion is not suitable if high shielding mass is needed to manage crew dose.  
High Isp electric systems enable the use of high shielding mass habitats for long term manned interplanetary 
exploration36,37. Solar electric propulsion systems can support manned interplanetary exploration while more 
powerful and capable nuclear electric systems are being developed.    

The relatively high TRL of large high-power space solar electric systems is demonstrated by the solar 
photovoltaic power system now flying on ISS37, 38.   While the interplanetary transport solar electric power system 
will have different specific design requirements based on different mission objectives it is that case that ISS has 
provided a demonstration of in-flight feasibility and validated the design and verification process for hundred 
kilowatt to megawatt space photovoltaic systems37, 38.    

The large shielding masses, and corresponding launch costs, needed to manage crew radiation dose during long 
term interplanetary missions is often treated as evidence that the passive shielding approach is unworkable in 
principle, largely on account of the cost of launching the required shielding mass.    If 400 metric tons of shielding 
mass is needed in the worst-case, to meet a crew dose limit of 15.0 cSv during a 3 year mission, the launch costs of 
the shielding mass alone (to LEO) will be on the order of 2 to 4 billion dollars, which may be considered affordable 
if the cost is spread-out over several fiscal years.    The result is a stationary deep space habitat with a three-year stay 
time at one of the Earth-Moon liberation points.   Inserting the same habitat into a manned interplanetary transport 
designed for a three-year mission drives additional launch costs for propulsion and power modules.  If the shielded 
habitat mass is on the order of 400 metric tons, the net solar electric spacecraft mass is expected to be on the order of 
690 metric tons with a total launch cost on the order of 4 to 6 billion dollars.    

The nature of the ALARA process now becomes clear.  For example, increasing the crew radiation dose limit to 
40 E cSv from 15 E cSv can reduce net spacecraft mass to 344 metric tons from 690 metric tons leading to a launch 
cost saving on the order of 2 to 3 billion dollars, in addition to reducing the number of heavy lift launches needed to 
complete construction of the interplanetary transport.   

V. The Hybrid Inflatable Deep Space Habitat (DSH) 
One approach that lends itself to a flexible architecture is the Hybrid Inflatable module shown deployed in Fig. 

10.  The Hybrid Inflatable design consists of a metal or composite core surrounded by an inflatable shell.  The 
inflatable shell consist of the standard shell layers described during the TransHab design39, an inner liner, single or 
multiple bladders, a structural restraint layer, micrometeoroid protective layers, and passive thermal protective 
layers.  Racks (stowage, Environmental Control and Life Support Systems (ECLSS), avionics, dining, etc.) and 
internal storage are shown inside the central core.  Crew quarters and a water-wall are shown on one end of the 
module.  During Solar Particle Events (SPEs), the crew would retreat into the crew quarters surrounded by the water 
wall.  Outside the module, attached to the outside of the central core, is an inflatable volume containing consumables 
and waste which doubles as additional radiation protection (shown as grey blocks in Fig. 10).   
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Figure 10.  Hybrid inflatable design (on-orbit configuration). 

 
Consumables are launched inside the central core and deployed to the inflatable outer shell on orbit.  Additional 

consumables and generated waste (radiation protection) can be added throughout and on supplemental missions.  
The flight crews will ingress/egress between the central core and the inflatable through either of two hatches.  In this 
configuration, the central core has a total pressurized volume of 94 m3 broken up into approximately 34 m3 of free 
space, 22.5 m3 of subsystem volume, 22.5 m3 of stowage volume, and 10 m3 for crew quarters.  The inflatable 
portion provides an additional 180 m3 of pressurized volume consisting of approximately 112 m3 of free space and 
68 m3 of stowage volume.  Additional stowage volume can be added at the cost of crew access. 

 The Hybrid Inflatable Module is launched in the folded configuration with the racks and 
consumables/radiation protection layers prepositioned inside the central core (see Fig. 11).  The module can be 
launched by an Expendable Launch Vehicle (ELV) and is shown packaged in a Delta IV shroud.  NASA Docking 
Systems (NDS) are located on the forward and aft ends of the module.  For this study, a propulsion bus was included 
to slow the module down post-insertion and support Service Module mating. Once inflated and deployed, the 
module will have to be attached to a service module that will provide power, propulsion, and Guidance, Navigation 
and Control (GN&C), as required.   
 

 
Figure 11.  Hybrid Inflatable Module in Delta IV launch configuration. 

As shown in Fig. 12, this architecture supports a one-year DSH mission, meeting a 40 cSv per year guideline.  For 
meeting a three-year mission with a 40 cSv guideline, a 310 cm (10 ft) equivalent water wall will be required.  A 
conceptual design of a Hybrid Inflatable Module, including supplemental inflatable water bags to meet the three-
year mission guideline, is shown in Fig. 13.  The external inflatable water bags would require their own passive 
thermal and micrometeoroid protective layers, as well as compartmentalization, so that water or air could be 
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large shielding thicknesses and the calculations presented at these thicknesses are currently performed via 
extrapolation. 
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