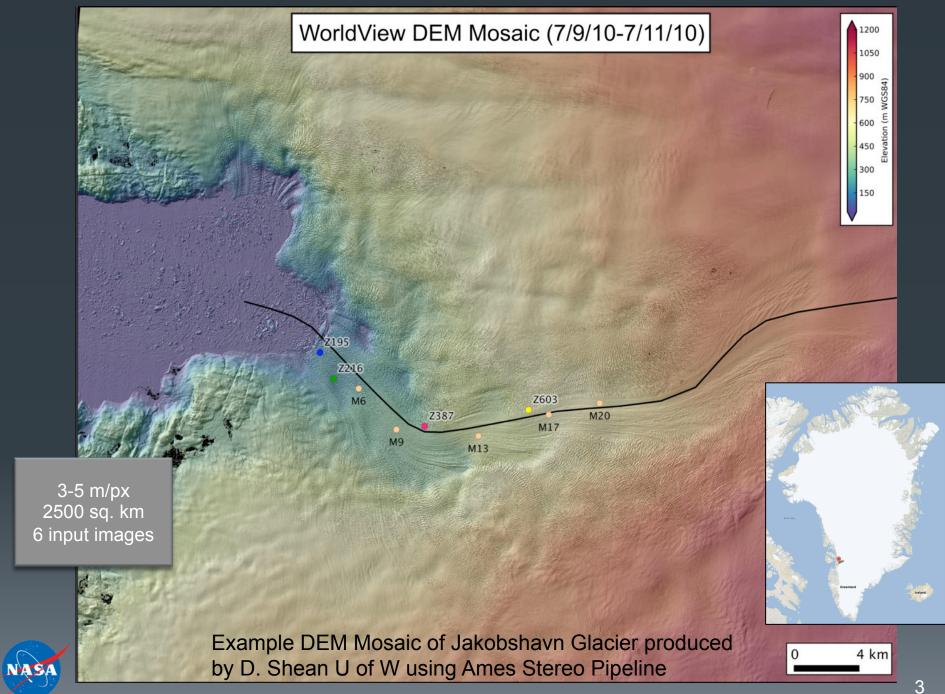
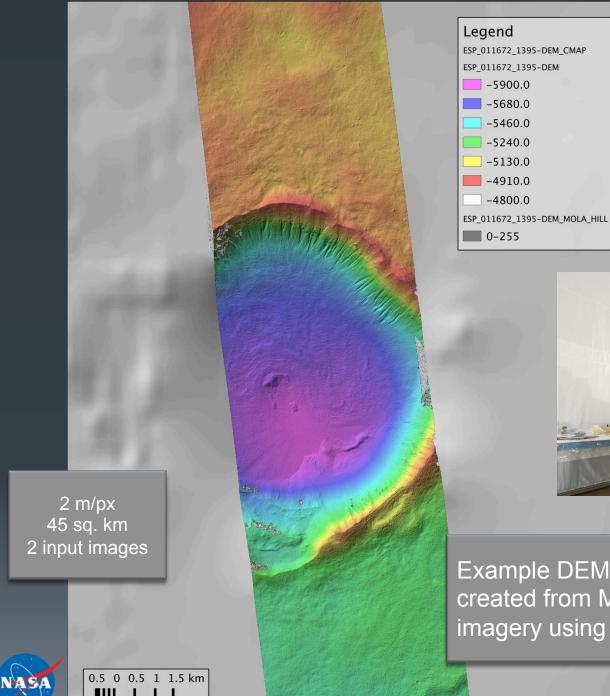
Ames Stereo Pipeline

Terry Fong

Director, Intelligent Robotics Group NASA Ames Research Center

terry.fong@nasa.gov


April 9, 2013



Ames Stereo Pipeline

- Automatic Stereo Correlation (matching all pixels between two images) for large satellite images.
- Camera models for NASA planetary rovers, NASA planetary satellites, DigitalGlobe Satellites, and generic RPC Models.
- Multithreaded and can be used across multiple machines.
 Works on high-end workstations to super computers.

Example DEM of an unnamed crater created from Mars Reconnaissance Orbiter imagery using Ames Stereo Pipeline.

History

- Ames Stereo Pipeline (ASP) has a lineage dating back to the 1997 Mars Pathfinder / Sojourner Mission.
- October 2009 ASP v1 rewritten for satellite support and open-source released (NASA Open Source)
- June 2012 ASP v2 includes support for DigitalGlobe and open-source released (Apache 2 license)

How it works

- Ames Stereo Pipeline is a set of command line tools.
- Designed for computing clusters and super computers.
- UNIX derived platforms (Linux, Mac OSX, etc)

```
-PRJDIR/StereoPipeline/data/CTX(branch:master*) » stereo *cal.cub run/run –s stereo.nonmap
Warning! Your current config file enables debug logging. This will be slow.
       --> Detected ISIS cube files. Executing ISIS stereo pipeline.
Creating output directory: "run"
Using "stereo.nonmap"
' 2013-Apr-01 14:53:58 ] : Stage 0 --> PREPROCESSING
       --> Computing statistics for the left image
         left: [ lo:0.0566257 hi:0.138582 m: 0.0925434 s: 0.0137999]
       --> Computing statistics for the right image
         right: [ lo:0.0616242 hi:0.143717 m: 0.099642 s: 0.0132815]
           Processing Left
           Processing Right
           Building Descriptors
           Found interest points:
             left: 7500
           right: 6103
       --> Matching interest points
           Forward:[*********** Complete
           Backward:[********** Complete!
           Matched 266 points.
           Inlier cluster:
            Triangulation Err: 12.222 +- 3.7716 meters
            Altitude
                            : -1723.63 +- 72.7998 meters
           Reduced matches to 255
       --> Aligning right image to left using homography:
            Matrix3x3((1.23303,0.00688278,-677.459)(-0.00832956,0.99707,1341.66)(-5.24688e-07,
       --> Normalizing globally to: [0.0566257 0.143717]
       --> Writing normalized image: run/run-L.tif
         left: [*********** Complete!
 ~/projects/StereoPipeline/data/CTX] :stereo *cal.cub run/run –s stereo.nonmap
 on Apr 01 14:55 0! ..ImportantPair 1- ..sionWorkbench 2 stereo
```

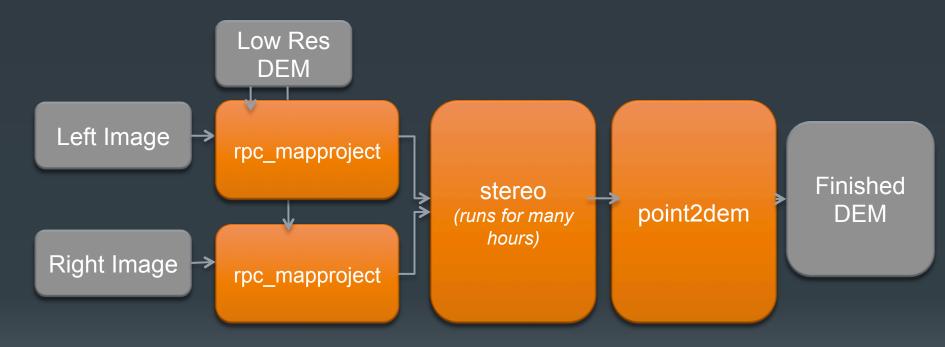
Typical output on the terminal when using Ames Stereo Pipeline.

Typical User Operation

Left Image

Right Image

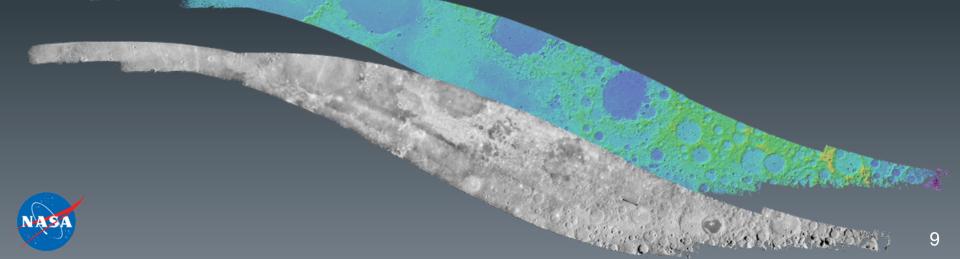
stereo (runs for many hours)


point2dem (runs an hour)

Final Digital Elevation Model File

- In the simplest operation, the user only runs two commands from ASP.
- The stereo command creates a point cloud.
- The point2dem command converts the point cloud to DEM of your chosen projection.

Advanced Operation



- Ames Stereo Pipeline can use existing DEMs to speed up its work.
- This operation is achieved by "map projecting" the input images prior to stereo correlation.

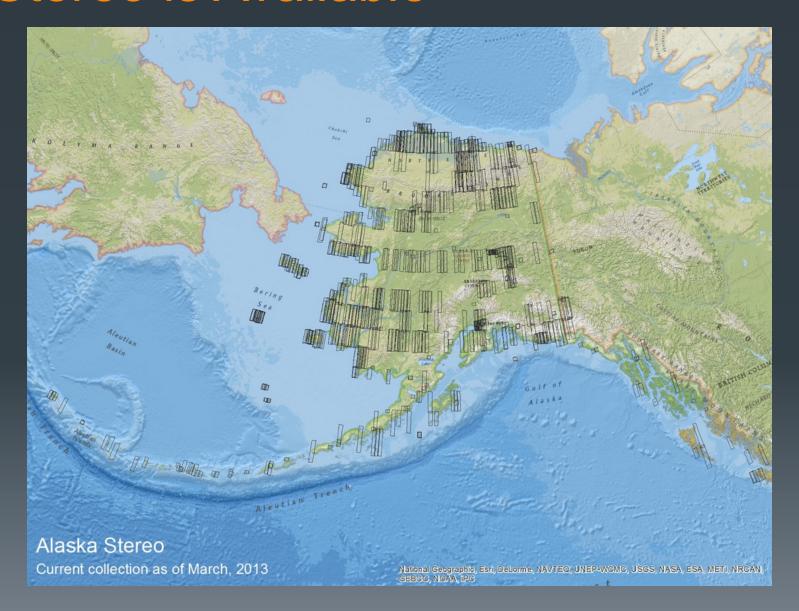
Our Past Applications

- We've used ASP to create 40 m/px DEMs from 3000 stereo pairs of the Moon (captured by Apollo 15, 16, and 17).
 - 40 m = approx. the length of 3 school buses end-to-end
 - The final mosaic covered 20% of the Moon
- These were all processed in a single week using the NASA Ames Pleiades Supercomputer

Autonomous Processing Earth Imagery

- We currently have a 60% success rate with processing
 DigitalGlobe stereo pairs into DEMs without human input.
- Can automatically produce DEMs with 5 m/px resolution

5 m = approx. length of a Toyota Camry



Typical Performance

- With DigitalGlobe stereo imagery subsampled to 1 m/px, we can process a stereo pair in about 5 hours.
- Performance changes with the amount of parallax in the imagery.
- Processing cost is 5 minutes of CPU time / square km.
 (on NASA Pleiades supercomputer, 3 GHz Xeon processors)

Stereo is Available

Software License

- Ames Stereo Pipeline v2 is available as open-source
 - Worldwide release (no country restrictions)
 - Can be freely reproduced and distributed, with or without modifications
- Apache 2 license
 - http://www.apache.org/licenses/LICENSE-2.0.html

Source Code

- Our C++ code repository is hosted on Github.
- Ames Stereo Pipeline is part of the NASA "Neo Geography Toolkit"
- Available to download, copy, modify, collaborate, ...

github.com/NeoGeographyToolkit/StereoPipeline

Prebuilt Binaries irg.arc.nasa.gov/ngt/stereo

- Most Linux Distributions
 - 32 and 64-bit versions, RHEL 5+, SuSE, Debian
- Mac OSX 10.6+
- We do not support Windows

Additional images & technical Lunokhod.org

- For more information:
 - Zack Moratto, Ames Stereo Pipeline Pl
 - z.m.moratto@nasa.gov

