JOINING AND INTEGRATION OF SILICON NITRIDE CERAMICS FOR AEROSPACE AND ENERGY SYSTEMS

M. Singh¹ and R. Asthana²

¹Ohio Aerospace Institute NASA Glenn Research Center Cleveland, OH 44135

²Department of Engineering & Technology University of Wisconsin-Stout Menomonie, WI 54751

Abstract

Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si_3N_4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si_3N_4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si_3N_4 and St. Gobain Si_3N_4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si_3N_4 /Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

Need for Joining and Integration of Silicon Nitride Ceramics to Itself and to Metallic Systems

- Joining and integration is an enabling technology for the manufacturing and application of advanced ceramic components in aerospace and energy systems.
- Robust joining technologies for Silicon Nitride to itself, using high temperature (>1300°C) capable ceramic interlayers, could play a key role in low cost manufacturing of complex shaped components.
- Bonding of Silicon Nitride to metals (stainless steels, Fe alloys, Mo, Nickel, etc.) has been carried out extensively over the last few decades. However, poor wettability of ceramics (poor flow and spreading characteristics) and thermoelastic incompatibility always provide significant challenges.
- Integration of Silicon Nitride to metals in components and systems requires the development and validation of innovative joining concepts and technologies, which are capable of higher operating temperatures.

www.nasa.gov

National Aeronautics a	Ind Space Administration	imental - Mater	Proc ials -	edur	e			VISI
•	Silicon Nitride Ceramics:							
	 Kyocera SN-281: contains ~ 9-10% wt% Lu₂O₃ 							
	 Saint Gobain NT 154: contains ~ 4 wt% Y₂O₃ 							
•	Inconel 625							
	 Inco Specialty Meta Nominal compositi 0.4AI-0.4Ti 	als ion (in wt%):	58Ni-21.	5Cr-9Mc	o-5Fe-1C	co-0.5Si-0.	.5Mn-	
•	Braze alloy: Cu-ABA							
	 Morgan Advanced Ceramics, Hayward, CA. Braze foil thickness ~ 50 μm 							
	Braze Composition, (wt %)	т _и к т _в	K E, GPa	Y8, MPa	UTS, MPa	CTE, ×10 ⁴ K ⁴	% El.	
	Cu-ABA® (92.75Cu-331-2AI-2.2611.)	1297 12	1 96	278	620	19.6	42	
•	Intermediate Laye	rs ediate layers	of pure	(99.97%)) Cu in s	ome joint	ts	

