
THREE-DIMENSIONAL UNSTEADY SIMULATION OF AERODYNAMICS AND 
HEAT TRANSFER IN A MODERN HIGH PRESSURE TURBINE STAGE 

 
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and 
results are compared to steady calculations as well as to experiment. A low Reynolds number k-ε 
turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition 
is used in the tangential direction. This allows the unsteady simulation to be performed by using only one 
blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor 
heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on 
the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure 
results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady 
simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the 
leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and 
pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the 
heat transfer patterns predicted by steady and unsteady simulations to be different. 
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NASA Subsonic Transport System Level Metrics
…. technology for dramatically improving noise, emissions, & performance

SFW Approach
- Conduct Discipline-based Foundational Research

- Investigate Advanced Multi-Discipline Based Concepts and Technologies

- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes

- Enable Major Changes in Engine Cycle/Airframe Configurations
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About this work…

• 3-D URANS simulations performed on highly loaded transonic turbine stage 
using TURBO (Chen et al.)

• Results are compared to steady calculations as well as experiment (Tallman, 
Haldemann et al. at OSU GTL).

• Effect of unsteadiness studied
- shock structure
- rotor heat flux
- hub and casing heat flux
- thermal segregation
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Background

• HPT flow is unsteady due to wake passage and shock-wake interactions

• Stagnation point on rotor moves away from LE

• Shock moves from rotor crown to leading edge as wake passes (Denos et al., 
Paniagua et al.)

• Thermal segregation could occur (Shang and Epstein, Ameri et al., Kerrebrock and 
Mikolajczak)
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Segregation
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TURBO

• Upwind Roe scheme with Newton sub iterations
-No artificial dissipation

• Fully parallelized to use MPI
• Only need one blade per row using Phase lag
• Phase lag - ideal for single-stage simulation (Van Zante et al.) 
• Uses low Re k-ε turbulence model
• Heat transfer simulation made possible by incorporating isothermal BC
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Phase lag

Uses blade count of 
neighboring blade row to 
determine frequency
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The Grid
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Rotor grid.

- 38 Stators, 72 rotor blades
- ~2.5M cells (very fine grid)
- y+<1 (at first point off wall)
- Coarser grids have shown satisfactory results 
(e.g. Green et al.)

Rotor Features
- 2.1% tip clearance
- blade speed ~ 9000 rpm 
- Re ~ 3 x 106 / m

Relative stator-rotor positioning for unsteady case and
boundary conditions

Isentropic 
inlet

Sliding 
interfaces

Pressure 
Exit 
(profile 
specified)

Time 
shift

Convergence 
determined using mass 
flow and surface heat 
transfer
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Simulations
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Isentropic 
inlet

Sliding 
interfaces

Pressure Exit 
(profile 
specified)

Time shift

• Steady
– Used circumferentially averaged vane exit 

total pressure and temperature profiles as 
rotor inlet profiles.

– Periodic BC used in tangential direction
• Unsteady

– Stator inlet total pressure and temperature, 
rotor exit static pressure specified

– Phase lag BC in tangential direction
– 50 steps per period stored
– Sliding interface BC at stator-rotor interface
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RESULTS
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Shock Function at 15% span

pVSF ∇⋅=


•Boundaries of 
red regions are 
shocks

(Large pressure 
gradient is in 
direction of flow 
velocity)
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Shock Function at Mid-Span

11

Vane trailing edge 
shock sweeps 
across crown and LE 
of rotor

Minimum 
unsteadiness on 
suction side of rotor
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Shock Function at 90% Span
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Vane trailing edge 
shock interacts with 
rotor trailing edge 
shock 
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Mid-span Pressure and Mach Number
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Pressure Mach no.
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Pressure Profiles
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a) 15%
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Rotor 
trailing 
edge shock

Unsteady envelope widest near LE, 
narrows towards TE
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Pressure Profiles
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b) 50%

c) 90%

S=0

S= -1 S=1

n

P/Pref

S (non dimensional distance along blade profile)

- No shock near 
tip

- Thin envelope

Stag. Point 
moved to 
pressure 
side
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Stanton Number Profiles
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Stanton Number Profiles
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Streamlines
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Streamlines of relative velocity over suction side of rotor blade with rotor blade 
showing Stanton number contours.

Rotor Tip

Trailing edge Hub

Tip leakage

Radial migration

Interaction of hub 
BL with passage 
flow
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Surface Heat Flux

20

Comparison between steady and time-averaged Stanton number distribution on rotor
blade pressure side.

a) Steady b) Time-averaged

Higher heat transfer at 
LE for Steady case
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Snapshots of Unsteady Heat Flux

21

time



Fundamental Aeronautics Program
Subsonic Fixed Wing Project

2

1

In the Tip Gap
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colors) if flow is separated. This is only 
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In the Tip Gap – Plane 1
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2
1

Separation

Density gradient

Expands to pressure lower than suction side 
and then goes through series of 
compressions and expansions
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In the Tip Gap – Plane 1 - Unsteady
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tip_shock3.aviShock function
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In the Tip Gap – Plane 2
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Casing Heat Transfer
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Steady

Time-
averaged

Corresponds to 
separation
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Percent difference between steady and time-averaged Stanton number on rotor hub.

Hub Heat Transfer
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Conclusions

• Over most of blade surface, steady simulation is accurate
• Thermal wake causes unsteady heat transfer over most of the blade to 

be higher than steady heat transfer except at leading edge.
• At the leading edge the effect of unsteadiness is most prominent
• Thermal redistribution was observed at the hub and on the blade 

surface
• Pressure and heat transfer distribution over blade is highly 3D
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Backup slides
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Time averaged P and Shock @ 50% span
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The phase lag boundary condition for more than two blade rows

• In this example, adding the IGV wakes creates circumferential non-uniformities 
at the entrance to stator 1.

• At ‘B’ the phase lag boundary condition will apply the time history of ‘A’ with a 
phase shift but not the necessary change in the mean.

• This results in a spatial filtering of information for stator-stator (and rotor-rotor) 
interactions.

A

B A

B

Phase shift

IGV

Rotor 1
Stator 1

Actual 
time 
history at 
B
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Pressure and Temperature Profile at Interface
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Stanton No. Derivation
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Rotor Hub Surface Heat Transfer - Steady

TURBO predictions Stanton No. Comparisons
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Rotor Tip Heat Transfer – Steady

TURBO predictions Stanton No. Comparisons



Fundamental Aeronautics Program
Subsonic Fixed Wing Project

Rotor Casing Surface Heat Transfer - Steady

TURBO predictions
No data available for 
comparison
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Statistics – Steady

Results TURBO vs. 
Tacoma

TURBO vs. Experimental

Vane Surface Pressure Good Good
Vane Surface Heat Transfer Good Good
Blade Surface Pressure Good Good
Blade Surface Heat Transfer Fair 16.3% difference (max: 

25%)
Rotor Hub Surface Heat 
Transfer

13.4% difference 13.1% greater

Rotor Tip Heat Transfer 10.5% difference 15.5% greater
Iterations Estimated CPU 

Time
Stator 30,000 60 Hours
Rotor 40,000 120 Hours
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