SYNTHESIS, CHARACTERIZATION, AND PROCESSING OF COPPER, INDIUM, AND GALLIUM DITHIOCARBAMATES FOR ENERGY CONVERSION APPLICATIONS

S.A. Duraj^{a,‡}, N.V. Duffy^{b,‡}, A.F. Hepp^{c,‡}, J.E. Cowen^{a,c}, M.D. Hoops^b, S.M. Brothers^b, M.J. Baird^b, P.E. Fanwick^d, J.D. Harris^{c,e}, and M.H.-C. Jin^{c,f}

^aDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115 ^bDepartment of Chemistry, Wheeling Jesuit University, Wheeling WV 26003 ^cNASA Glenn Research Center, Cleveland, OH 44135 ^dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907 ^eDepartment of Chemistry, Northwest Nazarene University, Nampa, ID 83686 ^fMaterials Science and Eng., University of Texas at Arlington, Arlington, TX 76019

Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)and bis(diethyldithiocarbamato)copper(II), $Cu(S_2CN(CH_2C_6H_5)_2)_2$ and $Cu(S_2CN(C_2H_5)_2)_2$ respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320°C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325°C) to yield Cu₂S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-*S*,*S*'), commonly referred to as tris(*N*,*N*-dibenzyldithiocarbamato)indium(III), In(S₂CNBz₂)₃, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group *P*1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS₂ and benzyl moieties in to the gas phase, resulting in bulk In₂S₃. Preliminary spray CVD experiments indicate that In(S₂CNBz₂)₃ decomposed on a Cu substrate reacts to produce stoichiometri

Corresponding authors:

Stan A. Duraj -	Tel.: (216) 687-2454 Email: s.duraj@csuohio.edu
Norman V. Duffy -	Tel.: (304) 243-4430 Email: nduffy@wju.edu
Aloysius F. Hepp -	Tel.: (216) 433-3835 Email: Aloysius.F.Hepp@nasa.gov

Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

S.A. Duraj^{a‡}, N.V. Duffy^{b‡}, A.F. Hepp^{c‡}, J.E. Cowen^{a,c}, M.D. Hoops^b, S.M. Brothers^b, M.J. Baird^b, P.E. Fanwick^d, J.D. Harris^{c,e}, and M. Jin^{c,f}

^aDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115
^bDepartment of Chemistry, Wheeling Jesuit University, Wheeling WV 26003
^cNASA Glenn Research Center, Cleveland, OH 44135
^dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907
^eDepartment of Chemistry, Northwest Nazarene University, Nampa, ID 83686
^fMaterials Science and Eng., University of Texas at Arlington, Arlington, TX 76019

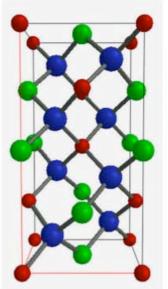
March 18, 2009

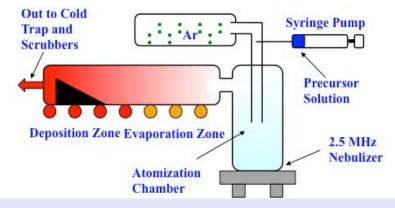
Why Thin Film Materials for Aerospace Power?

Depictions of thin-film solar cell applications (clockwise from upper left): lunar surface power, Mars surface power, Solar Electric Propulsion for planetary exploration, and terrestrial high-altitude airship. Key is the state high mass-specific power offered by thin-film technologies.

Solid-state Material and Processing Apparatus

CulnQ₂ MOLECULAR STRUCTURE



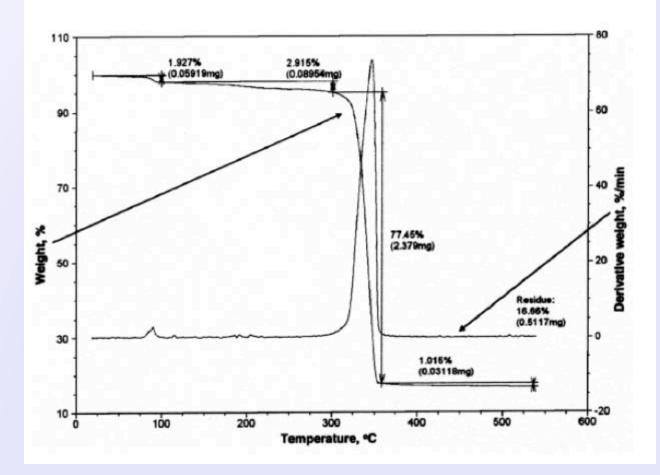

Diagram of CulnQ₂ unit cell.

Indium

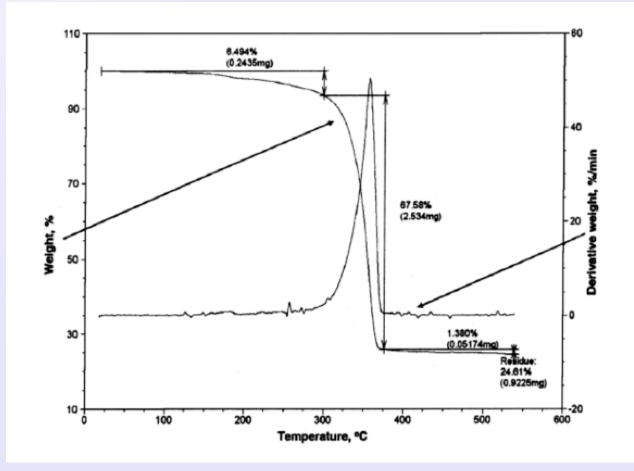
Selenium or Sulfur

Picture (top) and diagram (bottom) of a horizontal atmospheric hot-wall reactor.

Indium and Gallium Dithiocarbamate Complexes

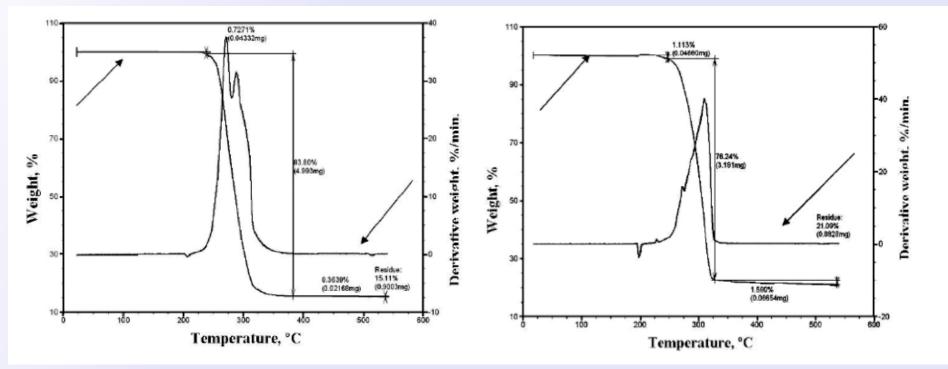

Complex	Theoretical	Theoretical	Theoretical	Residue
	Residue (M_2S_3)	Residue (MS)	Residue (M ₂ S)	Percentage
In(S2CN(CH2C6H5)2)3	17.49 %	15.77 %	14.05 %	16.81 \pm 2.92 %
In(S,CN(C,H,)))	29.13 %	26.27 %	23.41 %	26.26 ± 1.27 %
In(S_CN(CH_),O),	27.10 %	24.43 %	21.77 %	28.18 ± 1.05 %
$\ln(S_2CN(CH_2)_4)_3$	29.45 %	26.56 %	23.66 %	25.67 \pm 0.21 %
Ga(S ₂ CN(CH ₂ C ₆ H ₅) ₂) ₃	13.29 %	11.48 %	9.68 %	$\textbf{26.95} \pm \textbf{3.00}~\%$
Ga(S ₂ CN(CH ₂) ₄ O) ₃	21.18 %	18.30 %	15.43 %	51.39 %
Ga(S ₂ CH(CH ₂) ₄) ₃	23.19 %	20.03 %	16.88 %	27.32 %

Thermogravimetric Analysis of Compound 1



Data for compound (1) $ln(S_2CN(CH_2C_6H_5)_2)_3$ is best fit to ln_2S_3

Thermogravimetric Analysis of Compound 2


Data for compound (2) $ln(S_2CN(C_2H_5)_2)_3$ is best fit to InS

Thermogravimetric Analysis of Copper Compounds

Thermogravimetric analysis plots for $Cu(S_2CN(CH_2C_6H_5)_2)_2$ left (best fit is CuS) and $Cu(S_2CN(C_2H_5)_2)_2$ right (best fit is Cu_2S).

Structural Characterization of Compound 1

Crystallographic data for Tris(bis(phenylmethyl)carbamodithioato-S,S')indium (III)

Crystanographic data for Tris(bis(pheny	imetnyi)carbamoditnioato-5,5)indium (III)	- 0
Molecular formula Formula weight	C ₄₅ H ₄₂ InN ₃ S ₆ 932.06	C213 C214
Temperature (K)	150	C212 C215
Radiation (wavelength)	Mo K _a (0.71073Å)	
Space group	P1 (No. 2)	C211 C216
$a(\text{\AA})$	9.9396(2)	
<i>b</i> (Å)	12.9719(3)	C226 C220 C210 C210 C210 C210
<i>c</i> (Å)	16.7988(4)	C323
$\alpha(^{\circ})$	91.9439(8)	
β(°)	97.6047(8)	
$\gamma(^{\circ})$	103.2196(13)	
V, (Å ³)	2085.39(8)	C223 S21 Q C321 C321
Z	2	S31
$D_{calc} (g \text{ cm}^{-3})$	1.484	
Crystal size, mm	0.44x0.40x0.25	S32 N3 ST C310
μ (mm ⁻¹)	0.881	C115 C
h, k, l range	0 to 12, -16 to 16, -21 to 21	
2θ range (°)	2.45 - 54.95	
Data collected	19459	
Unique data	9255	
Data used in refinement	9220	C112 C315 C
Cutoff used in R-factor calculations	$F_{o}^{2} > 2.0\sigma(F_{o}^{2})$	
Data with I>2.00(I)	7423	
Parameters	496	
$R(F_{o})$	0.033	
$R_w(F_o^2)$	0.072	C125 6 C124
Goodness-of-fit	1.042	<u> </u>

Data Table for Compound 1

ORTEP of $In(S_2CNBz_2)_3$ - key atoms labeled. The thermal ellipsoids enclose 50% of electron density.

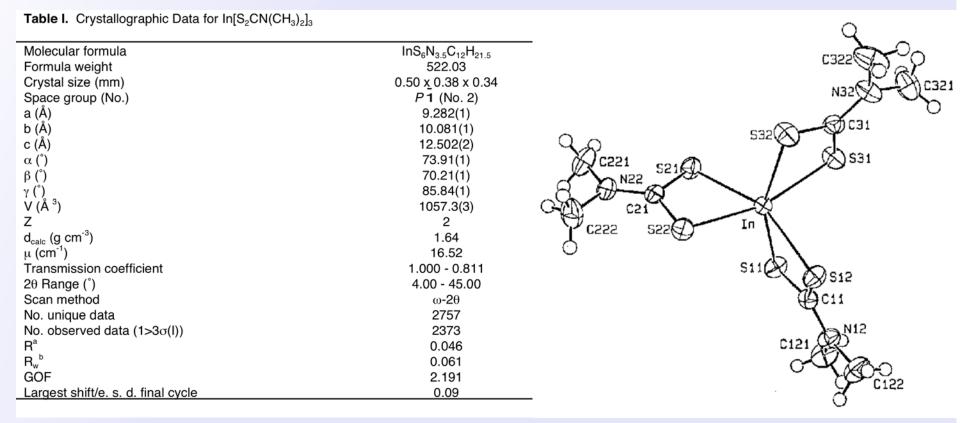
Selected Bond distances and angles for Compound 1, In(S₂CNBz₂)₃

In-S(11)	2.5887(6)	S(11)-In- $S(12)$	69.465(18)
In-S(12)	2.6189(6)	S(21)-In- $S(22)$	69.654(17)
In-S(21)	2.5750(6)	S(32)-In- $S(31)$	70.412(17)
In-S(22)	2.6170(6)	S(11)-In- $S(21)$	92.718(18)
In-S(31)	2.5941(6)	S(11)-In- $S(31)$	94.76(2)
In-S(32)	2.5669(6)	S(11)-In- $S(32)$	104.272(19)
S(11)-C(1)	1.723(2)	S(22)-In- $S(12)$	97.593(19)
S(12)-C(1)	1.732(2)	S(22) - In - S(31)	100.03(2)
S(21)-C(2)	1.726(2)	S(22) - In - S(32)	95.804(18)
S(22)-C(2)	1.722(2)	S(21)-In- $S(31)$	97.289(19)
S(31) - C(3)	1.721(2)	S(21)-In- $S(12)$	92.236(19)
S(32) - C(3)	1.736(2)	S(12)-In- $S(32)$	104.221(18)
N(1)-C(1)	1.328(3)	S(11)-In- $S(22)$	158.18(2)
N(1)–C(120)	1.470(3)	S(21)-In- $S(32)$	159.56(2)
N(1)-C(110)	1.475(3)	S(12)-In- $S(31)$	162.00(2)
N(2)-C(2)	1.332(3)	S(11)-C(1)-S(12)	118.38(13)
N(2)–C(210)	1.477(3)	S(21)-C(2)-S(22)	118.64(13)
N(2)–C(220)	1.480(3)	S(31)-C(3)-S(32)	118.78(13)
N(3)-C(3)	1.328(3)		

N(3)–C(320)

N(3)-C(310)

1.473(3)


1.486(2)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Structural Characterization of Compound 2

Data Table for Compound 2

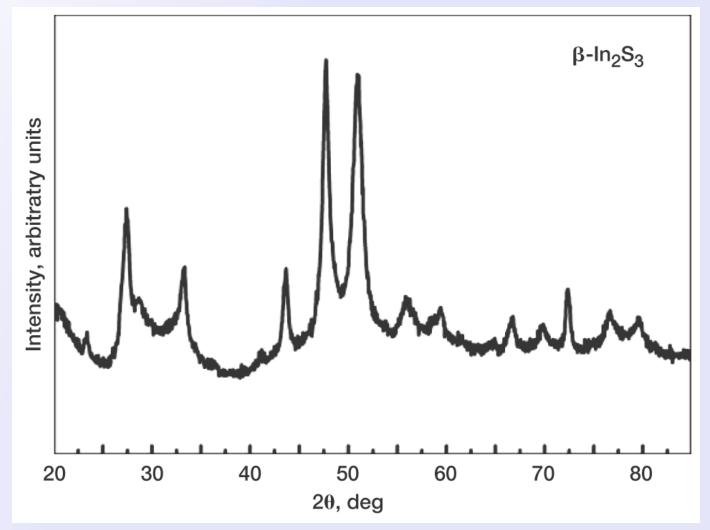
ELAND

ORTEP of $In(S_2CNEt_2)_3$ - key atoms labeled. The thermal ellipsoids enclose 50% of electron density.

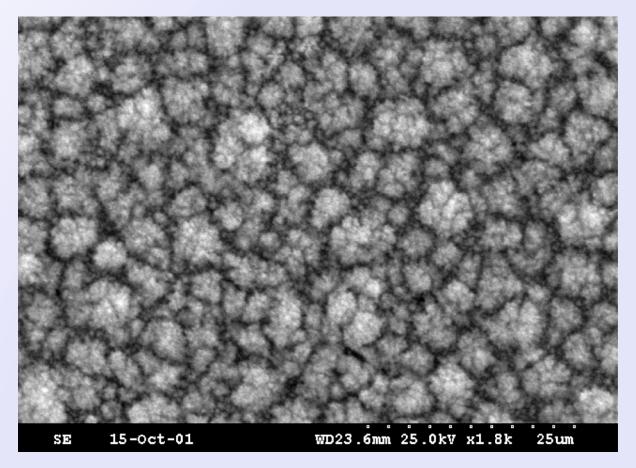
Selected Bond distances and angles for Compound 2, $ln(S_2CNEt_2)_3$

Table II. Selected bond distances (Å) and angles (°) for $In[S_2CN(CH_3)_2]_3$.

Bond	Distance	Atoms	Angle	
In-S11	2.602(2)	S11-In-S12	69.62(6)	
In-S12	2.583(2)	S11-In-S21	96.15(6)	
In-S21	2.582(2)	S11-In-S22	105.88(7)	
In-S22	2.590(2)	S11-In-S31	91.83(6)	
In-S31	2.600(2)	S11-In-S32	157.88(7)	
In-S32	2.608(2)	In-S11-C11	85.6(2)	
N12-C11	1.319(9)	In-S12-C11	86.4(2)	
N22-C21	1.308(9)	S11-C11-N12	120.7(6)	
S11-C11	1.727(7)	S11-C11-S12	118.4(4)	
S12-C11	1.720(7)	C11-N12-C121	121.8(7)	
S21-C21	1.724(7)			
S22-C21	1.723(7)			
S31-C31	1.725(8)			
S32-C31	1.713(8)			

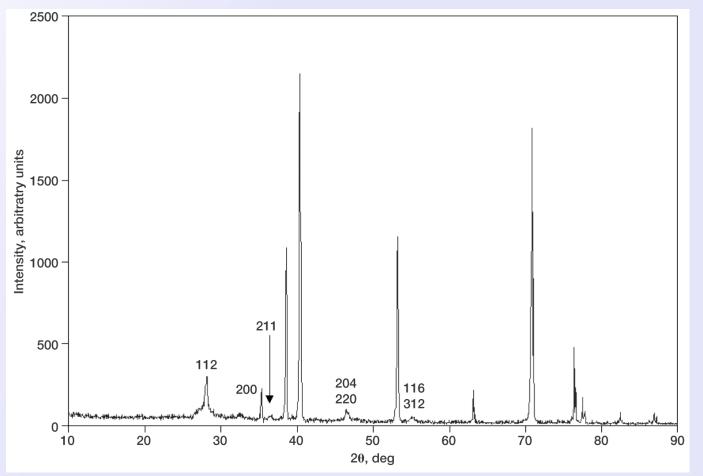

Numbers in parentheses are estimated standard deviations in the least significant digits.

Product of Thermal Decomposition of Compound 1


WELAND

1964

Spray Pyrolysis of Compound 1 on a Cu/Ti Substrate



XRD pattern of a CulnS₂ film deposited from (<u>I</u>) at 425°C from a 0.005 M solution with 2 slpm flow rate of Ar carrier gas on Cu/Ti substrate. EDS showed film to be near stoichiometric; magnification 1800X; scale is 25 μ m.


Spray Pyrolysis of Compound 1 on a Cu/Ti Substrate

XRD pattern of a CulnS_2 film deposited from (I) at 425°C from a 0.005 M solution using 2 slpm flow rate of Ar carrier gas. Unlabelled peaks are attributed to the Ti substrate.

Conclusions

- $ln(S_2CN(CH_2C_6H_5)_2)_3$ (<u>1</u>) appears to be a superior compound for spray deposition for photovoltaic applications. It decomposes in a narrower, lower temperature range than $ln(S_2CN(CH_2CH_3)_2)_3$ and yields a product which is nearly pure ln_2S_3 .
- The techniques of GC/MS and TGA continues to yield results that enable precursor metal dithiocarbamates to be evaluated for photovoltaic applications.
- Compounds <u>1</u> and <u>2</u> were characterized by single crystal X-ray diffraction; their thermal properties were probed using a specialized tool employing the combined analytical techniques of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy.
- Examination of the gas phase species produced during heating, and evaluation of the composition and structure of the resulting solids confirm that compound <u>1</u> can be used to deposit pure indium sulfide.
- Implementation of $In(S_2CNBz_2)_3$ in a spray CVD apparatus indicates that it is possible to produce $CuInS_2$ films on a copper-coated substrate. Further investigations are warranted to determine the feasibility of achieving device quality $CuInS_2$ films.

