Ergonomics and Human Factors for the Restraints and Mobility Aids on the International Space Station

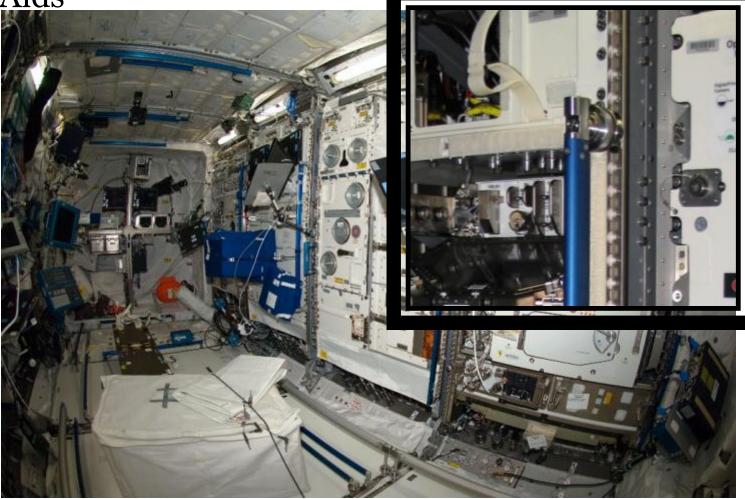
> Robert Behrendsen 25 April 2013

Overview

- Space Flight Environment
- The ISS Restraints and Mobility Aids
- Ergonomics and Human Factors for Space flight
- Suggested Improvements
- Recommendations

Space Flight Environment

- Which direction is up?
- Zero Gravity
 - $_{\circ}$ Translations
 - Station Keeping
- Operations 24/7
 - Working Laboratory 5/8
 - \circ Off Duty time
- Crew time cost escalated annually
 - ° \$65,000 \$95,000/hr



- How do crew members get around and secure themselves?
 - Handrails
 - USOS
 - Russian
 - Foot Restraints
 - Short Duration
 - Long Duration
 - Cupola Crew Restrains
 - Tethers
 - Bungees
 - Straps
 - Harness
 - Shoes/Socks

• USOS Handrails

• USOS Handrails

Russian
SM/Handrails
Bungee

• Russian

FGB/Handrails

Bungee

• USOS Foot

Restraints

• USOS

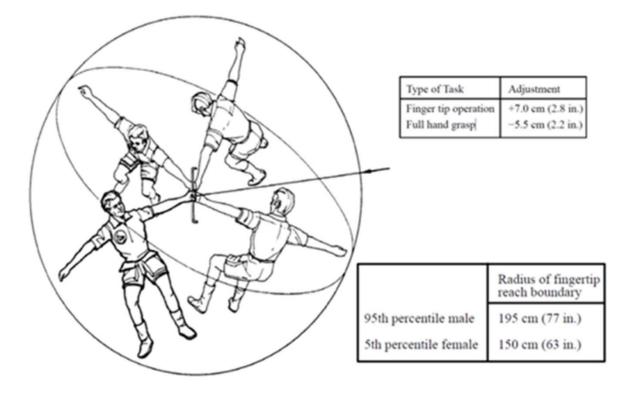
Cupola

Crew

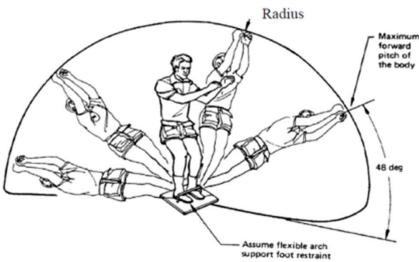
Restraints

- Strap/bungee
- Slippers/socks

- Harness
- Exercise shoes


- Body posture
 - Neutral position
- Muscles/Forces and Reactions
 - Translations or relocation via handrails
 - Primary movement with fingers, hands, arms, and shoulders
 - Secondary with toes, feet, legs, stomach, and back
 - Station keeping
 - Primary with toes, feet (top), legs (shin), stomach, back
 - Secondary with fingers, hands, arms, and shoulders

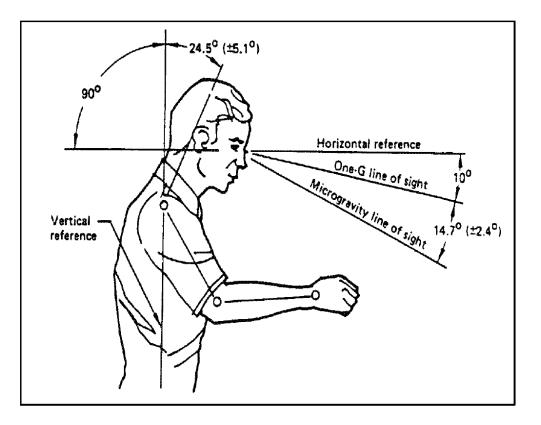
- Repetitive and/or continuous use of muscles, tendons, joints, and bones can cause crew injuries or disorders
 - Cumulative Trauma Disorders (CTDs)
 - Repetitive Strain Injuries (RSIs)
 - Musculoskeletal Disorders (MSDs)
- The medical history of ISS crew members is not identified in this report; however, the possible injuries that the ISS crew members could suffer from operational R&MA
 - Back Pain
 - Shin Splints
 - Stress Fracture
 - Tendinosis or Tendinitis Achilles, Patellar
 - Compartment Syndrome


- Crew comments from debriefs related to ergonomics
 - "a lot of times you are reactingwith the top of your feet beneath the handrail just the act of typing for a length of time with your feet constantly having to pull you back in"
 - "typing on a laptop …. They found it to be a bit troublesome because you are reacting that force, not with your mass sitting in a chair, but with your feet and the small muscles in the front of your shins"
 - "You spend an hour or two holding yourself in place with the little muscles on the front of your shins and it hurts."

- Crew comments from debriefs related to hardware
 - "The crew wanted to have a foot restraintwith foam wrapped on it, and they could do this with the CTB dividers"
 - "The crewmember attached a bungee at the end of the handrail that their feet were under, had the bungee around their hips, wrapped their legs around each side and was locked in and typing."
 - "the WHC foot restraint, all the mechanisms come loose eventually and pop off with the way it clamps on the handrail"
 - "crewmember disliked the banisters and questioned if it was because they didn't understand the intent of them"

• Human Factors consideration on the design boundary for reach

• Human Factors consideration on the design boundary fwd/aft


	Radius of reach fingertip boundary in X–Z plane	
	Flexible arch support foot restraint	Fixed "flat" foot restraint
95th percentile male	222 cm (87 in.)	212 cm (83 in.)
5th percentile female	188 cm (74 in.)	172 cm (68 in.)

• Human Factors consideration on the design boundary side-side

Dimensions of fingertip reach boundary in Y–Z plane				
	Angle (degrees	Y-axis dimension	Z-axis dimension	
95th percentile male	90	0	222cm	
	75	80 cm (31 in.)	193 cm (76 in.)	
	60	110 cm (43 in.)	160 cm (63 in.)	
5th percentile female	90	0	188 cm (74 in.)	
	75	28 cm (11 in.)	175 cm (69 in.)	
	60	80 cm (31 in.)	140 cm (55 in.)	

• Human Factors consideration on the design boundary line of sight

- Provide adequate R&MA and Training to improve Operational environment and realize the return on investments
 - New Hardware
 - Modified existing hardware
 - Physical Training Plans

- New hardware for consideration
 - Harness with adjustable hydraulic dampener or simply elastic straps that is easy to use
 - Foot rails with adequate padding that stay secured and not loosen with continued use
 - Padding for current Handrails

- Modified hardware for consideration
 - Harness with retractable tether or bungee straps
 - CTB dividers for added padding on current Handrails

- Physical Training Plans
 - Primary objective is to increase flexibility and muscle strength focusing on the toes, up foot motion, and shin area (dorsiflexion angles)
 - Secondary objective is to focus on legs, hips, back, stomach, arms shoulders, hands
 - Maintain a good respiratory rate and eat healthy

Recommendations

- What is the cost, will it solve the issues, and will the crew use it?
 - New Hardware (Harness, Foot rail, Padding)
 - Foot rail provides the best benefit with minimal cost and easy to use
 - Modified Hardware (Harness, Padding)
 - Padding for hand rails easy to implement and use; however, needs crew time
 - Physical training
 - Add angle dorsiflexion to crew physical training plan

Questions?

References

- International Space Station Flight Crew Integration Standard (NASA–STD–3000/T) SSP 50005 Revision E; 30 June 2006; National Aeronautics and Space Administration
- Occupational Safety & Health Administration (OSHA), Analysis Tools; On line at http://www.osha.gov/SLTC/ergonomics/analysis_tools.html
- Price per crew hour; Correspondence with ISS Vehicle Chief Engineer via NASA e-mail
- Crew Debrief Questions Database; NASA Habitability and Human Factors Division
- ISS Downlink Imagery Collection; On line <u>http://images.jsc.nasa.gov/</u>
- Physical training plan; Correspondence with Crew Trainer via phone call