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Abstract 

Particle removal during lunar exploration activities is of prime importance for the success of 

robotic and human exploration of the moon. We report on our efforts to use electrostatic and 

dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust 

on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed 

solar shield output above 90% of the initial potentials after dust clearing. 
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1. Introduction 

Since the moon has an extremely rarefied atmosphere, the full spectrum of the sun's electromagnetic 

radiation reaches the surface, charging the surface dust and affecting its current charge state. It is thus veiy 

likely that the lunar surface dust remains electrostatically charged at all times. Whether charged or uncharged, 

lunar dust will present several challenges to manned and unmanned exploration missions currently being 

planned. Dust will adversely affect the operation of most mechanical systems required by these missions. 

Charged dust will be particularly difficult to remove from astronauts suits, gloves, and visors. Charged dust 

will also stubbornly adhere to solar panels and thermal radiators, thus decreasing their efficiencies.
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In an effort to mitigate the dust problem, the electrodynamic dust shield, an active dust mitigation 

technology, is currently being developed in our laboratory. This technology is proving to be very effective in 

the removal of dust particles from surfaces and in the prevention of the accumulation of those particles on 

such surfaces. The technology makes use of electrostatic and dielectrophoretic forces to move charged dust 

particles off surfaces and to prevent dust particles from depositing on those surfaces. 

2. Background and Theory 

The electrodynamic dust shield technology described in this paper is based on the electric curtain concept 

developed by F.B. Tatom and collaborators at NASA in 1967 [1] and further developed by Masuda at the 

University of Tokyo in the 1970s [2-6]. This technique has been shown to lift and transport charged and 

uncharged particles using electrostatic and dielectrophoretic forces [7,8]. The technology has never been 

applied to space applications on the moon. 

The electric curtain consists of a series of parallel electrodes connected to a multi-phase AC source. This 

source generates a traveling wave that carries dust particles along (Fig. 1). In general, the net force of 

repulsion on the particles, which levitates them above the surface, can be expressed as the contribution from 

the electrodynamic force, the viscous force, and the gravitational force: 

dr --qEcosat-6,zq--mg 
dt 2	 dt 

where m is the particle mass, r is the particle's position, i is the viscosity of the fluid in which the particles 

move, q is the particle charge, and g is the acceleration due to gravity. In the rarefied lunar atmosphere, the 

viscous force is negligible and this equation becomes: 

ML=qEcosa.,t_mg 
dt2



Fig. 1: Three-phase electric curtain. 

Due to the complicated nature of the particle-field interaction, where the motion of the particles is 

nonlinear and coupled, this equation of motion cannot be solved analytically. Masuda [9] proposed a solution 

to a linear approximation to the equation of motion assuming small oscillations for the particles. With a 

numerical solution to the equation of motion, Masuda was able to obtain simulations of the particle motion 

which matched actual measurements of particle trajectories fairly well. 

Although the forces responsible for the levitation of the particles are highly dependent on their charge, 

uncharged particles can ultimately be removed from the curtain as well. It has been well documented that 

polarizable particles can be levitated using these techniques [10]. Since many larger neutral particles contain 

nearly equal amounts of positive and negative charges on their surface, these particles possess an extrinsic 

electric dipole moment. If this dipole moment is exposed to a spatially non-uniform electric field, the particles 

will experience a force. Likewise, particles with intrinsic electric dipole moments or contaning polar materials 

like water will also experience a force. The movement of particles with internal electric dipole moments in a 

non-uniform electric field is called the dielectrophoretic force [10]. All that is required for levitation is that 

the particles have a different dielectric constant than that of the surrounding medium. The time-averaged 

force of an electric dipole in a spatially (and time) dependent electric field is given by 

() =!Re[(.v).E]



where E is the complex conjugate of the electric field and is the induced electric dipole moment. For 

spherical particles the dipole moment becomes 

P =4ire,,r3fE 

where 6m is the permittivity of the medium and fcM is the Clausius-Mossotti factor given by: 
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Here e and e,, are the complex permittivities of the particle and the medium, respectively. Combining the 

above equations yields the following result for the time-averaged dielectrophoretic force experienced by 

polarizable spherical particles: 

(fr) =	 r [Re(fcM )VE + 21m(fcM )V X (E, x E )J 

E1 and ER are the negative gradients of the potentials 01 and Ø , while Re(fCM ) and Im(fCM) are the real 

and imaginaly parts of the Clausius-Mossotti factor, respectively [6]. This force not only applies to 

polarizable particles, but also to bipolar particles (those containing equal amounts of positive and negative 

charge) and this component should be added to the force equation. If the permittivities of the particles are less 

than that of the medium, the particles will move toward the point in which the field gradient is the smallest, 

i.e. away from the curtain. However, in a majority of cases, the particles have a higher dielectric constant than 

the surrounding medium and will be attracted to the curtain's electrodes. In this case, a neutral particle 

traveling along the insulated screen would triboelectrically acquire a charge and would then be lifted from the 

screen by the stronger qE force. Solving the equation of motion containing just the dielectrophoretic force 

alone is extremely difficult analytically and requires computational methods. 

The dielectrophoretic force is commonly used for transportation of particles in a liquid medium [8], fluids 

through microchannels [5], blood cells [11] and other biological matter [12].



3. Experiments 

Electrodynamic dust shield prototypes based on the electric curtain concept have been developed in our 

laboratory. These prototypes can remove dust from surfaces and also prevent dust accumulation. Several 

types of dust shields were designed and built. Rigid, opaque shields in a dielectric substrate with metallic 

electrodes in parallel or spiral configurations; rigid, transparent shields on a dielectric substrate with 

transparent electrodes in a parallel or spiral configuration; rigid, transparent shields in a dielectric coating on 

a metallic substrate with metallic electrodes in a parallel or spiral configuration; flexible, opaque shields on a 

dielectric substrate with flexible electrodes; and flexible, transparent shields on a dielectric substrate with 

flexible, transparent electrodes. 

We have tested these dust shield configurations under high vacuum conditions and under simulated lunar 

gravity to validate the technology for lunar exploration applications [13-18]. Other laboratories have 

developed similar techniques and have achieved some success under ambient conditions [19, 20]. In this 

paper, we describe the implementation of our dust shields to solar panels and their performance under 

pressures of the order of 1 6 kPa. 

Prevention of dust accumulation on solar panels for future lunar exploration missions constitutes one of the 

most important applications of our dust shield technology. To provide a proof of concept, 5 cm x 8 cm dust 

shields were fabricated using transparent indium tin oxide (ITO) electrodes on glass substrates. These dust 

shields were placed on off-the-shelf 5 cm x 5 cm solar panels capable of providing potentials of 3 to 4 volts. 

The shield electrodes had trace widths between 0.3 and 0.4 mm and spacing varying between 0.48 and 0.67 

mm. All dust shields were powered by a three-phase square-wave signal and laid out in the form of a spiral 

pattern to allow electrical contact to be made on one side of the surface (Fig. 2). The connectors were 

attached using silver paint for conductivity and coated with epoxy to prevent breakdown and to provide 

mechanical stability.



Fig. 2. Three-phase transparent dust shield with a spiral configuration of three ITO electrodes on glass. 

For testing at high vacuum, commercial polyester laminate in two thicknesses, 1.3 m and 1.8 tm, was 

used to coat the shields. Laminate is an excellent choice of coating for testing purposes since it has a 

moderate dielectric breakdown strength, is easy to implement, and is relatively transparent to visible light. 

Testing was performed in a vacuum chamber at 1 kPa. JSC- 1 A lunar simulant—a granular material 

especially prepared with chemical characteristics that are close to those of the Apollo lunar samples—was 

kept in a vacuum oven for several days prior to each experiment [21]. 

Approximately 20 mg of JSC- 1 A simulant dust in the 50p.m-75j.im size fraction were delivered to each 

dust shield by rapidly shaking a feeder cup 4 cm in diameter containing a metal screen mesh. The mesh sizes 

were chosen for their ability to contain dust before the shaker was activated. Shaking of the feeder cup 

occurred by engaging a vibrating motor fastened to the cup. Dust was deposited to the surface of each shield 

individually while under vacuum conditions using two computer-controlled translation stages (X and Y 

direction). The translation stages positioned the shaker feeder over the shield, deposited dust, and moved to



the next shield. Once dust was deposited on all four shields, the stages were sent to the "home" position to 

allow for visual inspection and videography. 

The demonstration of clearing efficiencies was performed by measuring the output of the solar panels. 


Aluminum foil cutouts were used to match the spiral pattern of the shields for efficiency measurements (Fig. 

3).
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Fig. 3. Transparent dust shields on commercial solar panels used for testing at high vacuum conditions. Aluminum foil cutouts were 

placed on the dust shields to cover areas without electrodes. 

Fig. 4 shows the solar panel response throughout the experiments. The time offset in voltage level drop for 

each panel is due to the time it took for the feeder cup to deliver dust to each shield individually. As shown in 

Fig. 4, the deposition of JSC-IA dust corresponds to a significant drop in output voltage for each solar panel. 

The voltage output typically drops to or below 20% of its initial voltage. Once the electrodynarnic dust 

shields are turned on, the voltages raise quickly to above 90% of the initial values within the first two
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minutes. Fig. 5 shows the solar panel response for one of the four different electrode configurations. The 

baseline voltage of the solar panels without dust layering is shown for comparison. Measurements of the solar 

cell performance taken after dust loading and after dust shield activation are shown. Performance 

measurements are given relative to solar cell baseline performance. 
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Fig. 4. Solar panel response to 50-75 m JSC- IA dust deposition and removal under high vacuum conditions. Removal was 

accomplished using dust shields of four different electrode spacings: 0.48 mm, 0.55 mm, 0.6 mm, and 0.67 mm. 
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Fig. 5. Solar panel response to JSC-1 A dust loading and removal with 0.67 mm trace. Baseline voltages are shown for comparison.. 
Performance is relative to baseline values. 

Table 1 shows the reduced efficiencies as a function of dust loading for each of the four shields. Dust 

loading is typically quite dramatic, covering most of the area of the solar panel. After the shields are 

activated, the voltage recovers to above 90% of the initial voltage. The error in the data is on the order of 2 %. 

Table 1. Solar panel performance. 

Solar Panel Trace 
Width

Performance with 
Dust Deposition

Performance after Dust 
Shield Activation 

0.48 mm 20.3 % 99.4 % 
0.55 mm 19.3 % 98.7 % 
0.6mm 11.0% 91.6% 

0.67 mm 22.5 % 98.4 %

4. Conclusions 

Lunar exploration missions may be hindered by the presence of highly charged lunar dust that will adhere 

electrostatically to the surfaces of equipment, viewports, optical systems, instrumentation, and spacesuits. In 

this paper, we have reported on an active dust removal and prevention system that we have been developing 

over several years. These dust shield systems use electrostatic and dielectrophoretic forces to remove dust 
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already adhering to surfaces and to prevent the accumulation of dust approaching such surfaces. We describe 

the implementation of these dust shields to solar panels. 

Our results show that the transparent dust shields applied to commercial solar panels operate successfully 

under high vacuum even under extreme dust loading conditions that caused the solar cell performance to drop 

to 11 to 23% of the baseline performance. After dust shield activation, the solar cell performance increased to 

values above 90%. The application of the dust shields did not appear to have any adverse effects on the 

behavior of the solar panels. Further analysis will need to be performed to determine any electromagnetic 

interference or electromagnetic compatibility issues that may arise when the shield technology is incorporated 

into a full photovoltaic system. Optimization of the different techniques that we have developed is currently 

underway. Further development of the dust shields continues with applications to thermal radiators and other 

systems. 
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