# ROLE OF TEMPERATURE, HUMIDITY AND RAINFALL ON INFLUENZA TRANSMISSION IN GUATEMALA, EL SALVADOR AND PANAMA

Radina P. Soebiyanto<sup>1,2</sup>, Luis Bonilla<sup>3</sup>, Jorge Jara<sup>3,4</sup>, John McCracken<sup>3,4</sup>, Eduardo Azziz-Baumgartner<sup>5</sup>, Marc-Alain Widdowson<sup>5</sup>, Richard Kiang<sup>2</sup>

<sup>1</sup>GESTAR, USRA ,Columbia, Maryland ,USA

<sup>2</sup>NASA Goddard Space Flight Center, Greenbelt, Maryland ,USA

<sup>3</sup>Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala

<sup>4</sup>CDC Regional Office for Central American Region

<sup>5</sup>CDC Influenza Division, Georgia, USA









# INTRODUCTION

### Spatio-temporal pattern of influenza epidemics vary with latitude

- Temperate region
  - Distinct annual peak in winter
  - Cold and dry condition may bring seasonality
- Tropics
  - Less distinct seasonality
  - Often have multiple peaks
  - Coincides with rainy season

### Southward migration in Brazil<sup>(1)</sup>

- From low population in the tropics
- To dense area with temperate climate

Source: Viboud et al. (2006). PLoS Medicine 3:e89

USA (+39°N)

Mexico (+19°N)

Colombia (+4°N)

Brazil (-16°S)

Argentina (-35°S)

-5%

-4%

-3%

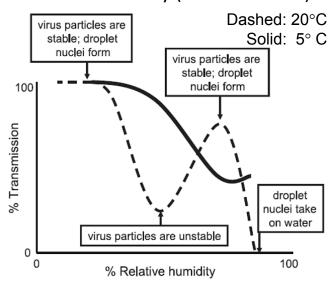
-2%

Week number


46

-1%

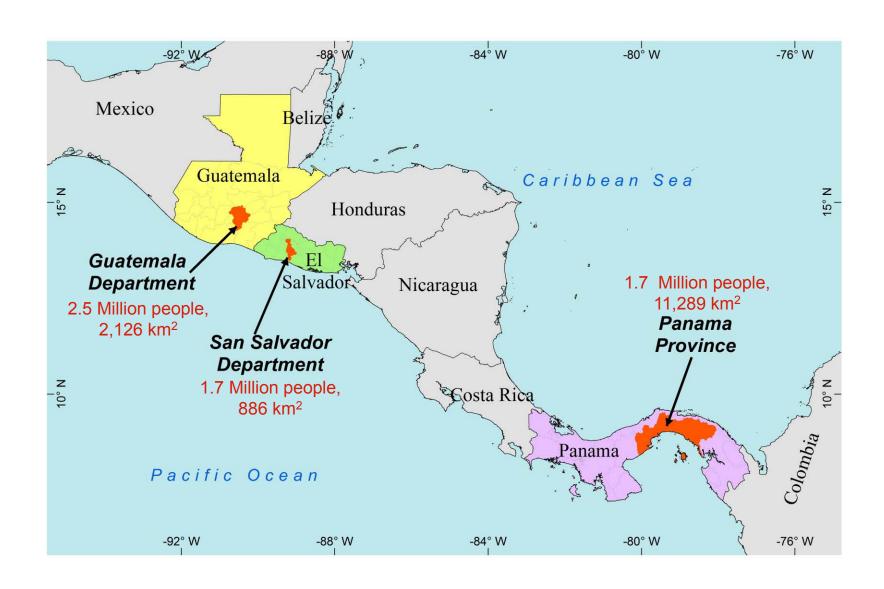
<sup>&</sup>lt;sup>1</sup> Alonso et al. (2007). American Journal of Epidemiology 165: 1434


# INTRODUCTION

# FACTORS IMPLICATED IN INFLUENZA CIRCULATION



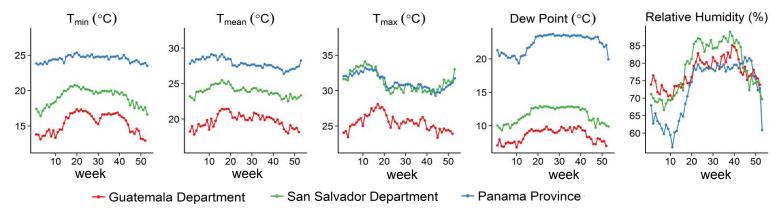
# TEMPERATURE AND HUMIDITY


Animal study (Lowen et al. 1,2)

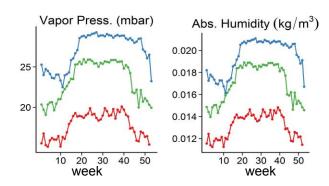


High temperature (30°C) blocks aerosol transmission but not contact transmission

<sup>1</sup>Lowen AC et al. (2007) PLoS Pathogen 3: 1470 <sup>2</sup>Lowen AC et al. (2008) J Virol 82: 5650

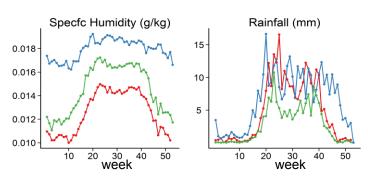

# **STUDY AREA**




# **METEOROLOGICAL VARIABLE**

#### **Ground Station Data**

- Country's Meteorological Agency (Guatemala and El Salvador)
- US National Oceanic and Atmospheric Administration (NOAA)




### **Derived/Calculated**



### **Model-Based**

NASA's Global Land Data Assimilation System (GLDAS)

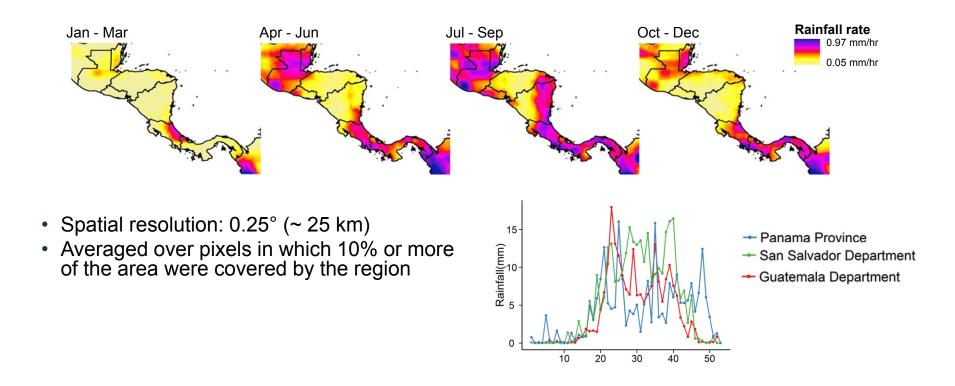


#### Definition for humidityrelated measures

**Dew Point :** Temperature at which the air can no longer hold all the water vapor it contains

# Absolute Humidity: Amount of water vapor in a unit volume of air

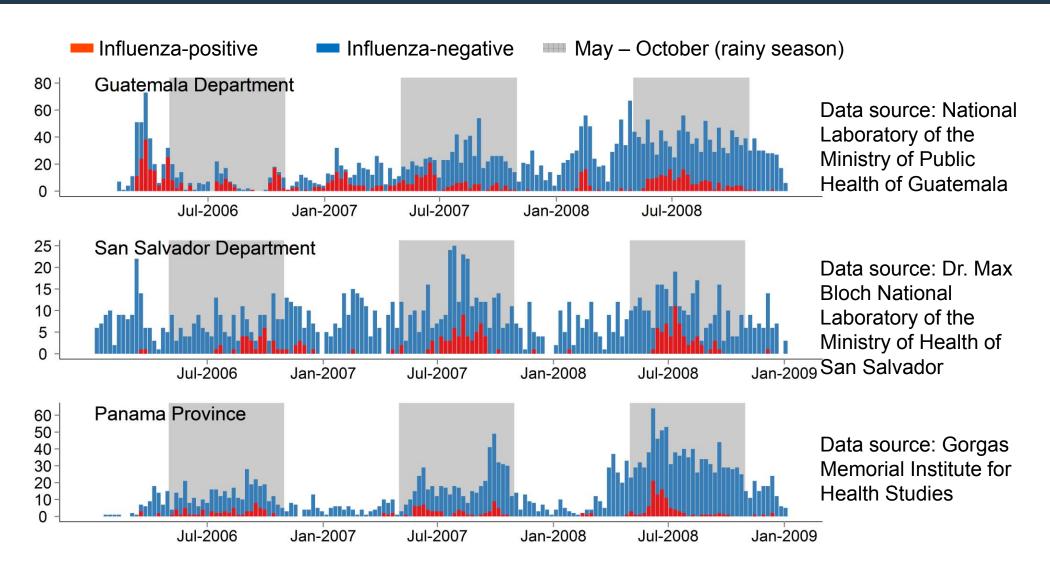
Vapor Pressure : Partial pressure of water vapor


# Specific Humidity: Ratio between mass of water vapor to the total mass of air

Relative Humidity: Ratio between the amount of moisture in the air to the amount of the air can "hold" at that temperature

# METEOROLOGICAL VARIABLE

### **Satellite Data**


• Tropical Rainfall Measuring Mission (TRMM) – NASA and Japanese Aerospace Exploration Agency



All daily meteorological variables were averaged to obtain weekly composite (1- to 3- week averages were computed)

Lags from previous 1 to 4 weeks were also calculated

# **INFLUENZA DATA**



Higher influenza activity coincides with rainy season except for Guatemala which showed additional activities outside the season

# **METHOD**

### **Quasi-Poisson regression**

$$\ln(Y) = \mu + \alpha \cdot pop + \gamma \cdot month + \beta \cdot x_{met}$$
 Where, Y= Influenza-positive samples pop = population 
$$\mu = \text{Intercept} \qquad x_{met} = \text{meteorological factors}$$
 
$$\alpha, \gamma, \beta = \text{coefficients}$$

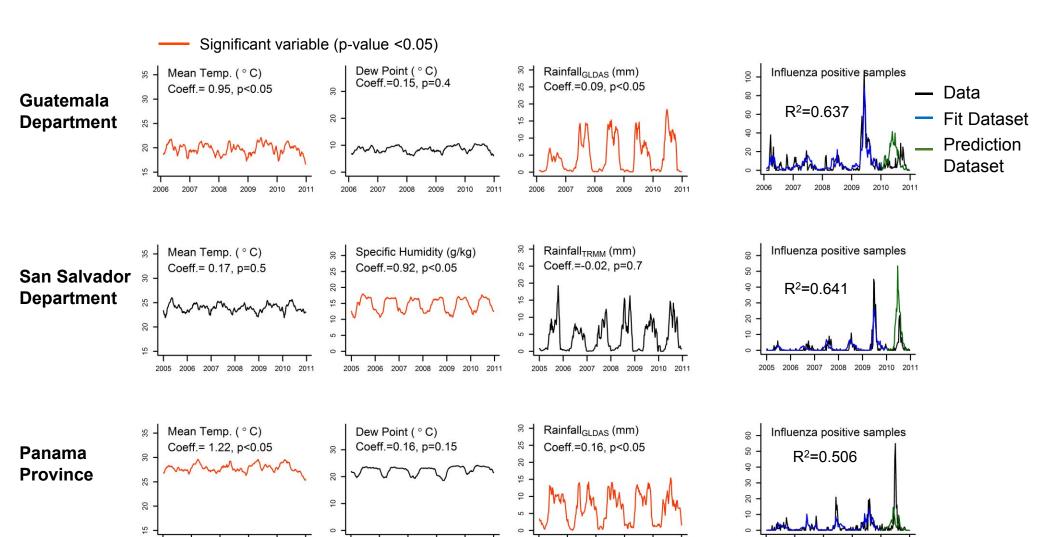
# Divided meteorological variables into 3 categories in order to avoid collinearity

- Temperature: minimum, mean and maximum
- Humidity: relative, absolute & specific humidity; vapor pressure; dew point
- Rainfall: TRMM or GLDAS data set

Month variables were entered using stepwise method Seek for the best meteorological 'averaging' period

(i.e. Average from current week to 2, 3 or 4 previous weeks)

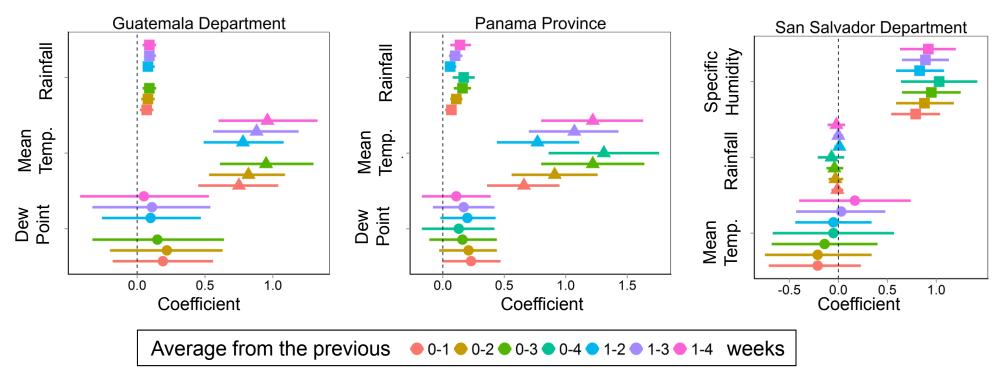
Models were parameterized to each study site individually Assessed model performance by pseudo-R<sup>2</sup>


# Best meteorological input combinations based on R<sup>2</sup>

|                                           | β     | 95 % CI       | p-value | R <sup>2</sup> |
|-------------------------------------------|-------|---------------|---------|----------------|
| Guatemala Department                      |       |               |         | 0.64           |
| Mean Temperature (0-3 wk ave)             | 0.95  | (0.61, 1.29)  | < 0.05  |                |
| Dew Point <sub>(0-3 wk ave)</sub>         | 0.15  | (-0.33, 0.64) | 0.4     |                |
| Rainfall GLDAS (0-3 wk ave)               | 0.09  | (0.04, 0.14)  | < 0.05  |                |
| Panama Province                           |       |               |         | 0.51           |
| Mean Temperature (0-3 wk ave)             | 1.22  | (0.80, 1.64)  | < 0.05  |                |
| Dew Point <sub>(0-3 wk ave)</sub>         | 0.16  | (-0.11, 0.43) | 0.15    |                |
| Rainfall GLDAS (0-3 wk ave)               | 0.16  | (0.09, 0.23)  | < 0.05  |                |
| San Salvador Department                   |       |               |         | 0.64           |
| Mean Temperature (1-4 wk ave)             | 0.17  | (-0.4, 0.74)  | 0.5     |                |
| Specific Humidity <sub>(1-4 wk ave)</sub> | 0.92  | (0.63, 1.20)  | < 0.05  |                |
| Rainfall TRMM (1-4 wk ave)                | -0.02 | (-0.11, 0.07) | 0.7     |                |

# Sensitivity of influenza activities with respect to the meteorological variables

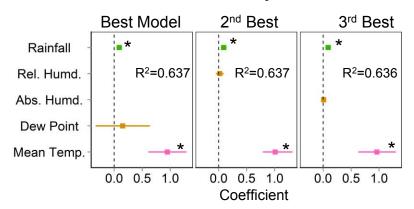
| Meteorological variable increased      | by     | Changed the weekly influenza-positive sample by |  |  |
|----------------------------------------|--------|-------------------------------------------------|--|--|
| Guatemala Department                   |        |                                                 |  |  |
| Mean temperature over the past 3 weeks | 1°C    | 2.8 times                                       |  |  |
| Mean rainfall over the past 3 weeks    | 5 mm   | 1.6 times                                       |  |  |
| Panama Province                        |        |                                                 |  |  |
| Mean temperature over the past 3 weeks | 1°C    | 3.4 times                                       |  |  |
| Mean rainfall over the past 3 weeks    | 5 mm   | 2.2 times                                       |  |  |
| San Salvador Department                |        |                                                 |  |  |
| Specific humidity in the past 4 weeks  | 1 g/kg | 2.5 times                                       |  |  |


### Meteorological parameters and modeled influenza-positive

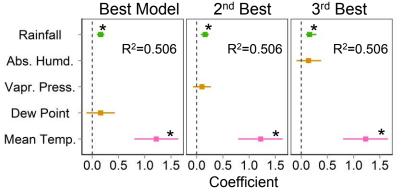


2006 2007

# Varying the 'averaging period' did not change the meteorological variables significance

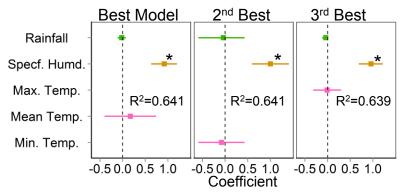

Regression Coefficients and their 95% CI for the different averaging period




# 2<sup>nd</sup> and 3<sup>rd</sup> best models (based on R<sup>2</sup>) showed the significant meteorological variables are still in the same category

Indicates the robustness and stability of meteorological variable association with influenza

#### **Guatemala Department**




#### **Best Model** 2<sup>nd</sup> Best



#### San Salvador Department

**Panama Province** 



Denotes significant variable (p<0.05)

### Used influenza-positive proportion (rate) instead of counts

As compared to the regression with counts:

- The same category of meteorological variables remained significant for Guatemala and San Salvador
- Temperature was no longer significant in Panama
- Averaging period changed

|                                        | β     | 95 % CI       | p-value | R <sup>2</sup> |
|----------------------------------------|-------|---------------|---------|----------------|
| <b>Guatemala Department</b>            |       |               |         | 0.52           |
| Mean Temp. (0-1 wk ave)                | 0.23  | (0.09, 0.38)  | 0.002   |                |
| Specific Humd. <sub>(0-1 wk ave)</sub> | 0.11  | (-0.03, 0.24) | 0.12    |                |
| Rainfall GLDAS (0-1 wk ave)            | 0.04  | (0.002, 0.08) | 0.04    |                |
| Panama Province                        |       |               |         | 0.37           |
| Mean Temp. (0-3 wk ave)                | 0.45  | (-0.002, 0.9) | 0.051   |                |
| Vapor Pressure <sub>(0-3 wk ave)</sub> | 0.13  | (-0.006, 0.3) | 0.06    |                |
| Rainfall GLDAS (0-3 wk ave)            | 0.07  | (0.009, 0.13) | 0.025   |                |
| San Salvador Department                |       |               |         | 0.36           |
| Min. Temp. <sub>(lag 2 wk)</sub>       | -0.12 | (-0.4, 0.2)   | 0.41    |                |
| Dew Point <sub>(lag 2 wk)</sub>        | 0.45  | (0.16, 0.75)  | 0.003   |                |
| Rainfall TRMM (lag 2 wk)               | 0.001 | (-0.05, 0.05) | 0.95    |                |

# CONCLUSION

Higher influenza activity in the 3 Central American sub-divisions are associated with either humid, hot, or rainy condition

Results are consistent with other studies in the tropics<sup>(1-3)</sup> but are different from those in the temperate region

Most laboratory and animal studies showed increased influenza activity with lower temperature and humidity

 Our results may indicate that hot and humid condition provide uncomfortable condition that further promote indoor crowding and hence, contact transmission

The meteorological indicators can be used to estimate current and future influenza activity

- 1. Yang L, Chen PY, He JF, Chan KP, Qu CQ (2011). BMC Infectious diseases 11: 342
- 2. Chadha MS, Broor S, Gunasekaran P, Potdar V, Krishnan A (2012). Infl. & other resp. vir. 6: 196
- 3. Hampson AW (1999). Vaccine 17: 19

# **ACKNOWLEDGMENT**

NASA Applied Sciences – Public Health and Air Quality Program

CDC Influenza Division: Jerry Tokars, Nancy Cox, Ann Moen and Joseph Bresee

CDC Central American Regional Office: Nelson Arboleda and Wilfrido Clara

Oscar Rene Sorto, Ministry of Health of El Salvador, Health Surveillance Division

Maria E. De Antiori, Gorgas Memorial Institute of Health Studies, Panama

Sidia Marinero, Ministry of Environment and Natural Resources of El Salvador, Division of Meteorology

Paris Rivera, National Institute of Seismology, Volcanology, Meteorology and Hydrology (INSIVUMEH), Guatemala: Paris Rivera

**PAHO Influenza Group** 

Jason Lefler, Wyle/NASA GSFC

Nivaldo Linares-Perez