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Testing Small CPAS Parachutes Using HIVAS 
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Michael A. Bernatovich3 
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The High Velocity Airflow System (HIVAS) facility at the Naval Air Warfare Center 
(NAWC) at China Lake was successfully used as an alternative to flight test to determine 
parachute drag performance of two small Capsule Parachute Assembly System (CPAS) 
canopies. A similar parachute with known performance was also tested as a control. Real-
time computations of drag coefficient were unrealistically low. This is because HIVAS 
produces a non-uniform flow which rapidly decays from a high central core flow. Additional 
calibration runs were performed to characterize this flow assuming radial symmetry from 
the centerline. The flow field was used to post-process effective flow velocities at each 
throttle setting and parachute diameter using the definition of the momentum flux factor. 
Because one parachute had significant oscillations, additional calculations were required to 
estimate the projected flow at off-axis angles. The resulting drag data from HIVAS 
compared favorably to previously estimated parachute performance based on scaled data 
from analogous CPAS parachutes. The data will improve drag area distributions in the next 
version of the CPAS Model Memo. 

Nomenclature 
AFSAT          =    Air Force Subscale Aerial Target 
CD  = Drag coefficient 
CDS  = Drag area 
CDT  = Cluster Development Test (series) 
CM  = Crew Module 
CPAS  = Capsule Parachute Assembly System 
DDT  = Drogue Development Test (series) 

Do  = Nominal parachute diameter based on constructed area, oo S4D   

EDU  = Engineering Development Unit 
Gen  = Generation 
HIVAS   = High Velocity Airflow System 
LS   = Suspension line length 
NAWC  = Naval Air Warfare Center 
PDT  = Pilot Development Test (series) 

q , qbar  = Dynamic pressure, 2
airV

2

1
q  

 
, rho  = Humidity-Corrected Atmospheric Density 
So  = Parachute canopy open reference area based on constructed shape 
  = Parachute off-axis angle 
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Figure 6. Dynamic pressure and velocity settings at the nozzle exit (left) and corresponding profiles at 

parachute location (right). 

 

III. Momentum Flux Correction Factor 
Parachute performance is measured as drag coefficient where the measured force, F, is normalized by the 

dynamic pressure and reference area, So, as in Eq. 2. 
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Figure 8. Differential flow area using polar 
coordinates. 
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Figure 7. Non-uniform flow and equivalent flow velocity. 
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However, because the measured flow 

velocity is non-uniform, the Vair term must be 
computed over the given parachute inlet area. 
The equivalent Vair will have the same mass 
flow rate, but a lower momentum flux than the 
actual non-uniform flow. A momentum flux 
correction factor, , allows the use of an 
equivalent velocity corresponding to the given 
mass flow rate. The factor is defined as area-
averaged integral of the square of the 
normalized local flow velocity, according to 
Eq. 3.8 Therefore, the correction factor needs to 
be computed for the test data at each throttle 
setting for each parachute. Two different 
integration methods were used: a polar 
coordinate formulation and a Cartesian 
coordinate formulation. 
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A. Polar Coordinate Formulation 
For cases where the parachute is centered along the flow axis, 

polar coordinates are the most convenient. Figure 8 shows the 
polar coordinates used to evaluate the integral. The differential area 
is defined from a differential radius as in Eq. 4. Substituting the 
differential area and the area of a circle into Eq. 3 results in Eq. 5. 
The expression simplifies to Eq. 6. Although this integral could be 
solved analytically by substituting each flow field polynomial 
curve fit, it was simpler to compute each factor with numerical 
integration. 
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The resulting equivalent velocity for both size parachutes is compared with the flow field at the penultimate 

throttle setting in Figure 9. Because the FBCP is the smallest parachute, its equivalent airspeed is higher than that for 
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Table 2. EDU Forward Bay Cover Parachute Results with Axial Flow 
Mean Airspeed, Vair (knot) 131.3 165.3 214.8 250.1 

Corrected Airspeed, Vair (knot) 121.8 151.2 207.1 232.4 
Corrected Airspeed, Vair (ft/s) 205.5 255.1 349.6 392.2 

Mean qbar (lb/ft2) 51.9 81.7 135.3 180.0 
Corrected qbar (lb/ft2) 43.7 66.7 123.2 152.8 

Mean Load, F (lbf) 889 1,409 2,309 3,072 
Scaled Mean Load, F (lbf)  895  1,519  2,413  3,076  

Drag Coefficient, CD  0.532  0.592  0.509*  0.523*  
Average Drag Coefficient, CD 0.539 

*After confluence failure 
 
The drag coefficient was also computed using the previously mentioned average off-axis angle of 3.18 with 

results listed in Table 3. Because the effective flow is reduced, the drag coefficient is increased for the same 
measured drag force. 

 
Table 3. EDU Forward Bay Cover Parachute Results with Mean Off-Axis Flow 

Corrected Airspeed, Vair (knot) 110.0 138.5 192.0 219.2 
Corrected Airspeed, Vair (ft/s) 185.7 233.8 324.1 369.9 

Corrected qbar (lb/ft2) 35.7 56.0 105.9 135.9 
Scaled Mean Load, F (lbf)  895  1,519  2,413  3,076  

Drag Coefficient, CD  0.652 0.705 0.592* 0.588* 
Average Drag Coefficient, CD 0.634 

*After confluence failure 
 
The drag performance of all CPAS parachutes are documented as drag area probability distributions based on 

flight test data in the “Engineering Development Unit Operating Modeling Parameters Version 11” (aka the “CPAS 
Model Memo v11”).9 These distributions are explained in Ref. 10. However, the FBCPs had not yet been flight 
tested as of the current model release. The FBCP design is similar to the CPAS Drogue design and both types of 
parachutes have a suspension line length ratio (Ls/Do) of 2.0. Therefore, FBCP drag area distribution was determined 
by scaling full open EDU Drogue drag area data according to Eq. 9. The scaled Drogue data were used to define the 
drag area probability distribution published in Model Memo v11. 
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The distribution of scaled EDU Drogue test data is shown in blue in Figure 20. The HIVAS data from both 

methods have been appended to the histogram to evaluate how including HIVAS data would affect the distribution. 
The axial method FBCP results were generally lower than the scaled Drogue data and the off-axis results were 
higher. Due to uncertainties in the test data, a decision was made to include data from all three sources to generate 
the best fit normal (Gaussian) distribution. This results in a distribution most likely to encompass the true 
performance. The “nominal” value is the median of all the data. Because the FBCP has only half the number of 
gores as a CPAS Drogue (12 vs. 24), the FBCP was expected to be less efficient than the scaled Drogue data. 
However, the scaled Drogue data were obtained in the presence of a test vehicle forebody drag, while HIVAS flow 
is not significantly obstructed. These effects may have counteracted each other such that the composite distribution 
has a similar mean value to the published distribution. The addition of the HIVAS data has widened the distribution, 
increasing the standard deviation by about 35%. This distribution will be revised as planned flight test data becomes 
available. 
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Figure 20. Comparison of expected FBCP drag area with HIVAS results. 

C. EDU Pilot Parachute 
The Pilot parachute did not exhibit significant oscillations, so the drag coefficients listed in Table 4 were 

computed using the axial flow method. The drag coefficient fell with increasing flow and then rose after the 
confluence failed (the last column). 

 
Table 4. EDU Pilot Parachute Results with Axial Flow 

Mean Airspeed, Vair (knot) 131.3 165.3 214.8 250.1 

Corrected Airspeed, Vair (knot) 93.0 121.1 172.5 200.8 
Corrected Airspeed, Vair (ft/s) 157.0 204.4 291.1 338.9 

Mean qbar (lb/ft2) 51.9 81.7 135.3 180.0 
Corrected qbar (lb/ft2) 25.3 42.8 85.4 113.8 

Mean Load, F (lbf) 1,326 1,919 3,176 4,939 
Scaled Mean Load, F (lbf)  1,317  1,816  2,999  4,835  

Drag Coefficient, CD  0.687  0.589  0.488  0.569*  
Average Drag Coefficient, CD 0.583 

*After confluence failure 
 
The EDU Pilot parachutes have been successfully used in all EDU flight tests. However, only limited data has 

been acquired and direct measurements of drag area may not be possible in flight because the each Pilot parachute 
becomes unloaded as its corresponding Main parachute deploys. The Pilot parachute conical ribbon design is similar 
to a smaller version of the CPAS Drogue design. The EDU Pilot design has an Ls/Do ratio of 1.15. Therefore, the 
Pilot drag area distribution was determined by scaling full open CPAS Gen I & II Drogue data (Ls/Do = 1.5) rather 
than the EDU Drogue data (Ls/Do = 2.0). The data were scaled according to Eq. 10. 
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Only a limited set of four clean-wake Drogue data points were available with the smaller Ls/Do ratio: DDT-1, 
DDT-2, DDT-3, and a 10% scale Texas A&M University Wind Tunnel Test.11 All of these tests were considered to 
be in a “clean” wake. The resulting distribution published in CPAS Model Memo v11 did not have a central 
tendency, so a uniform dispersion was used. However, the additional data from HIVAS appears to show a central 
tendency, so a normal distribution was fit to the composite data, as shown in Figure 21. The EDU Pilot parachute 
also has half the number of gores as the CPAS Drogue, so some loss of drag efficiency was expected. 

 

 
Figure 21. Comparison of expected Pilot parachute drag area with HIVAS axial flow results. 

VI. Operational Lessons Learned 
Some procedural issues were encountered during this test. The initial method to deploy the parachute into the 

airflow by pulling a line resulted in a premature deployment and HIVAS was shut down. A simpler method of 
manually tossing each canopy into the flow was successful. During the second run, the block holding the parachute 
began to move, despite being several times heavier than the force generated by the test parachute, and again the test 
was temporarily suspended. The parachute drag had caused a lever-arm effect on the block, tipping it enough to 
reduce the surface area until friction was no longer enough to hold it in place. This was mitigated by adding a 
second block to the test stand and securing the assembly to rails embedded to the deck with chains. 

VII. Conclusion 
The HIVAS facility at China Lake was used in lieu of flight test to determine parachute drag performance of two 

small CPAS parachutes. Another parachute with known performance was tested as a control.  
HIVAS produces a non-uniform flow, which was assumed to be axisymmetric for this analysis, though limited 

flow survey maps are available at certain settings and distances. Effective flow velocities at each throttle setting 
were computed for each size parachute using the definition of the momentum flux factor. The FBCP was not as 
stable as the other parachutes, requiring additional calculations of the projected flow at an off-axis angle. 

The computed drag coefficient on the control AFSAT Drogue was about 10% higher than previous data, which 
may indicate an under-estimation of the effective flow velocity. Steady-state data from HIVAS compared favorably 
to previously estimated parachute performance based on scaled data from analogous CPAS parachutes. Inclusion of 
the HIVAS data with previous data increases each standard deviation, making the model more likely to encompass 
actual performance in flight. The resulting drag area distributions will be included in the next version of the CPAS 
Model Memo. 

30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EDU Pilot Drag Area, C
D
S (ft2)

F
re

q
u

e
n

c
y

 

 

Gen I&II Drogue Test Data

HIVAS Data

HIVAS Data (Confl. failed)
normal: 44.675      3.8911

Nominal: 44.62



 
American Institute of Aeronautics and Astronautics 

 

 

16

The range of effective dynamic pressure tested was similar to the extent of the CPAS deployment envelopes, 
seen in Figure 22. However, HIVAS is limited by its ambient conditions in the Mach number and pressure altitude 
available. Larger parachutes cannot be tested effectively due to the flow decay from the center core and ground 
effects. Deployment was not representative to flight, so inflation parameters could not be obtained. 

 

 
Figure 22. Effective HIVAS flow velocity compared to CPAS deployment envelopes. 

Overall, HIVAS provided valuable data to the CPAS program with a much lower cost and complexity relative to 
flight testing. 
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