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Free-free transitions of the e-H system inside a dense plasma irradiated by a laser field
at very low incident-electron energies
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The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron
(external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and
linearly polarized laser field. The effect of plasma screening is considered in the Debye-Hückel approximation.
The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the
laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels.
The space part of the scattering wave function for the electron is solved numerically by taking into account
the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon
absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than
the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging
from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free
situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more
in the triplet states.
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I. INTRODUCTION

In recent years much attention has been paid to the
atomic processes of different atomic systems embedded in
plasma. The motivations for such studies are manifold and
were already emphasized in earlier works [1–10] (see further
references cited therein). The purpose of the present work is
to study the influence of an external laser field on the free-free
transition process of an electron-hydrogen system in a plasma
environment. Such studies have direct relevance to many
real physical objects, e.g., laser-produced plasma [7], fusion
plasma confinement, high-power gas lasers, etc. In particular,
the inverse bremsstrahlung process is believed to play an
important role in the breakdown and the heating process of
plasma illuminated by a laser beam [10]. The interpretation of
the line emission from plasma requires a detailed knowledge
of the spectroscopic as well as the collisional properties
(e.g., collision strength, cross sections, etc.) of the plasma
constituents. However, not much is known about the combined
effects of plasma and laser field on the important collision
processes [7,10]. When plasma is irradiated with an external
laser field, there will be a transfer of energy from the laser to
the plasmawithout altering the average plasma properties [11].
Further, a laser field can produce substantial narrowing of
the spectral lines emitted from a plasma as well as it can
change their shapes (depending on the plasma parameters)
by decreasing the Stark broadening [12–14] which is very
useful in the plasma diagnosis. This significant decrease in
the Stark width of the hydrogenic as well as nonhydrogenic
spectral lines in turn increase the gain of lasers, in particular,
the x-ray lasers [12], since for any laser, the gain is inversely
proportional to the linewidth.
Although a plasma is often thought of as a quasineutral

ensemble of electrons and completely stripped nuclei (such as
protons), there is of course no such ideal plasma. First of all,
100% ionization is an asymptotic approximation, and second,

there continually exist with some orbiting electron ions that
exhibit atomic bound state characteristics and undergo atomic
processes. Most laboratory plasmas have a beginning as a
neutral atomic or molecular gas and they exist in various ionic
states for a finite period of time until the ultimate degree of
ionization is achieved [15]. Therefore, we can assume that
there are neutral hydrogen atoms in the plasma which are
surrounded by perturbing particles (electrons and ions). These
perturbers produce a screened Coulomb potential.
Inside plasma, partial shielding by the neighboring charged

particles weakens the pure Coulomb interaction between two
charged particles at large separations, thereby affecting the
collision cross sections for an external electron incident on
the plasma. It is therefore expected that the effect of plasma
screening on the collision cross sections should be particularly
large at low incident energies [6].
In most of the collisional experiments with or without the

presence of laser field, the plasma environment is always
present to some extent and it can significantly affect the
collision process. It is therefore desirable and quite worthwhile
to study the atomic collision processes under the combined
presence of plasma and the laser field. Due to the rapid
and dynamic development in laser technology, laser-assisted
collision experiments are becoming increasingly feasible at
laboratories where a significant number of theoretical studies
were performed for different atomic collision processes. Laser-
assisted excitation, ionization, recombination, and the free-free
transition processes are the basic underlying mechanisms
for different highly nonlinear phenomena, e.g., nonsequential
double ionization (NSDI) or nonsequential multiple ion-
ization, high-harmonic generation (HHG), and high-order
above-threshold ionization (HATI) that occur when atomic
or molecular targets are irradiated with strong and short
wavelength laser fields. The Coulomb potential of the system
is distorted by such fields and as a result, the electron can
escape from the atoms (or molecules) through tunneling. If the
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tunneled electron driven by the laser field revisits its parent
atomic ion during the reverse cycle of the laser field, the
electron again may either be elastically scattered from its
parent ion leading to HATI peaks or it can recombine with
it generating a high-order harmonic (HHG). The tunneled
electron can also reionize the residual nucleus leading to
NSDI. It is therefore expected that the laser-assisted collisional
experiments where the collision partners are under full control
could provide detailed insight into the above phenomena.
Apart from these, the laser-assisted electron-atom collision

allows, on the one hand, the experimental observation of
different multiphoton processes [16–20] at relatively moderate
laser field intensities, while on the other hand, it allows one
to measure some electron-atom scattering parameters which
otherwise would not be accessible to experiments. In view
of the recent availability of the tunable lasers with a wide
frequency range, unique effects can be observed which are not
present in ordinary electron-atom scattering.
In a recent work [21], we investigated the effect of an

external laser field on the scattering of low-energy electrons
from the ground-state hydrogen atoms in a gaseous medium.
Wallbank and Holmes [19] carried out experiments on the
scattering of low-energy electrons from He atoms in the
presence of a pulsed CO2 laser with the laser polarization
parallel to themomentum transfer and the photon energy being
0.117 eV. Our results for the H atom [21] were found to be in
accord with the experiment [19] qualitatively.
The present work addresses the laser-assisted free-free (FF)

transition of a plasma-embedded electron-hydrogen (ground-
state) system at very low incident energies in the framework
of the Debye-Hückel model [22]. It should be pointed out
that the low-energy incident electron is an external electron
and not the plasma electron. The present work is concerned
only with the role of the plasma as the static screening (Debye)
potential [22]. However, it should bementioned that in general,
apart from this screening effect, the plasma can also interact
with the atoms providing an extra broadening or narrowing of
levels of the hydrogen atoms as well as it can interact with the
incident beam of electrons and the laser field. Regarding the
plasma-atom interaction, the present assumption is supposed
to be quite safe since the ground state of the atom, considered
here, is hardly affected by this. It should also be emphasized
that beam penetration is not expected to be affected because
the low-energy incident electronwill undergo elastic scattering
due to the screened Coulomb potential. Furthermore, no
instabilities should be introduced in the plasma because the
incident electron is not able to excite the higher states of the
atoms and ions.

II. THEORY

The free-free transition in the presence of an external laser
field is given by

ω(l)+ e−(�ki)+ H (1s) → e−(�kf )+ H (1s), (1)

where l is the number of photons absorbed or emitted. The
processes in which l < 0 and l > 0 correspond to stimu-
lated bremsstrahlung (emission) and inverse bremsstrahlung
(absorption), respectively, while l = 0 corresponds to pure

laser-assisted elastic (free-free) scattering; �ki and �kf are the
incident and final momenta of the projectile electron.
The laser field is chosen to be homogeneous, monochro-

matic, and linearly polarized and is represented by �ε(t) =
�ε0 sin(ωt + ξ ), where ξ is the initial phase of the laser field,
the corresponding vector potential in the dipole approximation
is �A(t) = �A0 cos(ωt + ξ ) with �A0 = c�ε0/ω, and ξ is chosen
equal to zero in the present work. The laser field �ε corresponds
to laser polarization, parallel to the incident electron momen-
tum.
The total Hamiltonian of the system in the laser field is

given by

H = −(i �∇1 + �A)2 − (i �∇2 + �A)2 + VD, (2)

where VD represents the Debye-Hückel potential [22] of the
form

VD = −2Z
r1

e−μr1 − 2Z

r2
e−μr2 + 2

r12
e−μr12 , (3)

where �r1 and �r2 are the position vectors of the incident
electron and the bound electron of the target hydrogen
atom, and r12 is the relative distance. The parameter μ

is called the Debye screening parameter and is given by
μ = [4πn(Ze)2/kBT ]0.5 = 1/D, where kB is the Boltzmann
constant, n is the plasma density, and T is the temperature of
the plasma. The Debye length is given by 1/μ = D. We use
Rydberg units throughout our calculations. Therefore, μ has
the units of 1/a0, where a0 is the Bohr radius of the hydrogen
atom. We have carried out calculations for μ = 0.005 to 0.12,
which is a very reasonable choice to study the effects on the
scattering process in the presence of the Debye shielding [22].
The energy of the laser field is ω = 0.0043 a.u.= 0.117 eV

(1 a.u. of energy being 219 474.62 cm−1), i.e., we are dealing
with soft photons and the strength of the laser field is E0 =
0.01 a.u. (1 a.u. being 5× 109 V/cm). The incident energy
ki
2 of the electron ranges from 0.01 to 0.64 Ry or from 0.136

to 8.707 eV in our calculation. This incident energy is very
much below the n = 2 threshold of the hydrogen atom.
The energy conservation relation for this FF process is given

by

k2f = k2i + 2lω, l = 0,±1,±2, . . . . (4)

The transition matrix element for the laser-assisted process (1)
is given by [21]

Tif = −i

∫
dt〈ψf |Vf |�+

i 〉, (5)

where the perturbation

Vf =
(
2Z

r1
e−μr1 − 2

r12
e−μr12

)
. (6)

The projectile electron is considered to be dressed by the laser
field in a nonperturbative manner by choosing the Volkov
solutions [23] in both the initial and final channels. The final
channel asymptotic wave function ψf in Eq. (5) satisfies the
following Schrödinger equation:[

− (i �∇1 + �A)2 − (i �∇2)2 − 2Z

r2
e−μr2 − E

]
ψf = 0. (7)
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In the present work, we have neglected the laser-target
interactions as compared to the dominant projectile-target
interactions at very low incident energies. Thus the final
channel wave function ψf is chosen as

ψf = χkf
φf . (8)

The final-state wave function φf is the same as the initial-
state wave function φ0 given in Eq. (24) and calculated in
the presence of the Debye-Hückel [22] potential. The time-
dependent Schrödinger equation describing the wave function
χk of the electron in the laser field in the Coulomb gauge is
given by

i
∂χC

k (r̄ ,t)

∂t
= [−∇2 + H (t)]χC

k (r̄ ,t). (9)

The superscript “C” on the wave functionχC(�r,t) indicates the
Coulomb gauge and

H (t) = i
2q

c
�A(t) · �∇ + q2

c2
A2(t). (10)

In the above equation, q = −e is the charge on the projectile.
The second term of Eq. (10) can be eliminated by a canonical
transformation. The solution of Eq. (9) is then given by the
Volkov wave function [23–25]

χC
k (�r,t) = (2π )−3/2 exp(i�k · �r − i[Ekt − �α0 · �k sin(ωt − δ)]),

(11)

where Ek = k2 is the free energy and

�A(t) = �A0 cos(ωt − δ), �α0 = �ε0/ω2. (12)

Now, we use the generating function of the Bessel functions
[26]:

exp(−ikiα0 sinωt) =
∞∑

m=−∞
(−1)m exp(imωt)Jm(kiα0).

(13)

Using the above generating function, where Jm is the Bessel
function of order m, and in view of the relation

J−m(z) = (−1)mJm(z), (14)

Eq. (11) can be recast as (the superscript being omitted)

χki
(r,t) = (2π )−3/2

∑
(−i)mJm(kiα0)

× exp{i[�k · �r − (Eki
− mω)t]}. (15)

We have chosen δ equal to zero in Eq. (15). The full scattering
wave function�+

i in the initial channel satisfies the three-body
Schrödinger equation, obeying the incoming wave boundary
condition:

(H − E)�+
i = 0. (16)

Now the spatial part �s(�r1,�r2) of the full scattering wave
function �+

i is obtained numerically in the framework of
the partial wave expansion by solving the initial channel
Schrödinger equation, incorporating the electron exchange
[27]. Finally, Tif reduces to

Tif = −i

(2π )1/2
∑

δ
(
Ekf

− Eki
+ lω

)
Jl(�q · �α0)I , (17)

where �q = �kf − �ki is the momentum transfer, as indicated
earlier l is the number of photons absorbed or emitted, and I

is the space part of the transition matrix element and is given
by

I =
∫∫

d3r1 d3r2 exp(i�kf · �r1)ϕ0(�r2)Vf (�r1,�r2)�+
i (�r1,�r2).

(18)

In the weak field limit (i.e., neglecting the target dressing
effect), the laser-assisted differential cross section (DCS) for
the elastic scattering, for l photons, can be related to the FF
differential cross section by the relation [21,23–25]

[dσ l(ki,kf (l))/d�]laser = [kf (l)/ki]J
2
l (q · α0)[dσ l/d�]FF,

(19)

where [dσ l/d�]FF is the field-free elastic cross section, Jl

are the Bessel functions of integer order l, �q = �kf − �ki is the
momentum transfer, and ki ,kf are the initial and finalmomenta
of the electron.
The above relation, given in Eq. (19), is called the Kroll-

Watson [23] approximation. In order to calculate the FF
elastic differential and total cross sections, we carry out the
calculation of phase shifts in the exchange approximation [27].
The wave function �s(�r1,�r2) for the scattering in the

exchange approximation [27] is given by

�s(�r1,�r2) = u(�r1)φ0(�r2)± (1 ↔ 2), (20)

where

u(�r) = u(r)

r
YL0(�). (21)

The upper sign (+ ) refers to singlet states and the lower sign
(− ) to triplet states. The ground-state wave function of the
target is given by φ0 (vide Appendix). The equation for the
scattering function u(r) is obtained from

〈φ0(�r2)|H ′ − E|�S(�r1,�r2)〉 = 0. (22)

The Hamiltonian in the above equation is given by

H ′ = −∇2
1 − ∇2

2 + VD. (23)

Carrying out the integration leads to the scattering equation
for u(r); by letting r1 = r , we obtain[

d2

dr2
− L(L + 1)

r2
+ 2Z

r
e−pr − V3(r)+ k2

]
u(r)

±
{
rϕ0(r)δL0F1 − 2

(2L + 1)ϕ0(r)

×
[
e−μr

rL
F (r)+ rL+1eμrG(r)

]}
= 0, (24)

where

F1 =
∫ α

0
dx B(x)u(x), (25)

F (r) =
∫ r

0
dx x(L+1)e−μxϕ0(x)u(x), (26)

G(r) =
∫ α

r

dx
e−μx

xL
ϕ0(x)u(x), (27)
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B(x) =
∑

j

Cj [j (j − 1)xj−2 − 2ajxj−1]

+ 2Ze−μxφ0(x)+ (k2 + a2)xφ0(x), (28)

V3(r) = 2
∑

j

Cj

∑
i

Ci

[
e−μr

r

{
(j + i)!

qj+i+1 − e−qrv(r,q)

}

+ eμre−prw(r,t)

]
, (29)

where q = 2a− μ and p = 2a + μ.

v(r,q) =
i+j∑
s

(i + j )!

(i + j − s)!

ri+j−s

q1+s
(30)

and

w(r,p) =
i+j−1∑

s

(i + j − 1)!
(i + j − 1− s)!

ri+j−1−s

p1+s
. (31)

In Eqs. (25) and (27), the upper limit is infinity, in Eqs. (28)
and (29) the summation limits are from 0 to N , and the
minimum value of s = 0 in Eqs. (30) and (31). Because of
the parameter μ, the resulting integrodifferential equation is
quite different from the well-known exchange approximation
equation [27]. However, when we put μ = 0, a = Z = 1, and
N = 1 in the above equations, we recover the equation given
in [27] for the exchange approximation.
We have solved the resulting equation for L = 0 to 7,

numerically by the noniterative method [28]. The phase shifts
obtained have variational lower bounds and they are calculated
from the function u(r),

u(r) = A sin

(
kr − Lπ

2
+ η

)
for r → ∞. (32)

A better approximation for higher partial waves would
have been the use of the method of polarized orbitals [29].
Since the ground-state wave function is rather complicated,
the polarized orbital function u1s→p [29] has to be obtained
numerically for each partial waveL. This would havemade the
problem quite cumbersome to solve. Moreover, the long-range
polarization potential arises from the expansion of 1/r12.
Since the parameter μ occurs in the exponential of the term
exp(−μr12)/r12, this term will not contribute when r1 or r2
goes to infinity in the expansion of 1/r12. This shows that
there will not be any long-range potential in this problem.
Similarly, the calculations that include correlations [30] would
be too much involved. At present, our main interest is to
study the behavior of the elastic scattering (free-free) cross
sections in the combined effect of the laser field and the
Debye-Hückel potential. As indicated above, we assume that
beam penetration is not affected and the incident beam does
not produce any instabilities in the plasma.
The phase shifts, for singlet and triplet states have been

calculated for the partial waves (L = 0 to 7) for the values of

TABLE I. Ground-state energy of the hydrogen atom for various
values of μ with 15 terms in the expansion of the wave function (20).

Debye parameter μ E0 (Ry)

0.0 −1.00
0.005 −9.90[−1]
0.01 −9.80[−1]
0.015 −9.70[−1]
0.02 −9.61[−1]
0.04 −9.22[−1]
0.08 −8.49[−1]
0.12 −7.80[−1]
0.92 −4.20[−2]
1.14 −5.50[−3]
1.1473 −5.34[−6]
1.1474 +1.86[−6]

μ given in Table I. The FF elastic DCS is given by [21]

[dσ l/d�]FF = (
1/k2i

)∣∣∣∣
∑
(2L + 1) exp[iδL]

× sin(δL)PL(cos θ )

∣∣∣∣
2

, (33)

where θ is the scattering angle between r and the Z axis.

III. RESULTS AND DISCUSSIONS

We have computed the laser-assisted (LA) free-free tran-
sitions (both differential and total) cross sections for the
scattering of an incident electron from a hydrogen atom
embedded in plasma and as such the incident electron feels the
Debye-Hückel potential [22]. Tables II and III demonstrate the
present LA total cross sections (TCS) in free-free transition for
the incident k = 0.1, 0.2, 0.3, 0.5, and 0.8 in both the triplet
and singlet states for various values of the parameter μ along
with the corresponding FF cross sections.
We also provide the results obtained by us [21] in the

absence of the Debye-Hückel potential. We note that the cross
sections change significantly when the irradiated system is
embedded in the Debye plasma. As μ increases from the zero
value, the cross section increases remarkably in all the cases
(1 = −1,0,1) up to μ = 0.02, while beyond that they start to
decrease.
It should be noted that in all cases, the cross sections are

much higher than those obtained in the absence of the Debye
potential. This is due to the size of the atom becoming larger
asμ increases. The wave function of the atom is drawn out and
the radius of the atom becomes larger than the Bohr radius.
It is, therefore, expected that the cross sections would also
increase correspondingly. As μ increases further, the potential
VD becomes weak and the cross section starts decreasing. This
fact can be seen from the results for the cross sections given in
tables. As noted in [21], here also in all cases the cross sections
are very much suppressed as compared to the FF values in the
presence of the Debye-Hückel potential.
The previous results obtained in [21] for μ = 0 have

been given to show how they are expected to change when
only the exchange approximation is used, as in the present
calculation. Since the present scattering calculations are not
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TABLE II. Comparison of the triplet cross sections with FF cross
sections for electron-hydrogen scattering for various values of μ.

Parameter μ ki l = −1 l = 0 l = 1 Field free

0.00a 0.1 1.14[−1] 8.21[−1] 1.15 5.15[+1]
0.2 1.72[−1] 3.51[−1] 4.32[−1] 5.52[+1]
0.3 1.35[−1] 2.40[−1] 2.60[−1] 5.49[+1]
0.5 1.55[−1] 3.29[−1] 3.19[−1] 4.87[+1]
0.8 1.51[−1] 3.42[−1] 3.24[−1] 3.07[+1]

0.00 0.1 1.55[−1] 1.41 1.77 6.79[+1]
0.2 2.36[−1] 6.35[−1] 7.26[−1] 6.28[+1]
0.3 1.71[−1] 3.50[−1] 3.79[−1] 5.64[+1]
0.5 1.09[−1] 1.99[−1] 2.00[−1] 4.30[+1]
0.8 8.14[−2] 1.58[−1] 1.54[−1] 2.55[+1]

0.005 0.1 4.75 4.77[+2] 2.75[+1] 1.14[+3]
0.2 2.55 4.37[+1] 8.65 2.13[+2]
0.3 1.40 9.57 4.42 9.81[+1]
0.5 3.06[−1] 1.08 7.81[−1] 4.81[+1]
0.8 6.71[−2] 1.31[−1] 1.22[−1] 2.50[+1]

0.01 0.1 8.51 8.45[+2] 5.29[+1] 2.08[+3]
0.2 5.31 9.35[+1] 1.85[+1] 3.92[+2]
0.3 3.03 2.18[+1] 9.77 1.54[+2]
0.5 6.69[−1] 2.66 1.86 5.79[+1]
0.8 9.96[−2] 2.68[−1] 2.29[−1] 2.59[+1]

0.015 0.1 9.82 9.37[+2] 6.84[+1] 2.48[+3]
0.2 7.32 1.27[+2] 2.65[+1] 5.22[+2]
0.3 4.42 3.19[+1] 1.45[+1] 2.03[+2]
0.5 1.04 4.28 2.96 6.80[+1]
0.8 1.48[−1] 4.58[−1] 3.84[−1] 2.74[+1]

0.02 0.1 9.86 8.89[+2] 7.84[+1] 2.58[+3]
0.2 8.63 1.45[+2] 3.25[+1] 6.08[+2]
0.3 5.49 3.96[+1] 1.82[+1] 2.42[+2]
0.5 1.39 5.76 4.00 7.74[+1]
0.8 2.02[−1] 6.66[−1] 5.54[−1] 2.90[+1]

0.04 0.1 7.33 4.89[+2] 9.23[+1] 2.17[+3]
0.2 9.88 1.44[+2] 4.28[+1] 7.11[+2]
0.3 7.46 5.15[+1] 2.59[+1] 3.23[+2]
0.5 2.39 9.80 7.00 1.06[+2]
0.8 4.16[−1] 1.46 1.22 3.53[+1]

0.08 0.1 3.99 1.51[+2] 7.13[+1] 1.33[+3]
0.2 7.36 7.89[+1] 3.72[+1] 6.04[+2]
0.3 6.56 4.02[+1] 2.41[+1] 3.28[+2]
0.5 3.03 1.20[+1] 8.89 1.28[+2]
0.8 7.10[− 1] 2.49 2.10 4.39[+1]

0.12 0.1 2.52 6.59[+1] 4.69[+1] 8.96[+2]
0.2 5.10 4.22[+1] 2.69[+1] 4.82[+2]
0.3 4.98 2.72[+1] 1.87[+1] 2.95[+2]
0.5 2.82 1.07[+1] 8.23 1.30[+2]
0.8 1.71 5.50 4.80 1.18[+2]

aResults obtainedwithout theDebye potential and using very accurate
phase shifts, which include the contribution of short- and long-range
correlations.

as sophisticated as the previous ones [21], we do not intend
to judge the accuracy of the results by comparison with the
previous results [21]. However, if we include one more partial
wave in the scattering calculation, we find that most cross
sections are accurate within 10%–20%. Therefore, we take the
overall accuracy of the results in Tables II and III around 30%.
This kind of accuracy indicates the need for a better treatment
of the scattering problem, which is outside the scope of the

TABLE III. Comparison of the singlet cross sections with FF
cross sections for electron-hydrogen scattering for various values
of μ.

Parameter μ ki l = −1 l = 0 l = 1 Field free

0.00a 0.1 8.81[−1] 7.85 1.01[+1] 3.87[+2]
0.2 9.68[−1] 2.90 3.10 2.43[+2]
0.3 5.03[−1] 1.13 1.21 1.38[+2]
0.5 1.30[−1] 2.59[−1] 2.55[−1] 4.15[+1]
0.8 3.35[−2] 7.79[−2] 7.25[−2] 1.04[+1]

0.00 0.1 1.33 1.26[+1] 1.56[+1] 5.79[+2]
0.2 1.18 3.43 3.88 2.87[+2]
0.3 5.12[−1] 1.15 1.24 1.39[+2]
0.5 9.48[−2] 1.69[−1] 1.70[−1] 3.77[+1]
0.8 9.29[−3] 1.40[−2] 1.39[−2] 8.02

0.005 0.1 6.21 5.11[+2] 4.36[+1] 1.73[+3]
0.2 3.30 4.35[+1] 1.09[+1] 4.26[+2]
0.3 1.45 8.50 4.11 1.72[+2]
0.5 2.68[−1] 9.57[−1] 6.74[−1] 4.26[+1]
0.8 4.38[−2] 1.43[−1] 1.20[−1] 9.18

0.01 0.1 9.88 8.62[+2] 7.15[+1] 2.65[+3]
0.2 5.78 8.92[+1] 1.94[+1] 5.88[+2]
0.3 2.84 1.92[+1] 8.46 2.19[+2]
0.5 6.09[−1] 2.47 1.68 5.21[+1]
0.8 1.12[−1] 3.93[−1] 3.29[−1] 1.15[+1]

0.015 0.1 1.11[+1] 9.39[+2] 8.74[+1] 3.01[+3]
0.2 7.51 1.19[+2] 2.60[+1] 7.01[+2]
0.3 4.02 2.81[+1] 1.23[+1] 2.60[+2]
0.5 9.61[−1] 4.28 2.72 6.19[+1]
0.8 1.89[−1] 6.72[−1] 5.62[−1] 1.40[+1]

0.02 0.1 1.10[+1] 8.79[+2] 9.62[+1] 3.08[+3]
0.2 8.56 1.34[+2] 3.06[+1] 7.71[+2]
0.3 4.91 3.47[+1] 1.53[+1] 2.91[+2]
0.5 1.29 5.41 3.69 7.09[+1]
0.8 2.66[−1] 9.52[−1] 7.97[−1] 1.66[+1]

0.04 0.1 8.10 4.54[+2] 9.95[+1] 2.16[+3]
0.2 8.94 1.25[+2] 3.59[+1] 8.12[+2]
0.3 6.36 4.40[+1] 2.10[+1] 3.45[+2]
0.5 2.21 9.27 6.46 9.69[+1]
0.8 5.48[−1] 1.95 1.64 2.60[+1]

0.08 0.1 1.85 9.84[+1] 3.00[+1] 5.88[+2]
0.2 5.23 5.71[+1] 2.33[+1] 5.81[+2]
0.3 5.14 3.27[+1] 1.81[+1] 3.10[+2]
0.5 2.73 1.11[+1] 8.06 1.13[+2]
0.8 8.99[−1] 3.13 2.67 3.83[+1]

0.12 0.1 1.77 5.55[+1] 3.58[+1] 5.96[+2]
0.2 2.52 4.23[+1] 1.23[+1] 3.02[+2]
0.3 3.38 1.97[+1] 1.24[+1] 2.39[+2]
0.5 2.48 9.70 7.31 1.09[+2]
0.8 1.03 3.52 3.02 4.39[+1]

aResults obtained without the Debye-Hückel potential and using very
accurate phase shifts, which include the contribution of short- and
long-range correlations.

present work. Our interest in this work is to see the overall
effects of the Debye-Hückel potential in the presence of a
laser field.
We note from the tables that as μ increases from zero, the

cross sections initially increase up to a certain value of μ,
and beyond that (∼μ = 0.02) they decrease. This has been
explained above due to the target becoming larger in size
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FIG. 1. (Color online) Total cross sections (TCS) vs μ = 1/D
in a.u. for singlet state ki = 0.1. The upper curve is for (l = 0), the
middle curve is for single-photon absorption (l = 1), and the lowest
one is for emission (l = −1).

as μ increases from its zero value and then the potential
becoming very weak, decreasing the total cross sections. The
laser-assisted cross sections are suppressed as compared to
the FF ones and the suppression is more for the triplet cross
sections than for the singlet ones.
The behavior of the singlet and triplet cross sections,

whether LA or FF, is found to be the same as in [21]: the triplet
cross sections are lower than the singlet cross sections. This
can be explained by noting that the total wave function in the
singlet case is space symmetric and therefore the probability
of the incident electron to be near the nucleus is much higher
than in the triplet case where the wave function is space
antisymmetric.
Figures 1–5 exhibit the effect of the laser field on the field-

free plasma-embedded cross sections. Figure 1 displays the LA
singlet TCS for the cases of single-photon emission (l = −1),
no-photon transfer (l = 0), and single-photon absorption (l =
1) with an incident electron momentum ki = 0.1. As may be
noted, the cross section has a prominent peak aroundμ = 0.02,
the peak value being dependent on the value of l, the photon
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FIG. 2. (Color online) Same as in Fig. 1 but for the triplet case.
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FIG. 3. (Color online) TCS vs μ = 1/D in a.u. for singlet state
ki = 0.5. The upper curve is for (l = 0), the middle curve is for
single-photon absorption (l = 1), and the lowest one is for emission
(l = −1).

number exchanged. Cross sections decrease very rapidly as μ

increases up to a value∼0.08 beyond which the TCS becomes
almost independent ofμ. For low incident energies (ki = 0.1),
the peak of the TCS occurs at a much lower value ofμ, i.e., for
a larger value of the Debye length, indicating that the projectile
electron is moving in an almost pure Coulombic potential. In
Fig. 2 the same qualitative behavior is noted for the triplet
case. Figure 2 reveals the same behavior as is observed in the
triplet case for k = 0.1.
Figure 3 reveals the effect of the laser field and the Debye-

Hückel potential on the TCS for a single-photon emission
(l = −1), no-photon transfer (l = 0), and a single-photon
absorption (l = 1) with an incident k = 0.5 in the singlet
state. The cross section (TCS) is found to rise gradually and
have peaks at around μ =∼ 0.08, beyond which it falls off
very slowly and becomes almost constant for higher values of
μ. The cross sections are smaller in magnitude as compared
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FIG. 4. (Color online) Total cross sections (TCS) vs μ = 1/D
in a.u. for triplet state ki = 0.5. The upper curve is for (l = 0), the
middle curve is for single-photon absorption (l = 1), and the lowest
one is for emission (l = −1).
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FIG. 5. (Color online) Total singlet (a) and triplet (b) cross
sections (TCS) in a.u. against momentum ki (a.u.). The upper curve is
for no-photon exchange (l = 0), the middle curve is for single-photon
absorption (l = +1), and the lowest is for the emission (l = −1).

to those for ki = 0.1 as expected. The peak value of the
TCS occurs at a much higher value of μ (compare Figs. 1
and 3), i.e., at a lower Debye length for higher incident energy
indicating that the Debye screening increases with increasing
incident energy since in this case the incident electron moves
closer to the target. Figure 4 exhibits a similar behavior for
the triplet state for ki = 0.5 as noted for the singlet one (vide
Fig. 3).
Figures 5(a) and 5(b) exhibit a comparative study of the

different laser-assisted TCS (l = 0, ± 1) against the incident
energy k for both the singlet [Fig. 5(a)] and triplet states
[Fig. 5(b)] at μ = 0.04. As may be noted from the Tables I
and II, as well as from Fig. 6, the laser-assisted TCS (for
l = 0, ± 1) are highly suppressed with respect to the FF (5–6
times) for all values of μ, the suppression being increased
with increasing incident energy for higher μ (e.g., μ = 0.04),
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FIG. 6. (Color online) Singlet and triplet DCS for the parameters
ki = 0.5, μ = 0.02, and l = +1 along with the corresponding FF
DCS.

while for lower μ, the reverse is true, i.e., the degree of
suppression with respect to the FF decreases with increasing
incident energy. On the contrary, the difference between
the single-photon absorption or emission (l = ±1) and the
no-photon exchange (l = 0) TCS decreases with increasing
incident energy. The no-photon exchange cross sections (l =
0) dominate throughout the energy range over the other two
(l = ±1) for all values of μ except for μ = 0where the
single-photon absorption (l = +1) dominates.
Finally, we present some DCSs for both the singlet and

triplet along with their corresponding FF results for ki = 0.5
and μ = 0.02. Strong modification is noted in the laser-
assisted DCS as compared to the FF both quantitatively
(suppression) and qualitatively for both the states with singlet
all through lying slightly above the triplet. The oscillations
noted in the LA DCS could be attributed to the oscillations of
the Bessel functions occurring in the expression of DCS [vide
Eq. (19)].
As may be noted from Figs. 7(a) and 7(b), at lower incident

energies the FF TCS increases with increasing μ. This may
be physically attributed to the fact that for higher values of
μ, the effective size of the atom increases, thereby enhancing
the cross sections, while at higher incident energy (beyond
ki ∼ 0.5), the FF TCS becomes almost insensitive with respect
to μ indicating that the effect of the Debye potential decreases
with increasing incident electron energy.

IV. CONCLUSIONS

The presence of the Debye-Hückel potential (μ > 0)
enhances the cross sections in all cases (l = −1, 0, and 1)
and for all values of the incident momentum. Apart from the
qualitative modifications, the major quantitative effect of the
external laser field is to suppress the field-free cross sections.
A significant difference is noted for the singlet and triplet
cross sections. The suppression is much more in the triplet
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FIG. 7. (Color online) Total triplet (a) and singlet (b) FF cross
sections (TCS) in a.u. against momentum ki (a.u.) for different values
of μ. The lowest curve is for μ = 0 and the upper curves are for
higher values of μ in increasing order, μ = 0.005, 0.01, 0.015, 0.02,
and 0.04.

states. Total cross sections decrease with the increase of the
incident electron momentum and also with the increase of the
Debye parameter, as expected. The DCSs exhibit a number of
oscillations at lower scattering angles that could be attributed
to the oscillations in the Bessel function.

ACKNOWLEDGMENTS

Thanks are extended to the referee for helpful suggestions.
Calculations were carried out using the Discovery Computer
of the NASA Center for Computation Science.

APPENDIX

The ground-state wave function of the target H atom gets
dressed under the Debye-Hückel [22] potential and is given by

φ0 = e−ar
∑

i

Cir
i . (A1)

Since the lowest term does not contain r , the summation
index ranges from 0 to N = 14, i.e., we have 15 terms
in the expansion. The corresponding ground-state energy is
calculated variationally by using

〈φ0| − ∇2
2 − 2Z

r2
e−μr2 |φ0〉 = E0φ0. (A2)

In this Appendix, we give the ground-state energy of the
hydrogen atom for various values of Debye parameter μ (vide
Table I). We find that the energy is not sensitive to the variation
of the parameter a in the expansion given in Eq. (A1) and as
such we kept it fixed at 1.0. The justification for this choice is
provided by the energy values for a few parameters a: for μ =
0.0 and a = 0.90,0.95,0.97, and 1.0, the ground-state energy
is always equal to − 1.00 Ry. For μ = 0.12 and the same
above values of a, the ground-state energy is − 0.7801 Ry to
four significant figures. The ground-state energies for various
values of the Debye parameter μ are given in Table I. The
results are accurate up to the figures quoted. As μ increases,
the ground-state energymoves towards the continuum. Finally,
for large values of μ, the atom becomes unbound.
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