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During spaceflights beyond low Earth orbit, astronauts are exposed to potentially 

carcinogenic and tissue damaging galactic cosmic rays, solar proton events, and 

secondary radiation that includes neutrons and recoil nuclei produced by nuclear 

reactions in spacecraft walls or in tissue (1). Such radiation risk may present a significant 

health risk for human exploration of the moon and Mars. Emerging evidence that 

generation of new neurons in the adult brain may be essential for learning, memory, and 

mood (2) and that radiation is deleterious to neurogenesis (3-5) underscores a previously 

unappreciated possible risk to the cognitive functions and emotional stability of 

astronauts exposed to radiation in space. Here we use a novel reporter mouse line to 

identify at-risk populations of stem and progenitor cells in the brain and find, 

unexpectedly, that quiescent stem-like cells (rather than their rapidly dividing progeny) in
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the hippocampus constitute the most vulnerable cell population. This finding raises 

concerns about the possible risks facing astronauts on long duration space missions. 

To simulate the space radiation environment, we exposed nestin-CFPnuc mice (6) to 100 

cGy doses of 1 GeVn 56 Fe ions (doses corresponding to an average fluence of 1-3 hits per 

cell). Brains were analyzed using immunocytochemistry and stereology (see supporting 

online material). Exposure to radiation resulted in a dramatic decrease (65%, p=0.00012) 

in the number of BrdU-positive cells in the dentate gyrus (DG) (1704±231 vs. 600±95); 

in all cases, BrdU-positive cells were positioned in the subgranular zone (SGZ) and only 

occasionally in the hilus (Fig. 1 a,b,e,h). Radiation also decreased the number of nestin-

CFPnuc-expressing neural precursor cells in the DG by 38% (15076±2338 vs. 

9436±1847; p0.0081; Fig. lb,f,g,i,j). Expression of CFP marks two classes of 

precursors in the DG of nestin-CFPnuc animals, the quiescent neuronal progenitors 

(QNPs) and the amplifying neuronal progenitors (ANPs) (6). Of these, the reduction in 

the number of QNPs after irradiation was the most pronounced (45% decrease, 

9386±1905 vs. 5180±1462 cells; p=0.0128; Fig. lc), whereas the number of ANPs 

decreased by 25% (5690±766 vs. 4256±660; p=0.0297; Fig. id). 

The changes in the populations of early progenitors were also reflected in the number of 

dying cells in the brain, as revealed by amino cupric silver and caspase-3 staining (Fig. 

1k-m). The increase in cell degeneration was observed selectively in the neurogenic 

areas, especially in the SGZ, where QNP and ANP cells are located, thus confirming the 

observed reduction in nestin-CFPnuc cells. Furthermore, we observed activated Ibal - 
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positive microglial cells and cells resembling infiltrating macrophages selectively located 

in the. SGZ (Fig. In-p). These degeneration- and inflammation-related changes were 

observed 6 h after irradiation but not 24 h or 3 weeks after irradiation. 

Our results show that QNPs, a population of stem-like cell in the hippocampus, is 

selectively affected by the type of radiation that manned missions may expect during 

space exploration. The concomitant loss of ANPs was expected since they represent a 

rapidly dividing cell population that is thus susceptible to various types of radiation. 

However, the finding that QNP cells, despite their low division rate, are particularly 

vulnerable to space radiation, was unexpected. This suggests that additional mechanisms, 

not directly related to cell replication, may be responsible for this selective loss. 

Importantly, if the loss of this most primitive and normally non-self-renewable progenitor 

class in the hippocampus is not compensated (e.g., by increasing the rate of asymmetric 

divisions of the remaining QNPs or restoring their number through symmetric divisions), 

the number of new neurons and later, of all granule neurons in the DG may decline. 

Given the increasing evidence pointing to the role of adult neurogenesis in memory and 

mood control, the risk to these cells represents an important factor to consider when 

planning manned space missions. Further investigations should address the issue of 

whether a reduced flux expressed over a longer period would have the same effects as the 

acute exposure used in these experiments. Our model offers a ground-based radiation-

exposure test system that will help to assess radiation risk and to develop 

countermeasures, such as shielding and radioprotective drugs.
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FIGURE LEGENDS 

Figure 1. 

a-d. 56 Fe radiation decreases the number of BrdU-labeled cells (a), nestin-CFPnuc cells 

(b), QNIP cells (c), and ANP cells (d) in the DG of nestin-CFPnuc mice. Mice were 

irradiated, injected with BrdU, and sacrificed 24 hours later. White bars correspond 

to the control group (C) and grey bars to the irradiated group (R). The results for 

individual animals are shown as black dots. Error bars show s.e.m. 

**p<o .01, ***p<o.0005. 

e-j. Representative photomicrographs of DG sections from control (e, f, g) and 

irradiated (h, i, j) animals. (e and h) - sections stained for BrdU; dashed line 

outlines the external limits of the DG. (f, g, i, j) - QNP and ANP cells at lower (f, 

g) and higher (i, j) magnification. The soma and the nuclei (visualized by 

immunostaining against CFP) of both QNPs and ANPs are located in the 

subgranular zone. QNPs extend apical processes (immunostained with antibody to 

vimentin) which cross the granule cell layer and can thus be differentiated from the 

ANPs (arrows). 

k-m. Amino-cupric-silver stain for cell degeneration (k, 1) and anti-caspase-3 staining for 

apoptotic cells (m) in the DG of control (k) and irradiated (1, m) mice, showing cell 

degeneration and apoptosis after irradiation. 

n-p. Staining for microglial cells with anti-Ibal antibody in the in the DG of control (n) 

and irradiated (o,p) mice; note altered morphology of microglial cells after 

irradiation. 

Scale bars are 20 m in e,f h, i, k-o, 5 tm ingandj, and 10 Rm in p.
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Supplemental Material: MATERIALS AND METHODS 

Transgenic mice. For evaluating the effect of radiation on neural stem and progenitor 

cells we used a nestin-CFPnuc reporter mouse line (1). These transgene mice were 

generated by a pronuclear injection into the fertilized oocytes from C57BL/6xBalb/cBy 

hybrid mice of a construct encoding CFP with nuclear localization domain, whose 

expression was regulated by the promoter and the second intron of the nestin gene and 

polyadenylation sequences from simian virus 40. Transgenic mice were repeatedly 

mated with C57BL/6 mice for more than 7 generations. The use of this reporter line for 

examining changes in adult neurogenesis is described in detail elsewhere (1). Use of 

animals was reviewed and approved by the Cold Spring Harbor Laboratory, Brookhaven 

National Laboratory and Kennedy Space Center Animal Use and Care Committees. 

Irradiation and analysis. Two-month old nestin-CFPnuc mice were irradiated head 

alone under anesthesia (isofluorane) at the NASA Space Radiation Laboratory, Upton 

New York. Mice were exposed to 0, 50 and 100 cGy of 1 0eV/n Fe ions (LET: 148 

keVp/p.m), injected with BrdU (150 mg/kg), and sacrificed 24 h later. Mice were 

administered an overdose of chloral hydrate, and the tissues were fixed by transcardial 

perfusion with 30 ml of PBS, pH 7.4 followed by 30 ml of 4% (w/v) paraformaldehyde in 

PBS. The brains were removed, cut longitudinally into two hemispheres and postfixed 

with the same fixative for 3 h at room temperature, then transferred to PBS, and kept at 

4°C. Serial sagittal sections, 50-tm thick, were obtained using a Vibratome 1500 

(Vibratome, St. Louis, MO). For the amino-cupric-silver and caspase-3 staining of cell 

degeneration, brains were treated overnight with 20% glycerol and 2% dimethylsulfoxide 
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to prevent freeze-artifacts and embedded in a gelatin matrix using MultiBrainTm 

Technology (NeuroScience Associates, Knoxville, TN). After curing, the block was 

rapidly frozen by immersion in isopentane chilled to -70°C with crushed dry ice, mounted 

on a freezing stage of an AO 860 sliding microtome and sectioned. Sections were 

collected sequentially into a 4x5 array of containers filled with Antigen Preserve solution 

(50% PBS pH 7.0, 50% Ethylene glycol, 1% Polyvinyl Pyrrolidone) for 

immunohistochemistry. The containers to be used for amino-cupric-silver staining (2) 

were filled with 4% formaldehyde in 1.4% sodium cacodylate buffer, pH 7.4. After 

mounting, the sections were air dried, counterstained with neutral red, dehydrated, 

cleared in xylene and coverslipped. 

Immunostaining was carried out following a standard procedure. The sections were 

incubated with blocking and permeabilization solution (PBS containing 0.2 % Triton-

100X and 3% BSA) for 1 h at room temperature and then incubated overnight at 4°C with 

the primary antibodies (diluted in the same solution). After thorough washing with PBS, 

sections were incubated with secondary antibodies in PBS for 1 h at room temperature in 

darkness. After washing with PBS, the sections were mounted on gelatine-coated slides 

with DakoCytomation Fluorescent Mounting Medium (DakoCytomation, Carpinteria, 

CA). Those sections that were designated for the analysis of BrdU incorporation, were 

treated, before the immunostaining procedure, with 2M HC1 for 30 min at 55°C, rinsed 

with PBS, treated with 1mM sodium tetraborate for 10 min at room temperature, and 

washed with PBS. For diaminobenzidine staining, the secondary antibodies were 

incubated in PBS for 1 h at room temperature. After washing, the sections were 
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incubated with peroxidase-linked ABC (Vector Laboratories, Burlingame, CA.). The 

peroxidase activity was revealed using the Sigma Fast 3,3'-diaminobenzidine 

tetrahydrochioride with metal enhancer tablet set (Sigma-Aldrich, St Louis, MO). 

Following antibodies were used: chicken anti-GFP (Ayes Laboratories, Tigard, OR) 

diluted 1:500; chicken anti-vimentin (Chemicon International, Temecula, CA) diluted 

1:500; rat anti-BrdU (Serotec, Raleigh, NC) diluted 1:400; rabbit anti-caspase-3 (Cell 

Signaling, Beverly, MA) diluted 1:1000, rabbit anti-Ibal (Wako, Richmond, VA) diluted 

1:5000, AlexaFluor 488 goat anti-rat (Molecular Probes, Eugene, OR) diluted 1:500; 

Biotin-conjugated donkey anti-chicken (Vector Laboratories) diluted 1:200. 

Quantification. Quantitative analysis of cell populations was performed by means of 

design-based (assumption free, unbiased) stereology (3,4). Slices were collected using 

systematic-random sampling. One brain hemisphere was randomly selected per animal. 

The hemisphere was sliced sagittally, in a lateral-to-medial direction, from the beginning 

of the lateral ventricle to the midline, thus including the entire DG. The 50 tm slices 

were collected in 6 parallel sets, each set consisting of 12 slices, each slice 300 tm apart 

from the next. All cells of each type described (BrdU, QNPs, and ANPs) were counted 

in every slice under a 63x objective, excluding those in the uppermost focal plane. The 

number of cells from all the slices from one set were added up together, and then 

multiplied by 6 (the number of sets of slices per animal), thus representing the total 

number of cells per hemisphere; these numbers are given in the Results section. The 

volume of the space reference (the GCL + SGZ) was estimated using the Cavalieri-point 

method. All the immunostaining images were collected using an epifluorescence/bright



field microscope (Carl Zeiss, Thornwood, NY) equipped with a digital camera and the 

corresponding software. All images were imported into Adobe Photoshop 7.0 (Adobe 

Systems Incorporated, San Jose, CA) in the tiff format. Brightness, contrast, and 

background were adjusted using the "brightness and contrast" and "levels" controls from 

the "image/adjustment" set of options. 

Statistical analysis. Statistical analysis (Student's t-test) and graph plotting was 

performed using Sigmaplot 8.0 (SPSS Inc., Chicago, IL). The bars show the mean and 

the standard error of the mean (s.e.m), and the black dots show the data for individual 

animals. Differences were considered to be significant when p0.05. 
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