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Introduction: 

Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a 
problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, 
this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to 
disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the 
spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in 
catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model 
for this fuel slosh can be created. The accuracy of the model must be tested by comparing its 
results to an experimental test case. Such a model will allow for the variation of many different 
parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of 
spacecraft slosh dynamics. 

Spinning is not only used for spacecraft stabilization, it also helps to moderate the effects 
of solar heating on the spacecraft and payload [1]. Mostly used for the upper stage of payload 
launch vehicles, spin stabilization can cause unwanted vibrations and, in turn, nonlinear forces 
on the liquid propellant tanks. This will cause the propellant to slosh around inside the tank. The 
sloshing motion of the propellant causes a loss of kinetic energy of the spacecraft. Since the 
stabilization of these particular vehicles is dependant on their spin (much like a gyroscope), a 
loss of rotational kinetic energy could prove disastrous for the spacecraft and the payload. 

The gyroscopic nature of the spin stabilization implies that the spacecraft precesses about 
its spin axis at a certain angle. The angle at which it precesses (or nutates) relative to the spin 
angle is denoted as the nutation angle [2]. For the ideal flight this angle would be relatively small 
and constant. When the spacecraft is spinning about a minor moment of inertia, the propellant 
sloshing motion will interact with the nutation causing a growth in the nutation angle (nutation 
growth rate). If this nutation angle growth is not actively controlled, it may lead to incomplete 
depletion of the propellant [2]. Even worse, as seen in the ATS-5 mission launched in 1969, it 
may lead to a complete loss of control of the vehicle [3]. For this reason it is important to fully 
understand the slosh dynamics of propellants in fuel tanks. The nonlinear, time dependant nature 
of this complex problem makes it a real challenge. 

In order to gain a better understanding of the dynamics behind sloshing fluids, the 
Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in 
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finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh 
research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). 
This test facility has produced interesting results and a fairly reliable parameter estimation 
process to predict the necessary values that accurately characterize a mechanical pendulum 
analog model. The current study at ERAU uses a different approach to model the free surface 
sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. 

Using a software package called Fluent, a model was created to simulate the sloshing 
motion of the propellant [4]. This finite volume program uses a technique called the Volume of 
Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface 
slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally 
displaces the air. Using the conservation of mass, momentum, and energy equations, as well as 
the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, 
pressure gradients, and velocity field for the entire liquid as a function of time [5]. 

The information acquired from the CFD model will be compared to several test scenarios 
that have been studied in the laboratory in order to verify the CFD results. Once the results have 
been experimentally verified and there is significant confidence in the values calculated by the 
CFD technique, it will be applied to various other scenarios such as variable gravitational 
conditions, larger tanks, different shaped tanks, and more viscous liquids. Ultimately, the model 
will be modified to include tanks with propellant management devices such as diaphragms and 
baffles.

Figure 1 illustrates the integration of the CFD model into the current fuel slosh research 
being conducted at ERAU. Currently, the parameter estimation process requires data from 
experimental results and other simple pendulum analog models. This parameter estimation 
process will produce values to be used in the initial spacecraft design for the determination of the 
Nutation Time Constant (NTC). The new CFD model will serve as source of data that may be 
used to verify the experimental results. Ultimately, the CFD model will be used to obtain 
"experimental type" data for scenarios that are not easily reproduced in the laboratory. 
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Figure 1. Fuel Slosh Research Flow Chart 
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Method of Approach: 

Experimental Methodology 

Experimental data for this research was acquired at ERAU. The fuel slosh research 
laboratory is equipped with a state-of-the-art linear actuator and data acquisition system. An 
eight inch in diameter spherical fuel tank is suspended from a frame by cables and attached to a 
linear actuator as seen in Figure 2. A force transducer placed at the interface between the linear 
actuator and the fuel tank will measure the forces induced by the fuel slosh and transmit the data 
to a computer for analysis.

Figure 2. Experimental Set-tip 161 

The effect of energy dissipation in sloshing fuel is best illustrated by exciting the tank 
with a "sudden push" and quickly bringing it to a stop. This causes the fluid to begin sloshing 
and slowly damp out the oscillations. The damping effect of the fluid is caused by the fact that 
the fluid in the tank is not inviscid. The viscous nature of the fluid causes an energy dissipation 
that will eventually bring the fluid to rest. The maximum amplitude of the reaction force 
decreases over time. This damping is one of the most important effects that the CFD model must 
replicate in order to validate the fuel slosh behavior. Another quantity of interest is the frequency 
at which the slosh oscillations are occurring. This is useful information that may be used to 
prevent frequency coupling and inducing resonance in the fuel tank system. An example of 
experimental slosh data is shown in Figure 3. 

The eight inch sphere at a 60% fill level holds about 2.6 liters of fluid. As seen in Figure 
3, the amplitude of these oscillations is on the order of 0.2 lbs. The force transducer used has an 
accuracy to within 0.001 lbs. This is more than enough resolution to clearly resolve both the 
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damping effect and the natural frequency of the sloshing liquid. Both of these quantities must be 
accurately predicted by the CFD model. 

Figure 3. Experimental Results 

CFD Model 

Computational Domain 

The computational domain used in this study consists of the experimental tank complete with 
the opening at the top. The tank used is an eight inch spherical tank with a three inch hole at the 
top that is used for filling. As seen in Figure 4, most of the cells are located at the tank walls. 
This high resolution at the walls is necessary for capturing the viscous effects that cause the 
damping of the fluid oscillations. The fully unstructured grid was generated using Gridgen and 
later modified by Fluent's polyhedral mesh conversion [7]. This polyhedral mesh conversion 
takes a fully tetrahedral mesh and combines adjoining tetrahedrals to form polyhedrals. The 
technique reduces the total number of cells without adversely affecting the solution. In this 
particular problem, the cell number was reduced from 1.2 million to 431,000 therefore greatly 
reducing the computation time. 

A no slip boundary condition was used for the tank walls and a pressure inlet was used 
for the top. This pressure inlet boundary condition is used to enforce the constant atmospheric 
pressure at the opening of the tank. Though it may seem trivial, the pressure inlet boundary 
condition here must allow air to move in and out of the container as the fluid displaces the air 
over time, but still maintain a constant pressure. Fluent's pressure inlet boundary condition does 
just this. A standard atmospheric pressure of 101325 Pa was used. 

The fully unstructured grid was created using an extrusion method. The first few cells 
may seem structured but are actually isotropic tetrahedrals. These first few closely spaced cells 
allow for a y+ value of less than 2. This puts the first cell well within the viscous sublayer, a 
desirable property when wall viscous effects are important. 
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Initial conditions 

It was found through experiments that the largest forces generated by the sloshing fluid 
occurred at a 60% fill level. For this reason, all CFD runs were conducted at this fill level. Since 
most propellants such as hydrazine are extremely toxic, a liquid with similar properties was used 
in the experiments. In this particular case, hydrazine is modeled by water which has a very 
similar density and viscosity. This is one of the problems that can be solved by using a CFD 
model. Since it is purely computational, there is no problem testing with even the most toxic of 
chemicals. In order to fully replicate experimental conditions, the CFD computations discussed 
here also used water. 

To simulate the initial push given to the tank in the experimental setup, the liquid in the 
tank is initialized with a small horizontal (x) velocity of 0.1 m/s. This will allow the liquid in the 
tank to begin oscillating and eventually die out. The expected frequency is to be around 2 Hz. so 
the models were set to run for 10 seconds real time at a time-step size of 0.01 s. 

Solver 

The CFD model was created using Fluent's 3D, pressure based, unsteady, implicit, cell based 
solver. Since the problem involves the interaction of two fluids (water and air), the volume of 
fluid multiphase model was used to keep track of the interface. The viscosity at the wall was 
modeled using the laminar flow equations. Though several different turbulence models were 
tested, the laminar model was determined to be the most accurate. Due to the small excitation 
amplitude the free surface of the sloshing fuel in the experimental setup was fairly smooth and 
did not display breaking waves or large discontinuities. For this reason there was to be no need to 
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run a turbulence model. The Discretization method used was second order accurate in space and 
first order accurate in time (limited by the Volume of Fluid Method). 

Results 

• Damping Rate 

The damping rate is defined as the rate at which successive peaks in the oscillations diminish 
in an exponential fit to the data over time. Plotted in Figure 5, are the peaks of the positive 
oscillations as recorded by the force transducer in the experimental setup. Recall that the tank 
was given an initial "push" and then allowed to dissipate the oscillations. This peak data, is 
normalized (to cross the axis at y=l) and then fitted to an exponential curve. This yields a 
damping rate of 0.0656 for the experimental data shown in Figure 5. 

Experimental Results 
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Figure 5. Experimental Damping Results 

The force measured by the transducer in the experimental setup, is a force in the direction 
of excitation (x). In order to calculate this force in the CFD model, a nondimensional force 
coefficient in the x direction is plotted. This force coefficient is then submitted to the same 
analysis as the experimental results in order to calculate a damping rate. Table I compares the 
experimental and CFD model damping results. 

Table 1. Damping Rate 
Damping Rate % error 

Experimental Results 0.06564 N/A 
CFD Model 0.06557 0.11

Frequency 

When the tank is given an initial excitation, the liquid in the tank begins to oscillate at its 
natural frequency. This natural frequency is defined by the gravitational force, fluid fill level, 
and tank shape. It is very important to be able to predict this natural frequency. If the spacecraft 
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begins to oscillate at this frequency, the forces caused by the sloshing liquid can resonate and 
greatly amplify causing problems with the control system. Table 2 compares the frequency 
predicted by the CFD model with the measured frequency of the experimental setup. 

Table 2. Freouencv 
Frequency % error 

Experimental Results 2.148 N/A 

CFD Model 2.081 3.12

Slosh Dynamics 

Besides accurately predicting both the damping rate and natural frequency, the CFD 
model can yield valuable information about the fluid as it sloshes. As seen in Figure 6, this 
model can predict characteristics such as the shape of the free surface and the velocity field of 
the fluid as a function of time. This valuable information helps to visualize the fluid motion, and 
gain a deeper understanding of the physics behind spacecraft propellant slosh. 

Figure 6. Fluid Contour and Velocity Vector Field at 0.2, 0.4, and 1 s. 
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Conclusion 

This CFD model was successful for simulating the small amplitude slosh of free surface 
tanks. Further research will be aimed at creating models for more complex environments such as 
tanks fitted with propellant management devices (PMD's) like baffles and diaphragms. These 
models will eventually allow the simulation of full scale flight tanks. 

Thanks to the power of Computational Fluid Dynamics, an accurate model of spacecraft 
fuel slosh can be created. This model allows for the prediction of many different parameters that 
are useful for the completion of any space mission. Besides being an accurate source of data, it 
allows for a deeper look into the dynamics of sloshing fuel. All of this can be achieved without 
the cost of building an expensive experimental setup. CFD models like these are the future of 
fluid studies.
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