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ABSTRACT

The Vision for Space Exploration calls for human exploration of the lunar surface in the
2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage,
and distribution of consumables for a variety of mission elements. These elements include
propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular
activity, and reactants for power systems. NASA KSC has been tasked to develop technologies
and strategies' fo; consumables transfer for lunar exploration as part of the Exploration Tech-
nology Development Program. This paper will investigate details of operational concepts to
scavenge residual propellants from the lunar descent propulsion system. Predictions on the
mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calcu-
lated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and
storage options includin g cryogenic liquid, vapor and water are discussed, and possible reuse

of LSAM assets is presented.
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INTRODUCTION

The Vision for Space Exploration calls for sustained human presence on other celestial
bodies, initially a lunar outpost near a polar location [1,2]. This presence will require delivery,
storage, énd distribution of consumables essential for human life support, power generation,
thermal control, and propuls‘ion for spacecraft and ground rovers. Due to the propulsive energy
required to transport payload from Earth to the lunar surface, each kilogram of consumables
delivered to the outpost will require between 112 and 203 kg of launch mass [3]. Efficient
delivery and storagé of these consumables and their systems is essential to minimizing launch
mass. Based on many years of ground operations experience, NASA KSC has been tasked to
lead the investigation of technologies required for a sustainable consumables transfer station
for use on the lunar surface. One FY07 deliverable of this task is a detailed study of operations
to recover residual propellants from the Lunar Surface Access Module descent stage, presented
to the Lunar Architecture Team in their phase II study.

Figure 1 illustrates the many potential interfaces between a consumable station and mis-
sion elements. Consumable systems can be high pressure gas as well as a cryogenic liquid.
Liquid storage is advantageous from a density point, but requires greater energy if liquefaction
is needed and often leads to venting from heat leak. Loss of product is undesirable for two rea-
sons; first because the mass of cryogen lost is magnified due production or transportation costs,
and second, because too much venting in the lunar atmésphere has the potential to contaminate
the lunar vacuum environment. This work is a follow on to previous lunar operations work
done by KSC under the Supportability program [4]. The system will stress energy efficienct
storage and transfer, which includes thermodynamic efficiency of liquefaction systems as well
as storége and transfer efficiency to minimize boil-off and chill down losses. The operations
concepts will maximize use of local resources, including the local thermal environment, which

in many ways is an ideal cryogenic storage site. The concept of local resources will be ex-
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panded to include assets delivered to the surface as part of the descent module which may have
no other essential mission functions. For performance and maintenance reasons, ground sys-
tems are preferred over flight systems when ground systems can perform the same function.
This work is intended as a first order approximation of system power requirements, mass and
volume constraints, and thermal performance, future Work will refine these estimates through
experimentation or detailed analysis.

First, some specific assumptions on mission architecture will need to be made before an
analysis of the propellant recovery operations can occur. The ESAS lander configuration is as-
sumed to be spacecraft used. It features 4 liquid hydrogen tanks and two liquid oxygen tanks,
feeding four RL-10 engines. Thé tanks are cylindrical with elliptical end caps, and are insulated
with 66 layers of MLI, with a density of 20 layers per cm. The initial missions are for 7 day
surface stays, increasing to 30 days within three years. The LSAM has a 4.2 kW fuel cell to
power the spacecraft, and there will be long term solar power available for hookup within
hours after landing if needed. There is access to connect to the propellant systems via the same
umbilical plates used for servicing on Earth, and propellant transfer between tanks is allow-
able. There will be a large demand for water during periods of prolonged EVA for thermal con-
trol of the suits. Lunar surface temperatures range from 120 to160 K in the polar region. Radia-
tion to deep space will have an effecti.ve sink temperéture of 4 K, whereas radiators that see
the lunar surface will have varying sink temperatures depending on orientation, location and
the angle of the sun [5]. The temperature in the permanently shadowed craters near the poles
are assumed to be as low as 40 K, but it is not anticipated there will be much activity in these
craters. The lunar environment is an ultrahigh vacuum of 10" torr. Dust contamination is a
concern due to abrasions, seal wear, degradation of thermal control surfaces, mechanical
breakdowns, and human health concern, all experienced in the much shorter duration Apollo

missions.[6]
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LSAM RESIDUAL AND RESERVE MASS

Once the descent stage of the LSAM has completed its primary mission, there will be
an unused portion of the propellants that serve as a safety margin. This unused propellant is
classified in two categories, referred to as residuals and reserves. The primary type of available
propellant is reserve propellant, usable by. the engines if needed. There may be some uncer-
tainty regarding the total amount of Av required during the mission, especially early missions
where precise landing areas are not known and some amount of maneuvering may be requifed
to find an acceptable landing site. It is assumed over time that this level of reserve propellants
can be decreased if desired, as previous flight data is available and better lunar navigation aides
are deployed and regular landing‘ sites are cleared. Current LAT studies show a planned delta-V
of 3078 m/s compared to a required delta-V of 2978 m/s, or a propulsive reserve of 3.2%. The
total propellant mass is derived from lunar architecture team estimates to be 24,400 kg. As-
suming an engine mixture ratio for the RL-10 of 6/1, the total required quantity of propellants
can be found. The propellant is assumed to be in a configuration similar to the ESAS LSAM,

- with 4 LH2 and 2 LLOX cylindrical tanks.

Unusable propellant necessary for proper engine operation is classified as residual pro-
pellant. Liquid residuals are necessary to ensure the state of the cryogenié propellant is suffi-
ciently subcooled when it reaches the engine turbopump. The net positive suction head of the
engine will decrease as the tank empties and the fluid warms up. Values below the required
NPSH will cause cavitation in the pump, which must be avoided. Space Shuttle engine cut-off
sensors are located at 0.6% tank volume for the hydrogen system and inside the feedline for the
oxygen system. Saturn data records LOX cutoff at 1.1%, 0.7%, and 0.7 % for the S-I, S-II,.and
S-1V stages, and a 3.2% residual for the LH2 S-IV stage. Once the exact LSAM feedline ge-
ometry and thermodynamics are known, better estimates on required liquid residuals can be

made. Historically, liquid hydrogen requires a greater percentage of residual than oxygen, as
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engines don’t want to run the risk of shutting down LOX rich and the low density LH2 doesn’t
provide much elevation head. Landing acceleration forces, minimal opposed to launch forces,
increase that problem. For purposes of this work, liquid residuals are assumed to be 1.5% of
the initial load for hydrogen and 1% for liquid oxygen.

Gaseous residuals are vapors in the top of the tank needed to pressurize tﬁ'e liquid. Cur-
rent planning assumes the LOX tank is pressuﬁzed with cold gaseous helium to approximately
50 psia. The helium is loaded in thermal equilibrium with the LOX at KSC, and little oxygen
is vaporized in the préssurization process. The LOX ullage at shutdown will be greater than
90% helium which may interfere with the recovery operations. The hydrogen is autogeneously
pressurized by the RL-10 engines. Calculations on hydrogen vapor residuals requires knowl-
edge of the state of the ullage vapor. Flight data of the RL-10 is not available for this paper, but
itis estimated the pressuization flow enters at 200K. The vapor residual in the hydrogen tanks
may vary between 22 kg and 218 kg, depending on the heat transfer rate between the liquid and
the ullage pressurant. The relative amouﬁt of vapor is large, as shown in Figure 2. The low es-
timate assumes no heat transfer between the ullage and the liquid, and the ullage temperature is
approximately 2QOK. The high mass estimate assumés thermal equilibrium throughout the tank
and the ullage temperature is approximately 25K. Centaur flight data shows the actual mass of
the hydrogen pressurant required is 2.18 times less than the equilibrium model predicts, or 101
kg [xxx]. If the ullage volume was isothermal, this would correspond to a bulk ullage tempera-
ture of 45K. In practice, there will be a temperature gradient in the ullage between 25 K at the
liquid interface and 200 K at the pressurization inlet. For greater resolution in the dteails bf
this temperature profile, a transient, non-equilibrium CFD model will need to be created that
takes into account heat and mass transfer at the liquid to vapor interface, preséurization mo-

mentum terms, heat transfer at the solid walls, and temperature dependent heat capacity of the
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liqui, vapor, and tank walls. This is beyond the scope of this work, and the ullage will be
treated as an isothermal single node in the rest of this work.

Some propellant is considered unable to be recovered. There may be too much resid-
ual heat to recover liquid in the feedlines immediately after landing. Precise placement of en-
gine pre-valves may minimize this loss. For this study, a 12m x 10 cm supply line for LOX and
15m x 15 cm line for LH2 are considered unrecoverable. In addition, low pressure vapor in the
tanks may not be practical to recover. A final state of 155 kPa at 200 K is assumed for the tank.
Table 1 lists the estimated propellant masses, broken down by residuals, reserves, and unre-
coverables, for LOX and LH2..

TANK HEAT TRANSER AND THERMODYNAMIC ISSUES

After lunar landing, the liquid oxygen tanks will be a two species mix of helium and oxy-
gen at an equilibrium temperature around 104 K and a pressure around 344 kPa. In practice,
the tanks will not be isothermal, especially with a liquid level around 5%. The warm boundary
temperature around the tanks will be highly variable. The relative amounts of radiation, from
the spacecraft at 240K, the lunar surface between 120-160K, deep space at 4 K, and possible
direct solar incidence, must be analyzed by radiation modeling. An average temperature of 300
K is assumed for initial estimates, but moving the liquid to the shaded side of the LSAM re-
duces the temperature to 200K. Shielding the tanks will offer the potential to fuﬁher reduce the
heat leak, but this isn’t necessary for the LOX system as will be shown. The estimated LOX
heat leakb rate (T2>=3OOK) is 21.6 W, which corresponds to a steady state boil off .rate of 388
g/hr. If all the liquid was transferred to the tank on the shaded side, the lower temperature and
tank area would reduce the heat leak to 3.7 W and boil off rate to 67 g/hr. However, the re-
quired fuel cell supply rate is 1500 g/hr, so as Iong as the fuel cell is operating, extra heat will

need to be input into the LOX tank. A minimum of 100W electrical resistance heaters are re-
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quired for each tank. Based on the predicted amounts of residuals and reserves, this allows for
fuel cell operation for between 88 and 530 hours.

The state of the LH2 tank is less certain. At engine cutoff, the tank will have superheated
vapor in the ullage, and if the system is closed the tank will seek thermal equilibrium. Depend-
ing on the ratio of the vapor enthalpy to the liquid enthalpy, the equilibrium state of the tank
will change. A large mass of subcooled liquid can use its sensible heat to condense a smaller
mass of ullage volume, causing an ullage pressure collapse. Likewise, A large mass of warm
ullage gas can cause evaporation of liquid, resulting is pressurization and venting. Since the
exact conditions in the hydrogen tank after landing are not known, a model has been created to
predict the equilibrium state of the tank for a range of initial conditions. This model ﬁas two
nodes, separate liquid and vapor regions with uniform properﬁes. The system is a constant vol-
ume, closed system, with an initial pressure of 344 psia. Figure 3 shows the results of this
model.

Once the system reaches thermal equilibrium, there will be a predictable heat leak into
the system that will create a pressure rise. This pressurization may or may not be accompanied
by evaporation since there may be only saturated vapors in the tank. Using the same warm
boundary conditions as the oxygen tanks, the predicted heat leak into the hydrogen system is
57.2 W. When liquid is in the tank, this corresponds to an evaporation rate of 503 g/hr. This
is significantly higher than the required 200 g/hr needed for the fuel cells. If all the hydrogen
can be transferred into a single shaded tank, the estimate heat leak into the system reduces to
5.3 W and the boiloff reduces to 47 g/hr. However, this is not possible if a large portion of the
hydrogeﬁ is cold vapor. There are several possible solutions to the problem of long term stor-
age of hydrogen. Shielding all the tanks so they only view deep space can reduce the effective
source temperature to below 120K. Transferring all the liquid into a single tank, then using the

remaining tanks as a progressively warm ullage space in series may reduce the overall heat
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leak to acceptable levels without having to vent the drained tanks. If venting is required, be-
tween 5 kg and 60 kg of valuable hydrogen may be lost.

Another issue with the hydrogen storage and delivery is the fact the required delivery rate
of 200 g/hr will require variable heat input to maintain at a constant rate. This is an issue with
the oxygen as well. The heat of vaporization will decrease as the liquid warms up, changing
the boil off rate. When the tank transitions from liquid to vapor, the pressurization rate is de-
cided by vapor thermal expansion as opposed to liquid evaporation. Then there will be a tem-
perature dependence on the volumetic expansion coefficient and specific heat. A model was
created to analyze the required heating rate for liquid hydrogen as the tank drains from 5% to
the warm vapor state. It describes a transient, open system with a constant mass flow rate of
200 g/hr, and a constant pressuré of 344 kPa. The required enthalpy of the final state is found
by calculating the enthalpy initially and subtracting the fuel cell supply stream enthalpy, know-
ing the required mass flow rate and the timestep. Figure 4 shows a required heating rate of 21
W, slightly increasing to 23.7 W at the point the residual liquid is vaporized. The required
heating drops to 12.9 W for the remaining vapor, increasing to 24.9 W when the hydrogen tank
is depleted at 530 hours. This assumes an initial mass of 252 kg, with a quality of 88%.
Tanks with different initial mass will have different slopes, but the overall behavior of the sys-
tem is similar. More work needs to be done to understand the thermal and fluid behavior of
this system as the tank drains, to make sure an on demand fuel cell supply rate can be achieved.
SURFACE OPERATIONS

Once access is obtained, operations to transfer th¢ residual propellants can be initiated. At
this point, there are several options for how to recover the consumables. The propellants can
be drained to a lunar based mob.ile tanker in their liquid state, a compressor can be used to
transfer the propellant as a gas to a high pressure storage tank, or the propellants can be com-

bined in a catalyst bed or fuel cell and then stored as water. An alternative to transfer opera-
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tions is to leave the propellants in their LSAM storage tanks and transfer these tanks to the re-
quired usage point. Operations for each of these options, and the hardware required to perform
them, are discussed next. Engine shutdown purges will need to be initiated and the feedlines
downstream of the MPS supply valves will probably be purged as well. Helium purge valves
for the engines and MPS lines are shown in the schematic. Assuming LOX and LH2 line di-
ameters and lengths shown in Figure XX and a density corresponding to saturated liquid at 444
kPa, there will be 16.7 kg of LOX and 3.3 kg of LH2 that will need to be vented and purged
from the engines and feedlines immediately after landing. In addition, the remaining liquid in
the tank will héve more time to absorb the heat from the pressurization gasses, leading to va-
porization inside the tank. The easy solution is to vent the storage tanks soon after landing,
before the liquid and ullage space have a chance to achieve thermal equilibrium. This will léad
to additional losses, from both initial ullage venting as well as vaporization of some liquid dur-
iﬁg the process of cooling down the remaining liquid. For the liquid oxygen case, the losses
are minimal, since the majority of the ullage volume is taken up by helium gas. Oxygen losses
are predicted to be approximately 11.4 kg. However, there remain significant ql(lantities of hy-
drogén vapor in the ullage space, due to the larger storage volume and the relatively low ratio
of hydrogen density between the liquid and vapor state. Venting the hydrogen from the ullage
space will create losses between 160-165 kg. In fact, depending on the % of residuals remain-
ing, there may be more hydrogen to be recovered from the ullage vapor than there is in liquid
form. A mobile LOX and/or LH2 storage tanker is required to support liquid recovery options.
Each tank can sit on a mobility platform delivered by an unpressurized rover. The minimum
tank sizes are approximately 1.1 m?’ for liquid oxygen and 3.1 m® for liquid hydrogen, if recov-
ery of all the residuals is planned. If dedicated tanks are flown for this purpose, this corre-
sponds to a one time up mass of xxx kg. If LSAM descent stage tanks from a previous mission

can be scavenged and recycled for use on a mobility platform, there would be minimal addi-
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tional mass required for dedicated storage tanks. This option would also allow for greater op-
erational flexibility, since planned tank volumes would be larger than the minimum required.
Larger tanks allow for greater storage volume, so tanks will probably always be partially full
(hence cold) and have greater ullage volume to fill with evaporated prpduct during transfer op-
erations. Based on data from no vent fill operations conducted at NASA GRC, a partially
filled, cold tank should be able to increase its liquid level from 20% to 30% with no venting.
This may not be the case for a dedicated empty storage tank designed to be filled to 90%. Other
hardware will be required for transfer operations. A cryogenic transfer tube with a flex section
to connect the tanks estimated at 6 meters in length and weighing 2.9 kg is needed. The line
should be uninsulated, since short duration transfers are dominated more by chilldown losses
than heat leak from the ambient environment. Line sizes of 1” diameter are sufficient for this
operation but interface connections will be dictated by LSAM servicing QD’s needed for pre-
launch operations. The umbilical interface should be designed to allow for easy access on the
lunar surface, preferably below the storage tanks to allow for gravity drain. Otherwise, pressur-
ized transfer is possible and no pump transfer operations are envisioned. Figure x.x shows an
artists conception of what this liquid recovery may look like. »Notice two separate umbilical
locations are required, one each for hydrogen and oxygen.

For vapor recovery, a mobile storage tank is again required. The total storage volume will
vary depending on the desired pressure, and a trade study to determine the optimum pressure
can be conducted. For most users of gaseous hydrogen and oxygen, pressure requirements
should be pretty low. Except fo_r the 6000 psia oxygen in the current emergency O2 supply for
the EVA PLSS, the highest required pressure appears to be 750 psia for the EVA primary 02
supply. There are no defined requirements for high pressure gaseous hydrogen at this time.
However, gaseous storage required much greater volume than liquid storage, and pressure ves-

sels can get heavy for large volumes. Figure XX shows the relationship between required stor-
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age volume and vessel mass as a function of storage pressure for gaseous oxygen for a range of
storage temperatures. If dedicated storége vessels were required to be transported from Earth,
the optimum pressure to store the oxygen would be xxx psia. Similarly, hydrogen storage mass
has a minimum at a pressure of xxx psia. These mass impacts can be mitigated by using ex-
cess helium storage bottles from previolus LSAM descent stages. From the ESAS report, the
assumed pressurization system for the descent stage oxygen tanks is high-pressure gaseous he-
lium stored in two Inconel 718 lined, graphite epoxy composite overwrapped 6,000 psia tanks.
The diameter of the tanks is 0.61 m, giving a total storage volume of 0.24 m3. After 3 mis-
sions, there should be enough storage volume from the excess helium tanks to store 1 mission
worth of oxygen residuals, but it would take 20 missions to obtain enough tanks to store hy-
drogen as a high pressure gas. It appears the primary storage of residual hydrogen as a high
pressure gas is not feasible, given the high mass and volume required for the pressure vessels.
Storage of gaseous oxygen may be possible, especially if the primary storage is a liquid but
secondary tanks are filled with gas and distributed to smaller scale users that may have infre-
quent usage rates.

An additional consideration is the hardware and bower required for compression. If oxy-
gen vapor is to be compressed for storage, there must also be a purification step to eliminate
any helium pressurization gas in the ullage volume. A permeable membrane that allows for the
smaller helium molecule to pass while trapping the oxygen is a solution to this issue. Oxygen
compression is particularly difficult due to combustion hazards, and mechanical compression
would probably require a minimum of four stages to compress the gaseous oxygen from 30 psi
to 6000 psi. Each stage would require an intercooler to remove the heat of compression and
reduce the compression péwer required. If the process compresses the oxygen as it is being
boiled off, the minimum ﬂowrgte is 32.7 g/hr and the power required is estimated at 1.9 W

with a total interstage heat rejection of 2.5 W. These flowrates correspond to a timeline of
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greater than 3 years, which is impractical. On the other hand if the recovery rate is increased so
the oxygen tank is emptied in 7 days, the estimated power for that compression rises to 400 W
and the heat rejection becomes 515 W. For oxygen vapor recovery and compression, the con-
nection to the vehicle should probably b¢ done at the outlet of the thermodynamic vent system
for the low flowrates, but at flowrates above what the TVS can handle then recovery will re-
quire connection to the much larger tank vent QD that is used during cryogenic 1oading on the
launch pad.

Other compression options include a thermal process which takes a set quantity of liquid
from the bottom of the tank, and puts it into a sealed volume whvere ambient heat will increase
the temperature and create a pressure rise, or a cold pump/compressor which uses less energy
to compress the liquid. Both of these options require less power and system mass, but are re-
quire some technology development. For hydrogen storage and/or compression, metal hydride
beds may be used to absorb the gas. While the énergy storage density of these systems is high,
resulting in small volumes, the storage mass efficiency is poor. Assuming at 10% mass storage
density, over 3000 kg of hydrides would be required to store the residual hydrogen for each
mission. While these beds are recycleable and the mass penalty is a one time charge, these sys-
tems are too massive and will not be considered further in this work. There are also power con-
straints with these systems as the desorbing process is endothermic, and many hydride systems
require high thermal energy input at high temperatures. Another advanced technology worth
considering for hydrogen compression is an electrochemical compressor. These systems are
analogous to a single component high pressure electrolysis system, where power input into an
anode dissociates electrons from the hydrogen. The H+ particles flow across a permeable em-
brane, against a pressure gradient, where it combines with the free electrons in the cathode to
reform elemental hydrogen. The compression power required can be estimated by the Nernst

equation and theorectically equals isothermal compression. There are technology hurdles to

SCW 2007 Space Cryogenics Workshop, Huntsville, Alabama 12



overcome from any of these advanced compression techniques, if gas recovery and compres-
sion was the chosen method of propellant scavenging. . However, due to storage volume con-
cerns and the need for additional compression equipment and processes, gaseous storage is not
recommended as the primary recovery method for LSAM residuals.

The final recovery option is to combine the residual hydrogen and oxygen in a catalyst bed
or fuel cell, then recover the product water. Assuming the fuel cells used to produce power
during the mission phase are supplied from the propulsion system cryogenic tanks, there will
be no additional hardware required for that interface. The water product from the fuel cells will
probably go to a temporary storage tank, and during the mission will be supplied to an evapora-
tor system for thermal control. This water may or may not be reéoverable on the lunar surface,
depending on the needs of the evaporator and thermal control system.

LSAM SYSTEM ASSETS

Keeping with the idea the LSAM has assets that should be recovered, there will be sev-
eral fluid systemvcomponents that can be reused during lunar surface operations. Each mission
will bring 4 liquid hydrogen tanks, roughly 13 m3 each, and 2 LOX tanks of 10 m3 each.
There are low pressure tanks that could store cold vapors for the habitat life support system, or
as a temporary storage for regenerative fuel cells or ISRU product. Taking off the insulation
and placing radiation shields may allow the tank temperatures to get close to 100K. At these
temperaturesover 100 kg of oxygen and 10 kg of hydrogen can be stored in each tank. There
are also smaller oxygen tanks that will be used to supply the LOX/LCH4 reactibn control sys-
tem. These tanks can be used for multiple purposes as well, including smaller EVA oxygen
caches, or as propellant tanks for hoppers of fuel cell powered rovers. In addition, high pres-
sure composite overwrapped helium tanks are available for high pressure oxygen storage. .
Special considerations should be given during LSAM final design stages to ensure the maxi-

mum reusability of consumables storage assets.
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CONCLUSIONS AND RECOMMENDATIONS

In conclusion, residual and reserve propellants can be recovered from the LSAM
descent stage and stored for other uses. Thefe is more hydrogen by % than stoiceometric,
due to conservative ECO and pressurization gas. Testing for low volume tank thermal per-
formance, transiet effects pressurization, should be done. Consider using autogeneous LOX
pressurization. The optimum recovery method will depend on the required use and other
architecture concerns. In addition, if the fuel cell water product is needed for thermal con-

trol of the LSAM systems, recovery of that water will not be possible.
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FIGURE 1. Various applications of a lunar consumables storage and distribution system

are illustrated.

TABLE 1. Predicted propellant residuals and reserves based on initial usable propellant.

SCW

Rovers

CONSUMABLE

STORAGE

Science Packages

In Situ Resource Utilization Ascent and Descent Prop

| H LOX LH2
|Usable Propellant 20891 kg 3482
Nominal 20222 kg 3371
Reserve 669 kg 111
Unusable Propellant
Residual Vapor| 2:23 kg 100.2
Residual Liquid 211.0 kg 54.5
|Unrecoverable Mass
Feedline Liquid 33.69 kg 5.67
Low Pressure Vapor| 47 kgl 8.27
Total Recoverable Mass
Minimum 132.1 kg 140.8
Maximum 800.6 kg 252.2
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FIGURE 2. Mass of liquid and vapor residuals as a function of residual tank volume for

a variety of bulk ullage temperatures
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FIGURE 3. The equilibrium quality as a function of bulk ullage temperature for hydrogen

predicts when tank venting will occur during thermal stabilization.
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FIGURE 4. Transient heating requirements to maintain a constant 200 g/hr vent in a cryo-
genic hydrogen tank.
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FIGURE 5. Artist conception of transfer operation of consumable liquid or vapor between
LSAM and ground storage tanks.
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