
Dennis Iannicca, Alan Hylton, and Joseph Ishac
Glenn Research Center, Cleveland, Ohio

A Performance Evaluation of NACK-Oriented
Protocols as the Foundation of Reliable Delay-
Tolerant Networking Convergence Layers

NASA/TM—2012-216047

December 2012

https://ntrs.nasa.gov/search.jsp?R=20130012049 2019-08-31T00:33:08+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10574329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:
	
•	 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

	
•	 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

	
•	 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

•	 CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

	
•	 SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

	
•	 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

•	 Access the NASA STI program home page at
http://www.sti.nasa.gov

	
•	 E-mail your question to help@sti.nasa.gov
	
•	 Fax your question to the NASA STI

Information Desk at 443–757–5803
	
•	 Phone the NASA STI Information Desk at
	 443–757–5802
	
•	 Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320

Dennis Iannicca, Alan Hylton, and Joseph Ishac
Glenn Research Center, Cleveland, Ohio

A Performance Evaluation of NACK-Oriented
Protocols as the Foundation of Reliable Delay-
Tolerant Networking Convergence Layers

NASA/TM—2012-216047

December 2012

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Level of Review: This material has been technically reviewed by technical management.

NASA/TM—2012-216047 1

A Performance Evaluation of NACK-Oriented Protocols as the Foundation
of Reliable Delay-Tolerant Networking Convergence Layers

Dennis Iannicca, Alan Hylton, and Joseph Ishac
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

Delay-Tolerant Networking (DTN) is an active area of
research in the space communications community. DTN uses a
standard layered approach with the Bundle Protocol operating
on top of transport layer protocols known as convergence
layers that actually transmit the data between nodes. Several
different common transport layer protocols have been
implemented as convergence layers in DTN implementations
including User Datagram Protocol (UDP), Transmission
Control Protocol (TCP), and Licklider Transmission Protocol
(LTP). The purpose of this paper is to evaluate several
standalone implementations of negative-acknowledgment
based transport layer protocols to determine how they perform
in a variety of different link conditions. The transport
protocols chosen for this evaluation include Consultative
Committee for Space Data Systems (CCSDS) File Delivery
Protocol (CFDP), Licklider Transmission Protocol (LTP),
NACK-Oriented Reliable Multicast (NORM), and Saratoga.
The test parameters that the protocols were subjected to are
characteristic of common communications links ranging from
terrestrial to cis-lunar and apply different levels of delay, line
rate, and error.

1.0 Introduction
Delay Tolerant Networking (DTN) was created by the

research community as a means of experimenting with the
concept of standardized store and forward techniques (Ref. 1).
Convergence Layers are a set of network and transport
protocols utilized by the Bundle Protocol (Ref. 2) to connect
various DTN nodes (forwarding agents). To facilitate
communication across the DTN, these convergence layers
must be selected based on their expected performance across
network conditions between DTN agents. One set of
conditions often found in space networks is links that have
high latency, high error, frequent disruption, and asymmetrical
rates. Frequent disruption is handled via placement of the
DTN agents across the network. The remaining conditions are
best handled by choosing an appropriate transport, or
convergence layer.

A variety of transmission protocols have been developed to
handle the range of conditions found in space communication.
We focus on the Consultative Committee for Space Data
Systems (CCSDS) File Delivery Protocol (CFDP) (Ref. 3),

Licklider Transmission Protocol (LTP) (Refs. 4 and 5),
Negative-Acknowledgement (NACK) Oriented Reliable
Multicast (NORM) (Ref. 6), and Saratoga (Ref. 7). Our goal is
to test the performance of each of these protocols in a set of
varying link conditions. In doing so, we hope that DTN agents
may be configured to use the most appropriate transport
mechanism available to them.

2.0 Protocols
The protocols discussed in this document are all designed to

be reliable in the face of suboptimal conditions. A common
trait of space links is asymmetry, where the link capacity
differs greatly depending on the direction of communication.
Space communication links are often highly asymmetric with
Mb/s data transmission from a spacecraft and only a few Kb/s
data transmission to a spacecraft. This restricts the ability to
periodically transmit positive acknowledgments (ACK) of
data reception, a typical feedback mechanism utilized in many
terrestrial protocols.

To prevent flooding these links with ACKs, we identified
protocols that utilize negative acknowledgments (NACK).
NACK based protocols transmit focus on sending status
messages when data is considered missing or corrupt. This
greatly reduces the amount of messages transmitted when the
link is moderately prone to errors and loss. While space links
can be considered fairly noisy and prone to large error rates,
link layer coding techniques are often used to correct those
errors reducing the impact to the transport layer protocols.
Burst errors can still be prevalent; however, sequential loss of
data is well accommodated by NACK based algorithms.

As we will discuss, NORM is purely NACK based.
Saratoga uses NACKs throughout a file transfer but sends an
acknowledgment at the completion of a file transfer. CFDP
uses both ACKs and NACKs. LTP offers both unreliable
transmission and ACK-based reliable transmission.

The convergence layers studied in this paper can be run in
conjunction with several typical transports found on all major
operating systems. In our studies, all of our tests were
conducted over the User Datagram Protocol (UDP), which
provides the best environment to observe the behavior of each
convergence layer under study. In addition, the convergence
layers automatically handle fragmentation and reassembly of
any over sized data payloads that exceed the transports MTU.

NASA/TM—2012-216047 2

UDP is unreliable, and thus timeout mechanisms are left to
the convergence layer. Not all links in a disconnected network
have high latencies. Therefore, sometimes timers are either
short or unnecessary. This level of control varies. In the
chosen implementation of LTP, the timer values are
determined automatically. The timeout values in the version of
CFDP used may be compiled in. Timeout values in NORM are
not configurable. Saratoga timeouts are specifically
unspecified. The version of Saratoga used for testing enabled
manual control of timeout values.

With NORM and with the version and implementation of
Saratoga used in testing, reliability is always present. In
CFDP, reliability is optional dependent on the class of service
selected. In LTP, the user may select some or all of a given
payload to be transmitted reliably. While both transmission
error and link disruption may cause packet loss, only losses
due to transmission error are studied in this paper.

2.1 CCSDS File Delivery Protocol (CFDP)
The CCSDS File Delivery Protocol (CFDP) is a

recommended standard for transmission of files to and from
spacecraft data storage. In addition to file transfer functionality,
the protocol includes simple file management capabilities
including the ability to create and remove directories. It is
capable of operating in a wide variety of mission configurations
ranging from relatively simple low earth orbit spacecraft to
complex arrangements of orbiters and landers supported by
multiple ground facilities and transmission links. It is
independent of the data storage technology and makes no
assumptions regarding the type of information being transferred
so it can be used in a wide variety of scenarios involving
loading, dumping, and control of spacecraft data storage. It is
scalable and has been designed to minimize the required
operational resources (Ref. 3). CFDP has the ability to cancel,
suspend (freeze), and resume (thaw) an in-progress file transfer
in order to deal with the intermittent connectivity associated
with spacecraft. CFDP supports four classes of operations:
Class 1—Unreliable Transfer; Class 2—Reliable Transfer,
Class 3—Unreliable Transfer Via One Or More Waypoints In
Series, and Class 4—Reliable Transfer Via One Or More
Waypoints In Series (Ref. 3).

For the purposes of this evaluation, the Class 2 Reliable
Transfer mode was used to allow a file to be reliably
transferred between two nodes using NACKs. A class 2 CFDP
file transmission can be broken down into four phases. In
phase 1, the file metadata followed by the file data are
transmitted down to the receiver one block at a time until the
transfer is complete. In phase 2, or handoff phase, the sender
transmits an end of file notification to the receiver, which in
turn is expected to acknowledge it. In phase 3, the receiver
attempts to fill any missing gaps in the transmission by
sending a negative acknowledgement to the sender to request

that it retransmits the missing blocks. In phase 4, the receiver
transmits that it has finished successfully receiving the file and
the sender should acknowledge the end of transmission.

2.2 Licklider Transmission Protocol (LTP)
The Licklider Transmission Protocol (LTP) is designed to

provide reliable connectivity over single-hop deep-space RF
links with extremely long round-trip times and frequent
interruptions in connectivity by using an Automatic Repeat
reQuest (ARQ) error-control method that solicits selective
acknowledgments (SACK). (Refs. 4 and 5) LTP treats user
data as blocks, which may be comprised of two parts: a “red”
part that must be acknowledged and retransmitted if lost, and a
“green” part that is a best-effort delivery. Either part of the
block may be omitted such that a packet consists of only a
single color. (Ref. 5) The “red” and “green” parts of the block
are not intended to denote any priority and “red” blocks will
thus not be delivered with a higher priority than “green”
blocks. While LTP is designed to run directly over a data-link
layer protocol it may be deployed over UDP in software
development or testing purposes to form a “local data-link
layer” (Ref. 5). During these evaluation tests, the LTP
implementation was configured to transmit wholly “red” parts
in the data blocks over UDP, thus providing reliable
retransmission of blocks dropped due to errors.

2.3 Negative-Acknowledgement (NACK)
Oriented Reliable Multicast (NORM)

The Negative-Acknowledgement (NACK) Oriented
Reliable Multicast (NORM) protocol is designed to provide
reliable transfer of data from one or more senders to a group
of receivers of an IP multicast network. However, NORM can
be used for unicast transmission (multicast group of one). The
primary design goal is to provide efficient, scalable, and
robust bulk data transfer across possibly heterogeneous IP
networks (Ref. 6). It is able to adapt to a variety of network
conditions autonomously with little or no pre-configuration. It
is tolerant of mobile and wireless networks that provide
unreliable connectivity including situations where there is
heavy packet loss and large transmission delays. NORM is
designed mainly under the assumption of a single sender
transmitting data content out to a group of receivers. Unlike
the other protocols evaluated in this paper, NORM is not
inherently designed to target space communications. However,
its ability to tolerate large propagation delays makes it an
interesting comparison to the others.

2.4 Saratoga
Saratoga is a peer-to-peer file transfer protocol capable of

efficiently transferring small files, large files, and streaming

NASA/TM—2012-216047 3

continuous data. It was originally developed as a low-
overhead alternative to CFDP and is used today to transfer
data from Surrey Satellite Technology Ltd (SSTL) Disaster
Monitoring Constellation (DMC) remote-sensing satellites in
low-Earth orbit. The satellites feature a very fast downlink
ranging from 8 Mbps to over 200 Mbps with uplink speeds of
only 9.6 kbps. The Saratoga protocol was thus designed with
these highly asymmetric links in mind in order to efficiently
transfer the files to the ground (Ref. 7).

Saratoga uses a Selective Negative Acknowledgement
(SNACK) mechanism to provide reliable retransmission of
data (Ref. 7). Like CFDP, the newest specification of Saratoga
supports a number of file management operations including
“get” downloads, “put” uploads, directory listing, and deletion
requests. The “put” transactions allow the immediate sending
of packets without waiting for a status acknowledgement from
the receiver. This unidirectional behavior is ideal for deep-
space scenarios with large propagation delays where
SYN/ACK style communications protocols are undesirable.
The “get” transactions are better suited for scenarios with low
propagation delays such as the transmission from LEO
satellites to the Earth ground stations and were the only type
of file transfer transaction supported by the original version 0
protocol implementation.

3.0 Test Environment and Setup
3.1 Test Systems

The experimental lab setup consists of three servers each
running 64-bit Ubuntu GNU/Linux 10.04 and containing a
2 GHz AMD Opteron 246 CPU, 1 GB of RAM, 80 GB SATA
disk drive, and multiple Broadcom Tigon3 Gb Ethernet
interfaces. Two of the systems were utilized to send and
receive test data, while the third system was used to control
and monitor the link between the source and destination hosts.
The test path was constructed by directly cabling the three
servers, configured in a simple dumbbell topology as show in
Figure 1.

The channel emulator system uses a software-based network
emulator written for the NASA Compatibility Test Set (CTS)
project that allows channels to be defined between interfaces
with varying amounts of delay, bit error per packet, and rate
constraints applied to it. The software provides an XML-RPC-
based API to interact and control the channel parameters
dynamically based upon the requirements of the testing phase
(Ref. 8).

Figure 1.—Test environment network topology.

In addition to the test path, each machine was also
connected to an internal lab network providing a means of
managing and monitoring the nodes without negatively
impacting the test results.

3.2 Network Topology
The IP addressing scheme of the environment employed

standard RFC 1918 private addresses in the 192.168.0.0/16
range. The IP address of the source test interface was
configured as 192.168.100.1 and the destination test interface
as 192.168.100.2. The channel emulator acted as a bridge
between the source and destination nodes and had no IP
addresses accessible on its interfaces facing those systems.
The second management interface for all three systems was
connected to the internal laboratory network and used for
Secure Shell (SSH) access and out-of-band configuration
including instantiating the test runs. All test data was thus
isolated between the 192.168.100.1 and 192.168.100.2
interfaces of the test hosts.

3.3 Protocol Implementations
The protocol implementations ultimately chosen for testing

were standalone protocol implementations that did not require
any additional dependencies or frameworks to operate. For
these experiments, we chose the following implementations
for testing:

• CFDP—NASA GSFC CFDP Engine 3.1a1 (Ref. 9)
• LTPlib—Mercurial snapshot (4-11-2011) (Ref. 10)
• NORM—Subversion snapshot (3-25-2011) (Ref. 11)
• Saratoga—v0 Perl snapshot (4-11-2011) (Ref. 12)

We first evaluated versions of CFDP obtained from JPL;

however, efforts to compile and run them in our environment
were met with only limited success and the stability and
results were erratic. We were able to later obtain the GSFC
CFDP Engine. Upon evaluation, we found that the GSFC code
compiled cleanly and ran very well in our environment. Due to
limited time available for debugging the JPL CFDP code, the
GSFC CFDP Engine was selected for these tests.

For LTP, we found that there were two commonly available
implementations available: a Java version from Ohio
University (Ref. 13) and LTPlib from Trinity College in
Dublin, Ireland (Ref. 10). The Ohio University Java version,
lasted updated in late 2006, was deemed too dated to use.
Unlike the Ohio University implementation, the LTPlib
implementation was still actively maintained and provided
LTP support to the DTN2 reference implementation. We
initially faced a few variable type portability problems related
to LTPlib being developed on a 32-bit architecture while we
were using a 64-bit architecture, but these were patched.

NASA/TM—2012-216047 4

Another problem we faced was that attempting to transfer files
larger than a few megabytes would result in the ltpd daemon
crashing. The author was able to make some simple fixes to
the code that allowed us to transfer up to about 10 MB files
successfully, but we continued to face problems transferring
files much larger than that without the process crashing. The
large file stability problem in the LTPlib code at the time of
testing led us to constrain all the tests to use 10 MB files as the
maximum size across all the protocols for consistency. If this
limitation had not existed, it would have been preferable to use
much larger files in the 100 MB to 1 GB range as the
maximum size.

The version of NORM we obtained to use for testing was
the latest Subversion snapshot available at the time and was
recommended over the stable version by the NORM
development team.

While there are various different versions and flavors of
Saratoga implementations available, we decided to test the
standalone version 0 implementation developed in Perl at
GRC. While there are currently version 1 implementations
being developed in both Perl and C++, it was determined they
were not ready for a proper evaluation at the time of testing.
Other versions of Saratoga available were custom-designed for
a specific environment and could not be easily run in our
environment without additional development effort to
customize it. Ideally during these tests a “put” operation
would have been used to transfer the data in order to more
accurately model against the three other protocols. The other
protocols operate by pushing data from the sender to the
recipient immediately without waiting for acknowledgment,
but the Saratoga's v0 protocol PERL implementation used did
not support a “put” operation so we were constrained to use
the “get” operation to initiate the file transfer instead.

For the test setup, a set of UNIX shell and Expect scripts
was designed to automate the testing and ensure each run was
handled consistently. The Expect scripts began by configuring
the network emulator, via its XML-RPC interface, to the
desired delay, line rate constraints, and bit error per packet
rate. The Expect script would then spawn a tcpdump packet
capture of all the test traffic by listening on the network
emulator interface’s connected to the receiver. It would then
remotely connect to the source and destination nodes via SSH
and execute the protocol executables for the desired protocol
implementation run. Once the run was complete, it would tear
down the spawned processes and loop back around for another
run if necessary.

Due to an oversight during the setup of the test
environment, only a single tcpdump packet capture point on
the receiver side of the channel emulator was in place
resulting in traffic only being captured from the receiver's
point of view. In order to try to compensate for not having a
packet capture running on the sender's side of the channel we
added the round-trip delay time to the total transmission time

and sender-to-receiver transmission times in order to estimate
the goodput1 and throughput2 from the sender’s point of view.
The receiver-to-sender times and throughput statistics
calculated during post-processing did not need to be adjusted.

4.0 Performance Tests
Each of the protocol implementations were put through 10

runs of the 144 different permutations of line rates, delays,
errors, and file sizes in Table I during testing to provide a pool
of data for performance analysis. For each protocol, a series of
test data files was created and put into their working
directories to be made available for the sender to transmit. For
the purposes of this evaluation, all the implementations were
tested over symmetric links configured at the line rates
specified in that permutation of the test. In all cases, attempts
were made to configure the protocols that had a configurable
MTU size, if possible, to send a packet of approximately 1 KB
as a common size to match the implementations where the size
was hard-coded at compile time like CFDP.

TABLE I.—TEST PARAMETERS

Line rates, Kb/s 1000, 10000
Delay, ms 25, 250, 1250
Bit error rate 0, 10×10–6, 10×10–5, 10×10–4, 10×10–3, 10×10–2
File size, KB a 10, 100, 1000, 10000

The Saratoga v0 Perl implementation was not able to consistently transfer
files successfully at 10×10–6 b error rate due to implementation bugs and was
excluded at this level from the results.
a For the purposes of the creation of the test files and in all references to file
sizes, 10 KB = 10×103, 100 KB = 100×103, 1 MB = 1×106, 10 MB = 10×106.

4.1 CFDP
The GSFC CFDP Engine was configured and compiled

using its default “flight” profile as distributed. The default
outgoing file chunk size and max chunk size were kept at
997 B. The maximum concurrent transactions parameter was
also set at the default of 1000 with 20 max gaps per
transaction. Other default parameters of interest include the
ACK limit of 250, ACK timeout of 50, an inactivity timeout of
86400, NAK limit of 250 and the NAK timeout of 50.
According to the tcpdump captures, the average packet size
during the test runs was 1011 B, including protocol headers,
keeping it near our 1024 B target for packet size.

The command line execution of the sender side was as
followed including sample output from a run:

Sender> ./cfdp_flight 101
CFDP Sample Application Version 2007_06_08 (static allocation
only)
 MAX_CONCURRENT_TRANSACTIONS=1000.

1 Goodput is defined as the throughput of the payload file without regard to
the protocol overhead. It is calculated by taking the total number of bits of the
file size and dividing it by the total time of transmission.
2 Throughput is defined as the total number of bits transmitted divided by the
total time of the transmission.

NASA/TM—2012-216047 5

 MAX_GAPS_PER_TRANSACTION=20.
 MAX_FILE_CHUNK_SIZE=997
 MAX_PDU_LENGTH=1029.
 MAX_DATA_LENGTH=1029.
 Uses 672 bytes per open transaction.
cfdp_engine: entity-id set to '101'.

*** MIB parameter settings ***
 Entity-ID = 101
 Issue EOF-Sent Indication? = 1
 Issue EOF-Received Indication? = 1
 Issue File-Segment-Sent Indication? = 0
 Issue File-Segment-Received Indication? = 0
 (default) Ack-limit = 250
 (default) Ack-timeout = 50
 (default) Nak-limit = 250
 (default) Nak-timeout = 50
 (default) Inactivity-timeout = 86400
 (default) Outgoing file chunk size = 997 (bytes)
 (default) Save-incomplete-files = 0

A single command was input into the sender’s session to
initiate the transfer:

Sender> put testfile.$size 102
<Link_Type> We now have a two-way link.
cfdp_engine: version = 3.1a1

The receiver side command line execution was as follows
including sample output from the corresponding test run:

Receiver> ./cfdp_flight 102
CFDP Sample Application Version 2007_06_08 (static allocation
only)
 MAX_CONCURRENT_TRANSACTIONS=1000.
 MAX_GAPS_PER_TRANSACTION=20.
 MAX_FILE_CHUNK_SIZE=997
 MAX_PDU_LENGTH=1029.
 MAX_DATA_LENGTH=1029.
 Uses 672 bytes per open transaction.
cfdp_engine: entity-id set to '102'.

*** MIB parameter settings ***
 Entity-ID = 102
 Issue EOF-Sent Indication? = 1
 Issue EOF-Received Indication? = 1
 Issue File-Segment-Sent Indication? = 0
 Issue File-Segment-Received Indication? = 0
 (default) Ack-limit = 250
 (default) Ack-timeout = 50
 (default) Nak-limit = 250
 (default) Nak-timeout = 50
 (default) Inactivity-timeout = 86400
 (default) Outgoing file chunk size = 997 (bytes)
 (default) Save-incomplete-files = 0

<Link_Type> We now have a two-way link.
cfdp_engine: version = 3.1a1.
----------> (101_1) MD: 'testfile.1m'.
:::Machine_Allocated trans 101_1.
>>> Transaction 101_1 started (receiving; file name not yet
known)...
:::MD_Recv trans 101_1, class 2, receiving 'testfile.1m' (1000000
bytes).
----------> (101_1) EOF: xsum=00000000, file-size=1000000.
:::EOF_Recv trans 101_1.
<---------- (101_1) Ack-EOF: .
<---------- (101_1) Fin: .
----------> (101_1) Ack-Fin: .
:::Trans_Finished trans 101_1 successful.
:::Machine_Deallocated trans 101_1.
>>> Transaction 101_1 (testfile.1m -> testfile.1m):

4.2 LTP
The LTPlib build was configured using the default

parameters using the GNU auto-configure script (./configure)
and compiled. No source code or header files were modified
during the build process and all parameters were configured
on the command line during run time. LTP’s MTU size was
configured to be restricted to 1024 B. The resulting packets,
according to the tcpdump capture, were on average 1011 B

including all protocol headers, keeping it near our 1024 B
target for packet size.

The receiver side was started first in server mode and the
command line execution was as follows, including sample
output from the corresponding run:

Receiver> ./ltpd -L 192.168.100.2:1113 -D 192.168.100.2:1113 -S
192.168.100.1:1113 -m server -g -v -2 1024 -b 12000000

ltpd running in verbose mode
LTPD: It seems silly to set a keyid () for the off or NULL
ciphersuite (254)!
LTPD: Local parameters are:
LTPD: crypto-cfg=ltpd.crypt
LTPD: disksync=false
LTPD: daemon=false
LTPD: input=ltpd.in
LTPD: log=ltpd.log
LTPD: mode=1
LTPD: output=ltpd.out
LTPD: verbose=true
LTPD: l2mtu=1024
LTPD: LTP-T cfg=ltpt.cfg
LTPD: dowait=true,sleeptime=10
LTPD: rxbufsize=12000000
LTPD: blocking=false
LTPD: Protocol parameters are:
LTPD: dest=192.168.100.2:1113
LTPD: source=192.168.100.1:1113
LTPD: listen=192.168.100.2:1113
LTPD: redlen=-1
LTPD: cookies=0
LTPD: cookie_grace=5
LTPD: Cipher=254,KeyID=
LTPD: Starting run at: 2011-09-21 15:14:46.553
LTPD: ltpd running in process: 17433
LTPD: calling recvfrom 2011-09-21 15:14:46.654
LTPD: Got 1000000 bytes back (0-th time) from 192.168.100.1:1113
at 2011-09-21 15:15:05.536
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: getsockopt(LTP_SO_SOP) returned error -1
LTPD: too many getsockopt errors - 10
LTPD: You have compiled ltpd as a DODGY FILE SERVER take a look at
ltpd.cc:416
LTPD: Request is
LTPD: Wrote 1000000 bytes to ltpd.out-192.168.100.1.1113
LTPD: calling recvfrom

The sender side was started in client mode and the
command line execution was as follows including sample
output from the corresponding test run:

Sender> ./ltpd -D 192.168.100.2:1113 -S 192.168.100.1:1113 -m
client -v -2 1024 -b 12000000 -i testfile.$size

ltpd: no process found
ltpd running in verbose mode
LTPD: It seems silly to set a keyid () for the off or NULL
ciphersuite (254)!
LTPD: Local parameters are:
LTPD: crypto-cfg=ltpd.crypt
LTPD: disksync=false
LTPD: daemon=false
LTPD: input=testfile.1m
LTPD: log=ltpd.log
LTPD: mode=0
LTPD: output=ltpd.out
LTPD: verbose=true
LTPD: l2mtu=1024
LTPD: LTP-T cfg=ltpt.cfg
LTPD: dowait=true,sleeptime=10
LTPD: rxbufsize=12000000
LTPD: blocking=false
LTPD: Protocol parameters are:
LTPD: dest=192.168.100.2:1113
LTPD: source=192.168.100.1:1113
LTPD: listen=127.0.0.1:1113
LTPD: redlen=-1
LTPD: cookies=0
LTPD: cookie_grace=5
LTPD: Cipher=254,KeyID=

NASA/TM—2012-216047 6

LTPD: Starting run at: 2011-09-21 15:14:48.632
LTPD: ltpd running in process: 7208
LTPD: Read 1000000 bytes from testfile.1m OK
LTPD: sending 1000000 bytes from file testfile.1m at 2011-09-21
15:14:48.734 to 192.168.100.2:1113
LTPD: finished sending

4.3 NORM
In addition to the NORM source code itself, the ProtoLib

library had to be obtained from the same site as NORM
depends on it in order to compile. After NORM is unpacked
into a directory, the ProtoLib library must be unpacked into
the NORM subdirectory as a dependency for the configuration
and compilation to be successful.

Both ProtoLib and NORM are configured using their WAF
configuration infrastructure by calling “./waf configure”. It is an
autoconfiguration framework similar to GNU autoconf used by
other programs like LTPlib. The default values were chosen
wherever necessary. ProtoLib should be configured and compiled
before the process is repeated within the NORM directory.

Configuration of NORM is available entirely on the
command line. According to the tcpdump packet captures of
the test runs, the average NORM packet size was 1056 B,
including protocol headers, keeping it near our 1024 B target
for packet size.

The Expect scripts first setup the receiver side. It is shown
below with the executable command line and corresponding
run output:

Receiver> ./norm address 224.1.2.3/12347 interface eth2 rxcachedir
. debug 10 id 8472

Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1
to 10
Proto Debug: NormApp::Notify() unhandled event: 10
Proto Debug: NormSession::ReceiverHandleCommand() node>8472 new
remote sender:8471 ...
Proto Debug: NormApp::Notify(REMOTE_SENDER_ACTIVE) ...
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC
back-off: 0.785881 sec)...
Proto Debug: NormApp::Notify(RX_OBJECT_NEW) ...
Proto Info: 08:18:04.211756 start rx object>59332
sender>15956196919349354775
Proto Detail: NormSenderNode::HandleObjectMessage() node>8472
sender>8471 new obj>59332
Proto Debug: NormApp::Notify(RX_OBJECT_INFO) ...
Proto Debug: NormSenderNode::HandleObjectMessage() node>8472
allocating sender>8471 buffers ...
Proto Trace: NormApp::Notify(RX_OBJECT_UPDATED) ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>0 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>1 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>2 completed block ...
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472
sender>8471 new grtt: 0.246600 sec
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>3 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>4 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>5 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>6 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>7 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>8 completed block ...
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC
back-off: 0.672307 sec)...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>9 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>10 completed block ...

Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>11 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>12 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>13 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>14 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>15 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>16 completed block ...
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472
sender>8471 new grtt: 0.228400 sec
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC
back-off: 0.792389 sec)...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>17 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>18 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>19 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>20 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>21 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>22 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>23 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>24 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>25 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>26 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>27 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>28 completed block ...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>29 completed block ...
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472
sender>8471 new grtt: 0.195800 sec
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC
back-off: 0.686003 sec)...
Proto Detail: NormObject::HandleObjectMessage() node>8472
sender>8471 obj>59332 blk>30 completed block ...
Proto Debug: NormApp::Notify(RX_OBJECT_COMPLETED)

The Expect script then executed the corresponding sender-
side call with the following command line parameters and run
output. NOTE: $ratek is defined as the number of bits per
second for the run and the intention was to have it match the
network emulator line rate setting. So for this run for instance,
$ratek = 1000000. This does differ slightly from the way the
emulator was configured though as its configuration uses
Kbps and was configured as 1000 Kbps, which works out to
1024000 bps.

Sender> ./norm address 224.1.2.3/12347 interface eth2 sendfile
testfile.$size id 8471 debug 10 rate $ratek

Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1
to 10
Proto Info: 08:18:04.248854 enqueued tx object>59332 sender>8471
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to
new grtt to: 0.246600 sec
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to
new grtt to: 0.228400 sec
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to
new grtt to: 0.195800 sec
Proto Debug: NormApp::Notify(TX_OBJECT_SENT) ...
Proto Debug: NormApp::Notify(TX_QUEUE_EMPTY) ...
Proto Fatal: norm: End of tx file list reached.
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:1)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:2)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:3)...
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471

NASA/TM—2012-216047 7

increased to new grtt>0.228400 sec
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:4)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:5)...
Proto Info: REPORT time>08:18:14.246113 node>8471

Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 825.234
grtt>0.228400
Proto Info:
**

Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:6)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:7)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:8)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:9)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:10)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:11)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:12)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:13)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:14)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:15)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:16)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:17)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:18)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:19)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush
queued (flush_count:20)...
Proto Trace: NormSession::Serve() node>8471 sender flush complete
...
Proto Debug: NormApp::Notify(TX_FLUSH_COMPLETED)

4.4 Saratoga
The Saratoga implementation was Perl-based and being an

interpreted language, there are no source code configuration
and compilation steps necessary. Saratoga v0 is configured via
a single configuration file named sara.conf. Different versions
of these were created with different line rate values contained
within and the Expect script was responsible for adjusting
symbolic links to these so that the Saratoga binary would read
the right configuration file depending on the line rate
associated with the test parameters on the network emulator. A
sample sara.conf looks like:

$C_hostaddr = "192.168.100.1"; #hostname of this machine Saratoga
is running on
$C_peeraddr = "192.168.100.2";#address of the peer machine
$C_verbose = 0; # set to 1 to turn debugging on
$C_rate = 1000; # servers transmission data rate in Kbps. 0 =
line rate.

Saratoga was then started on the sender side (verbosity and
debugging was turned off for performance reasons so there is
no further output during the test run):

Sender> ./saratoga_v0.pl
info: listening at 192.168.100.1:4000

With Saratoga, the receiver side initiates the file transfer via
a “get” command to the sender. The following is the receiver
executing, followed by the test run output:

Receiver> ./saratoga_v0.pl
info: listening at 192.168.100.2:4000
saratoga> get testfile.1m
saratoga> Transferring file: testfile.1m, length is 1000.0 Kbytes.
saratoga> writing file testfile.1m
1000000 byte file was received in 8 seconds. 929.2 kbits per
second.

According to tcpdump packet captures at the time of the test
runs, the average Saratoga packet during transmission was
1034 B including protocol overhead, keeping it near our 1024
B target for packet size.

4.5 Maximum Performance
In addition to the test runs of the protocols that were

constrained by the network emulator, a series of “maximum
performance” test runs were run to provide a performance
baseline for each of the convergence layer protocols. While the
network topology stayed the same physically, the network
emulator software was disabled and replaced with a simple
network bridge interface between the 2 Gb-Ethernet interfaces
on the channel emulator system resulting in the link being
completely unrestricted of any delay, packet error, or rate
constraints. Traffic was again captured at the same location
using tcpdump as each of the protocol implementations ran
through their maximum performance runs with an
unconstrained gigabit-Ethernet link, no delay, and no artificial
bit error applied with results shown in Figure 2. To verify the
unconstrained link, iperf was run on the sender (client mode)
and receiver side (server mode) to show the link capable of
approximately 940 Mb/s of TCP traffic.

Sender> iperf -c 192.168.100.2
--
Client connecting to 192.168.100.2, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 192.168.100.1 port 56424 connected with 192.168.100.2
port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.10 GBytes 941 Mbits/sec

Receiver> iperf -s
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 192.168.100.2 port 5001 connected with 192.168.100.1
port 56424
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 1.10 GBytes 939 Mbits/sec

Figure 2.—Baseline protocol goodput on an

unrestricted link.

NASA/TM—2012-216047 8

Command line and configuration file parameters were the
same as the regular test runs with the exception of the two
implementations that had to be passed the line rate as a
configuration parameter, NORM and Saratoga. During initial
performance testing it was found that NORM tended to
perform unreliably if its rate option was set to more than
100000000 bps (about 100 Mbps) and would actually result in
longer transfer times than if set to a lower rate. For the sake of
reliability, NORM was told to constrain itself to
approximately 100 Mbps as it seemed to top out around
60 Mbps in our environment. It was not clear whether this was
due to hardware processing constraints or timing problems
with the software itself related to its rate constraints.

Likewise, Saratoga had problems when its line rate was set
to a value above 85000 Kbps (approximately 85 Mbps) and so
for the sake of reliable performance testing it was configured
to constrain itself to a maximum of 85 Mbps. It is unclear
whether the performance-related problems are related to the
fact that the code is running in the interpreted Perl language or
some other reason related to protocol timing or hardware
processing constraints. While the Saratoga implementation is
supposed to have a line rate option of “0”, meaning unlimited,
it was found to not work reliably and resulted in bugs popping
up in the code related to uninitialized variables and division by
zero errors. Since this was not a code development effort, the
bugs were noted so they could be passed along to its
developers while we attempted to work around them as best as
possible. As with NORM, Saratoga tended to top out less than
60 Mbps in our environment so the artificial line rate
constraint in its configuration did not appear to be an extra
hindrance to its performance during this testing phase.

5.0 Test Results
5.1 Baseline

The purpose of these protocols is to make the most out of
unreliable links. Thus, the analysis will focus on how well the
protocols cope with various error rates. Due to time
constraints and the number of tests run there are ten runs for
each permutation. This does not lend the tests to parametric
statistical analysis and therefore box plots are employed for
visualization purposes. Several types of measurements were
taken during each test. The focus in this paper will be on the
goodput, the number of packets sent from the sender to the
receiver, and the number of packets sent from the receiver to
the sender. As mentioned in the previous section, a baseline
performance test was performed to determine the maximum
goodput of the protocol implementations over an unrestricted
link. A 100 MB file was sent without the channel emulator in
place and the rate limiting options in Saratoga and NORM set
to provide the maximum performance.

As we see from the figure above, CFDP, NORM, and
Saratoga all performed within the same order of magnitude

when unrestricted by channel emulation. Despite many
attempts to tweak the parameters of LTPlib, it was
consistently sending at a lower rate than the other protocols. In
Figure 3, the dot on LTP represents an outlier that is not
visible on the scale that includes all protocols simultaneously.
As can be seen in Figure 4, the number of packets from the
sender to the receiver (STR) for the baseline is displayed.

We would expect a 100 MB file transfer would require
approximately 100,000 packets to be sent without factoring in
protocol overhead, but as can be seen in Figure 5 the number
of packets sent varied a bit due to the differences in payload
size not exactly matching up with the desired 1024 B MTU
size. For example, the average maximum packet sizes
recorded in the captures despite tweaking the configurations of
the implementations were:

• CFDP—1011 B
• LTP—1010 B
• NORM—1056 B
• Saratoga—1034 B

Figure 3.—Baseline goodput of protocols on unrestricted link.

Figure 4.—Number of baseline sender-to-receiver

packets captured on the unrestricted link.

NASA/TM—2012-216047 9

Figure 5.—Number of baseline receiver-to-sender

packets captured on the unrestricted link.

Figure 6.—Average protocol goodput rates of the

protocols referenced in the analysis in Sections 4.2
to 4.5.

Figure 7.—The effects on the goodput of transferring

different amounts of data using CFDP over the
10 Mbps constrained link.

As links to space assets are often asymmetrical, it is
beneficial to see how many packets are sent from the receiver
to the sender (RTS) when our link condition is ideal. The
baseline RTS packet count follows.

With no errors, the RTS packet count is between 2 and 9 on
our ideal link with NORM and LTP requiring many more
feedback packets to the sender than CFDP or Saratoga. The
average goodput rates at 25ms can be seen in Figure 6.

5.2 CFDP
Intuitively, as the payload size increases we would expect

the goodput to also increase because less of the transmission is
consumed by protocol overhead and NACKs. To illustrate
CFDP's behavior as the payload increases, the error rate is set
to zero and 100K, 1M, and 10M files are sent. All non-
baseline tests (CFDP and otherwise) have the latency set to
25 ms and line rate set to 10 Mbps.

As we can see, the link is more efficiently used when the
file size increases resulting in higher goodput as expected.

Since we now know to send larger files we will discover
what happens when the channel emulator induces errors at
various rates. For the remainder of the figures in this section
the file size is fixed at 10 MB, the line rate is set to 10 Mbps,
and the probability of a bit error in a packet is set to 0,
0.00001, 0.0001, 0.001, 0.01, and 0.1. As before, the goodput
is used to show how much longer it takes to get payload data
across a lossy link.

The purpose of showing the case where ten percent of the
packets have a bit error is to show how gracefully the protocol
drops off. Naturally, we would expect the link would either
improve at this point or drop off completely. It is remarkable
how little variance there is in the goodput until it suddenly
starts to steeply drop off.

With the higher error rates, we would obviously expect the
need for more retransmission of lost or corrupted packets. As
the error varies, we plot the STR packet count. Figure 7 shows
the effects on goodput by varying the overall data size. Figure
8 shows the effects on goodput by varying the error rate on the
link. Figure 9 shows the effects of the number of sender-to-
receiver packets transmitted by varying the error rate.

Figure 10 is intuitive after seeing Figure 9—however it
more clearly illustrates the direct relation between error
probability and variance as they affect the goodput.

Retransmission of lost or corrupted packets will occur when
the receiver asks for it. The RTS packet count follows.

Even with an unrealistically high error rate, only about
70 KB worth of data are sent from the receiver to the sender to
successfully transfer the 10 MB file.

NASA/TM—2012-216047 10

Figure 8.—The effects on goodput of CFDP by varying

the error rate on the 10 Mbps constrained link.

Figure 9.—The effects on the number of sender-to-

receiver packets transmitted by CFDP by varying the
error rate on a 10 Mbps constrained link.

Figure 10.—This chart shows the effects of the number

of receiver-to-sender packets transmitted by CFDP by
varying the error rate on a 10 Mbps constrained link.

5.3 LTP
We begin the study of LTP with goodput versus file size

plots shown in Figure 11 as we did with CFDP.
While the same relation holds, that is, the larger the payload

the higher the goodput, the variance is much higher with LTP
than CFDP. This appears characteristic of either LTPlib or
LTP itself. In Figure 12, goodput is shown for the
transmission of a 10 MB file with varying error rates.

This plot is very hard to interpret by itself since the best
performing test runs of each variety are very similar. The 0.1
error rate case shows LTP outperforming CFDP in comparison
charts. To try to understand what is happening in Figure 13 we
plot STR packets versus error rates.

Figure 11.—The effects on the goodput of transferring

different amounts of data using LTP over the 10 Mbps
constrained link.

Figure 12.—The effects on goodput of LTP by varying

the error rate on the 10 Mbps constrained link.

NASA/TM—2012-216047 11

Figure 13.—The effects on the number of sender-to-

receiver packets transmitted by LTP by varying the
error rate on a 10 Mbps constrained link.

The case where there is no error exhibits comparatively low

variance but shows thousands more packets are being sent than
all other cases. When sending data over LTP in reliable mode,
acknowledgments are used. To get the complete picture of the
transmission we also need to visualize the RTS packet count.

LTP divides the data (including the header) into two parts: the
red part and the green part. The red part denotes the data to be
sent reliably with acknowledgment and in a typical LTP
transfer, at least the header is marked in this manner. The green
part is sent without positive or negative acknowledgment and
sent as a best effort. Figure 14 shows that two ACKs are sent
when there is no error. At the next lowest error-level, between 2
and 6 ACKs are sent. We see that with more two-way
communication LTP retransmits less. This corresponds with
Figure 12 where the goodput with an error probability of
0.00001 is at least as high as the goodput of the no-error case.

The behavior in Figure 12, Figure 13, and Figure 14
indicate that LTP is optimized for a lossy link.

5.4 NORM
As expected, NORM shows the same performance trend as

CFDP and LTP. As file size increases, so does the goodput as
shown in Figure 15.

Notice that the goodput of NORM is on the same order as
CFDP for larger files but CFDP outperforms NORM when
sending smaller 1 MB files. Figure 16 shows how NORM’s
goodput is affected by the error rate.

As expected, the variance increases with error and the
goodput decreases with error. In Figure 17 the STR count is
compared for various error rates.

The variance is minimal until the worst case. Even so, the
progression is very clearly defined—unlike LTP. However, LTP
still sends fewer packets from the sender to the receiver when
the packet error rate is at 0.1. Since the communication is bi-
directional, we have to consider the RTS packet traffic in our
analysis.

Figure 14.—The effects on the number of receiver-to-

sender packets transmitted by LTP by varying the
error rate on a 10 Mbps constrained link.

Figure 15.—The effects on the goodput of transferring

different amounts of data using NORM over the
10 Mbps constrained link.

Figure 16.—The effects on goodput of NORM by

varying the error rate on the 10 Mbps constrained link.

NASA/TM—2012-216047 12

Figure 17.—The effects on the number of sender-to-

receiver packets transmitted by NORM by varying the
error rate on a 10 Mbps constrained link.

In Figure 18, the RTS numbers are similar between LTP and
NORM (disregarding the outlier in LTP’s worst-case) and
they are both less chatty than CFDP.

5.5 Saratoga
As we have shown in the previous three protocol examples,

Figure 19 shows Saratoga’s goodput given a variety of file
sizes.

Saratoga performs in the same class as CFDP and LTP in
error-free conditions. A clear logarithmic relationship is
depicted. Figure 20 illustrates the goodput roll-off as error rate
increases. It is interesting that Saratoga outperformed the other
protocols for error rates from 0 to 0.01 but it would not work
with an error rate of 0.1 due to a decoding bug in the Perl
implementation that arose when the packets became too
corrupted. As such, we could not test the Saratoga v0
implementation at the 0.1 error rate reliably. It should be
stressed that this is not an problem with the protocol itself, but
rather the use of the Perl language in this particular
implementation that gave rise a bug with highly corrupted data
packets.

The variances in Figure 20 appear wider than the
competition, but keep the scale in mind since the 0.1-error
case is not included. In Figure 21 we see the STR traffic for
Saratoga.

The high error case shows a STR packet increase of roughly
100 packets. CFDP’s STR packet count increased nearly
20000 from 0 error to 0.01 error.

Figure 22 illustrates the RTS packet count for Saratoga.
It is seen that Saratoga is minimally chatty for error under

0.01. At the 0.01 error level, CFDP sends out between 7 and 9
packets from the receiver to the sender. Similarly, NORM and
LTP send fewer packets back to the sender at Saratoga’s
maximum error rate.

Figure 18.—The effects on the number of receiver-to-

sender packets transmitted by NORM by varying the
error rate on a 10 Mbps constrained link.

Figure 19.—The effects on the goodput of transferring

different amounts of data using Saratoga over the 10
Mbps constrained link.

Figure 20.—The effects on goodput of Saratoga by

varying the error rate on the 10 Mbps constrained link.

NASA/TM—2012-216047 13

Figure 21.—The effects on the number of sender-to-

receiver packets transmitted by Saratoga by varying
the error rate on a 10 Mbps constrained link.

Figure 22.—The effects on the number of receiver-to-

sender packets transmitted by Saratoga by varying
the error rate on a 10 Mbps constrained link.

Figure 23.—Protocol goodput comparison of 10 MB file

transfer at 1250 ms one-way delay at 10 Mbps.

5.6 Protocol Packet Analysis
In the following sections we took a closer look at a couple of

example file transfer scenarios for each transport protocol using
tcpdump packet captures recorded during a selected run to
illustrate the variation in the number of packets needed to
successfully transmit the file and cleanly terminate the session.
We attempted to determine why some protocol implementations
show a wide disparity in their performance in different link
conditions compared to similar protocols to determine whether
it was characteristic of the protocol itself or the implementation
of the particular implementation we were testing.

5.6.1 Example 1, Large Files, High Bandwidth
The following example file transfers occur at a 10 Mbps

line rate, with a 1.25 s one-way delay, and 0.0001 error rate on
a 10 MB file. Figure 23 illustrates the goodput results of a
high bandwidth, large file size transfer across varying error
rates with a high delay.

5.6.1.1 CFDP
CFDP’s file transfer termination phase finishes much

quicker than LTP or NORM and results in overall better
performance than these protocols due to the small amount of
time it waits before it concludes that the file was successfully
transmitted.

19:11:47.011739 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:47.012622 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:47.013507 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:47.014390 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 104
19:11:47.014562 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 20
19:11:47.014831 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 13
19:11:47.015065 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 43
19:11:49.518932 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:49.523781 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:49.523821 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
19:11:49.587337 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 12
19:11:52.087918 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 13

5.6.1.2 Saratoga
Saratoga, like CFDP, concludes the file transfer phase of

waiting for NACKs very quickly upon finishing sending the
data from the sender to the receiver.

13:12:40.716883 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
13:12:40.717785 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
13:12:40.718692 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 650
13:12:40.783605 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 7
13:12:40.888240 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18
13:12:41.889693 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18
13:12:42.891122 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18

5.6.1.3 LTP
LTP’s file transfer termination phase stays at the

WAIT_RP_ACK state waiting for acknowledgment from the
receiver that it has received all of the “red” parts before the
transfer can conclude. (Ref. 5) This appears to contribute to poor
performance when the file transfer is very small or there is a
large amount of latency. It may be possible to adjust the default
timers in LTPlib to help offset this to improve performance.

NASA/TM—2012-216047 14

12:12:13.683679 IP 192.168.100.1.52059 > 192.168.100.2.1113: UDP, length 1012
12:12:13.704069 IP 192.168.100.1.55879 > 192.168.100.2.1113: UDP, length 1012
12:12:13.724461 IP 192.168.100.1.46087 > 192.168.100.2.1113: UDP, length 1012
12:12:13.725345 IP 192.168.100.1.56090 > 192.168.100.2.1113: UDP, length 1012
12:12:13.745081 IP 192.168.100.1.54561 > 192.168.100.2.1113: UDP, length 663
12:12:23.267041 IP 192.168.100.1.39980 > 192.168.100.2.1113: UDP, length 663
12:12:33.244261 IP 192.168.100.1.50456 > 192.168.100.2.1113: UDP, length 663
12:12:37.648531 IP 192.168.100.2.60750 > 192.168.100.1.1113: UDP, length 73
12:12:37.648764 IP 192.168.100.2.47909 > 192.168.100.1.1113: UDP, length 73
12:12:37.700821 IP 192.168.100.2.36164 > 192.168.100.1.1113: UDP, length 73
12:12:43.242798 IP 192.168.100.1.43766 > 192.168.100.2.1113: UDP, length 13
12:12:43.280137 IP 192.168.100.2.48385 > 192.168.100.1.1113: UDP, length 12
12:12:47.030608 IP 192.168.100.2.51587 > 192.168.100.1.1113: UDP, length 73
12:12:47.030753 IP 192.168.100.2.33117 > 192.168.100.1.1113: UDP, length 73
12:12:47.051047 IP 192.168.100.2.51706 > 192.168.100.1.1113: UDP, length 73

5.6.1.4 NORM
With NORM, the file transfer termination phase is quite a bit

longer and occurs over the span of several minutes. In example
2, we detail how this is the result of the random back-off timers
to prevent flooding the multicast sender with feedback (Note:
NORM is optimized for multicast operations, not unicast.). This
obviously has a large impact on the goodput when we include
this end-of-transfer wait in our calculations. If we were to
ignore the nearly 2-minute wait, NORM would be much closer
to Saratoga and CFDP in terms of speed of the actual transfer as
it is just blasting UDP packets over the channel.

21:43:30.081301 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056
21:43:30.082220 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056
21:43:30.083141 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056
21:43:30.084061 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056
21:43:30.084981 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 672
21:43:30.085599 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:43:34.280349 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:43:34.519335 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 48
21:43:34.689731 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:43:41.874831 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:43:50.414888 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056
21:43:50.415801 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:43:53.266676 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:43:55.770422 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:01.124635 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:02.209320 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36
21:44:06.480576 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:10.357683 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:44:11.835213 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:17.190228 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:22.544591 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:27.899326 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:33.253640 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:35.989226 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:44:38.608427 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:42.246225 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36
21:44:43.963575 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:49.318088 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:44:54.672966 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:00.028188 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:05.383626 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:05.991198 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28
21:45:10.738577 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:12.850224 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36
21:45:16.092833 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:21.447353 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:26.802354 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:32.156632 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20
21:45:35.994465 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28

5.6.2 Example 2, Small Files, Low Bandwidth
In comparison to the large file transfer, using a very small

file of 10 KB, transferred at 1 Mbps with an error rate of
0.0001, we can see the entire packet capture to illustrate the
effects of the 1.25 s one-way delay on the file transfer with
each of the protocols. Figure 24 illustrates the goodput results
of a low bandwidth, small file size transfer across varying
error rates with a high delay.

Figure 24.—Protocol goodput comparison of 10 KB file transfer

at 1250 ms one-way delay at 1 Mbps.

5.6.2.5 CFDP
05:11:09.129333 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 42
05:11:09.130082 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.138363 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.146649 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.154933 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.163215 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.171500 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.179785 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.188067 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.196357 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.204637 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011
05:11:09.212921 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 44
05:11:09.213653 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 20
05:11:09.214258 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 13
05:11:09.214436 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 12
05:11:11.715268 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 13

As shown, CFDP is very efficient at transferring the file as

fast as possible over channel starting with the file metadata
and then the contents of the file itself followed by
acknowledgements from the receiver.

5.6.2.6 Saratoga
01:34:06.898516 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 32
01:34:09.400220 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 10
01:34:09.408768 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 266
01:34:09.417388 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.426008 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.434617 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.443226 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.451836 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.460470 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.469085 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.477693 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.486307 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034
01:34:09.494914 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 794
01:34:09.495976 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 7
01:34:10.496302 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18
01:34:11.497755 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18

As observed, Saratoga and CFDP’s performance is almost
entirely impacted by the small number of packets transmitted
vs. the large round trip latency for the NACK processing in
these examples. Saratoga’s file transfer is very similar to
CFDP with the exception of requiring the initial “get” packet
from the receiver due to the limitations of the v0 protocol.
Once the sender receives the “get” request, it sends the
metadata and contents of the file in the ensuing packets in a
similar manner as CFDP. The file transfer is then concluded

NASA/TM—2012-216047 15

by the receiver acknowledging the transmission and, if
necessary, requesting the retransmission of any missing blocks
of data via NACKs.

5.6.2.7 LTP
00:20:27.634931 IP 192.168.100.1.42791 > 192.168.100.2.1113: UDP, length 1009
00:20:27.643204 IP 192.168.100.1.60433 > 192.168.100.2.1113: UDP, length 1010
00:20:27.655298 IP 192.168.100.1.59690 > 192.168.100.2.1113: UDP, length 1010
00:20:27.675556 IP 192.168.100.1.51936 > 192.168.100.2.1113: UDP, length 1010
00:20:27.695793 IP 192.168.100.1.41218 > 192.168.100.2.1113: UDP, length 1010
00:20:27.716054 IP 192.168.100.1.47606 > 192.168.100.2.1113: UDP, length 1010
00:20:27.736278 IP 192.168.100.1.36030 > 192.168.100.2.1113: UDP, length 1010
00:20:27.756563 IP 192.168.100.1.58628 > 192.168.100.2.1113: UDP, length 1010
00:20:27.776804 IP 192.168.100.1.39097 > 192.168.100.2.1113: UDP, length 1010
00:20:27.797062 IP 192.168.100.1.59594 > 192.168.100.2.1113: UDP, length 1010
00:20:27.817272 IP 192.168.100.1.39914 > 192.168.100.2.1113: UDP, length 100
00:20:27.845487 IP 192.168.100.2.33163 > 192.168.100.1.1113: UDP, length 24
00:20:30.368747 IP 192.168.100.1.47307 > 192.168.100.2.1113: UDP, length 15

LTP is similar to CFDP and Saratoga in that it is waiting for

the NACK to be processed and to receive the reply from the
sender to conclude that the transmission is finished and is
mostly affected by network latency at these parameters.

5.6.2.8 NORM
16:57:21.057915 IP 192.168.100.2 > 224.0.0.22: igmp v3 report, 1 group record(s)
16:57:22.525799 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:22.526493 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 40
16:57:22.527145 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.535765 IP 192.168.100.1 > 224.0.0.22: igmp v3 report, 1 group record(s)
16:57:22.536294 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.544934 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.553574 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.562211 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.570849 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.579488 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.588123 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.596762 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056
16:57:22.605405 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 816
16:57:22.612178 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:23.141711 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:23.275457 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36
16:57:23.525241 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:23.674569 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:24.127864 IP 192.168.100.2 > 224.0.0.22: igmp v3 report, 1 group record(s)
16:57:24.207837 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:24.443204 IP 192.168.100.1 > 224.0.0.22: igmp v3 report, 1 group record(s)
16:57:24.740769 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:25.025455 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:25.273794 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:25.799631 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36
16:57:25.806569 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:27.276628 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:29.743414 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:30.651056 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:32.500036 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36
16:57:34.701698 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:35.712811 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:39.663751 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:43.307130 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:44.621940 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:48.983011 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36
16:57:49.582124 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:54.540280 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:57:54.698902 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:57:59.894738 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:05.249571 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:10.608750 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:11.786995 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28
16:58:15.963021 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:19.537548 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36
16:58:21.317683 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:26.672691 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:32.029043 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20
16:58:37.416924 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28

Note that there is approximately 1 min and 15 s between the

conclusion of the file transfer and the end of the NACK
processing phase, at which point there is no further
communication between nodes.

The NORM console output on the sender side during the
file transfer shows:

Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 to 10
Proto Info: 21:57:21.273860 enqueued tx object>41904 sender>8471
Proto Debug: NormApp::Notify(TX_OBJECT_SENT) ...
Proto Debug: NormApp::Notify(TX_QUEUE_EMPTY) ...
Proto Fatal: norm: End of tx file list reached.
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:1)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:2)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:3)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:4)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:5)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:6)...
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>1.968000 sec
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:7)...
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>2.479000 sec
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:8)...
Proto Info: REPORT time>21:57:31.273127 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 8.528 grtt>2.479000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:9)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:10)...
Proto Info: REPORT time>21:57:41.277039 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 0.054 grtt>2.479000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:11)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:12)...
Proto Debug: NormApp::Notify() unhandled event: 20
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>2.677000 sec
Proto Info: REPORT time>21:57:51.279509 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 0.054 grtt>2.677000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:13)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:14)...
Proto Info: REPORT time>21:58:01.281004 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 0.054 grtt>2.677000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:15)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:16)...
Proto Info: REPORT time>21:58:11.282546 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 0.054 grtt>2.677000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:17)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:18)...
Proto Info: REPORT time>21:58:21.284552 node>8471 ***************************************
Proto Info: Local status:
Proto Info: txRate> 1000.000 kbps sentRate> 0.032 grtt>2.677000
Proto Info: ***
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:19)...
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:20)...
Proto Trace: NormSession::Serve() node>8471 sender flush complete ...
Proto Debug: NormApp::Notify(TX_FLUSH_COMPLETED)

On the NORM receiver during the file transfer, the console
output shows:

Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 to 10
Proto Debug: NormApp::Notify() unhandled event: 10
Proto Debug: NormSession::ReceiverHandleCommand() node>8472 new remote sender:8471 ...
Proto Debug: NormApp::Notify(REMOTE_SENDER_ACTIVE) ...
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC back-off: 0.748614 sec)...
Proto Debug: NormApp::Notify(RX_OBJECT_NEW) ...
Proto Info: 21:57:22.507198 start rx object>41904 sender>14319463051248541975
Proto Detail: NormSenderNode::HandleObjectMessage() node>8472 sender>8471 new obj>41904
Proto Debug: NormApp::Notify(RX_OBJECT_INFO) ...
Proto Debug: NormSenderNode::HandleObjectMessage() node>8472 allocating sender>8471 buffers ...
Proto Trace: NormApp::Notify(RX_OBJECT_UPDATED) ...
Proto Detail: NormObject::HandleObjectMessage() node>8472 sender>8471 obj>41904 blk>0 completed
block ...
Proto Debug: NormApp::Notify(RX_OBJECT_COMPLETED)

The NORM NACK delays are apparently part of the

protocol and are caused by the receiver scheduling random
back-off timeouts before generating more NACK messages. It
uses probabilistic suppression of redundant feedback based on
exponentially distributed random back-off timers (Ref. 6).
This behavior is implemented due to its nature as a multicast

NASA/TM—2012-216047 16

protocol in order to avoid overwhelming the sender with
potentially similar NACK replies from large groups of
recipients at the same time requesting the retransmission of the
same corrupted or lost parts of the file.

6.0 Conclusion
The purpose of this paper was to perform a comparative

analysis of several transport layer protocol implementations to
determine the ideal operating conditions to maximize
performance. The various environments that the protocols
were subjected to are characteristic of those found in
terrestrial, geostationary orbit, and cis-lunar communications
links. Communications over the latter two types of links are
often subjected to restrictions that do not apply to typical
terrestrial links such as limited contact time, high delay, and
limited power. Therefore, while mitigating the problems
inherent in the reliability, integrity, and availability of the link
itself, the protocols must also be able to maximize
performance while the link is available.

CFDP performed consistently well across the entire
collection of tests and satisfied our expectations that it would
be able to handle the problems related to typical cis-lunar
space links well considering that was the intent of its original
design by CCSDS.

Saratoga likewise performed very well across most of the
test scenarios matching and occasionally even exceeding
CFDP’s performance in many of the tests. We expected that
due to the design of the Saratoga v0 protocol and lack of a
“put” option, the higher-delay links would pose a performance
problem considering the file transmission could not begin until
the sender transmitted a “get” packet to the receiver. As seen
in the appendix, this did in fact seem to affect performance
slightly across the range of tests as Saratoga usually suffered a
performance penalty from having to process the “get” request
to initiate the transfer. If a future version of Saratoga such as
version 1 is able to successfully implement a push-based file
transfer initiated by the sender then it is very likely Saratoga
will continue to meet and even exceed the performance of
CFDP in higher-delay communications links. As it stands
now, Saratoga appears best suited for low and moderate-delay
communications links below geostationary orbit. One
particularly frustrating problem faced with Saratoga v0’s Perl
implementation was a bug that exhibited itself during the
10 percent packet error tests. Saratoga could not properly
handle the highly corrupted packets and the implementation
would crash. Due to this problem we had to exclude the
handful of successful runs captured at 10 percent packet error

rate because they were not common enough and were too
difficult to reproduce in a consistent fashion to find 10
successful runs in a row.

NORM was also highly reliable and its performance was
consistent across a wide variety of link conditions, however
the multicast-oriented design best suits those particular
environments where data must be transferred to a large
amount of receiver nodes at once. The random back-off timer
used to avoid flooding the sender with NACKs did cause a hit
to goodput performance during testing, but in a typical
multicast environment where this protocol would be deployed
this behavior is both expected and desired. If we were to
exclude the delays associated with handling the NACK
processing phase of the file transfer and instead concentrated
solely on the unidirectional transfer of the file data itself,
NORM would have performed just as well as CFDP or
Saratoga considering it was simply blasting out UDP packets
filled with data. It is the protocol’s designs to accommodate
the multicast environment that ultimately limit its performance
in a field of unicast-oriented protocols.

LTP was expected to perform similarly to CFDP since the
protocols are related and the design of the file transfer process
is very similar, however this did not seem to be the case in
practice with our LTPlib (Ref. 10) implementation. The
variances in LTP observed using LTPlib are significantly
higher than the other protocols tested and seem indicative of a
problem with the version of the software implementation
rather than the protocol design itself. It would be interesting to
go back and compare the results of our testing against another
independent standalone implementation of LTP such as the
one from Ohio University written in Java (Ref. 13).

Individual implementation problems aside, the design and
performance aspects of each of these protocols seems like they
would be suitable for use as a convergence layer in concert
with the Bundle Protocol under the kinds of DTNs deployed in
space communications links. Convergence layer
implementations of several of these transport protocols already
exist for popular DTN implementations including ION (LTP)
(Ref. 14) and DTN2 (NORM, LTP) (Ref. 15). An
experimental Internet-draft document for explaining how a
DTN bundle agent could be implemented with Saratoga as a
convergence layer has been proposed as well (Ref. 16).

These tests show the importance of understanding and
testing the particular convergence layer protocol and
implementation prior to doing DTN network tests and the
convergence layer performance will likely significantly effect
to overall DTN network performance.

NASA/TM—2012-216047 17

Appendix
The following graphs were included to show the breadth of

our tests keeping in mind it is not feasible to individually
analyze every permutation of test run. The graphs may be used
to supplement the analysis in order to satisfy the particular
interests of the reader. The charts below show the average
results of the protocols across a set of different file sizes
(10 KB, 100 KB, 1 MB, and 10 MB) in a variety of link
conditions where we vary the latency, throughput, and error
rate. These charts were created using the average of the runs to

give a closer look at the performance trends as the link
conditions vary. Error bars were included to show the standard
error of the mean for the test runs.

Keeping in mind that no data was collected for Saratoga
when the error was at 0.1, we see that Saratoga and CFDP
performed very similarly. The random back-off timers that are
employed for the NACK phase of the file transfer impact
NORM clearly here. The variance and lack of a trend in LTP
is illustrated.

NASA/TM—2012-216047 18

NASA/TM—2012-216047 19

NASA/TM—2012-216047 20

NASA/TM—2012-216047 21

NASA/TM—2012-216047 22

References
1. V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K.

Scott, K. Fall, H. Weiss, “Delay-Tolerant Networking
Architecture,” IETF Request for Comments RFC 4838, Apr.
2007, . Available: http://tools.ietf.org/html/rfc4838

2. K. Scott, S. Burleigh, “Bundle Protocol Specification,” IETF
Request for Comments RFC 5050, Nov. 2007, Available:
http://tools.ietf.org/html/rfc5050

3. Consultative Committee for Space Data Systems (CCSDS)
File Delivery Protocol (CFDP). Blue Book. Issue 4. Jan. 2007.

4. S. Burleigh, M. Ramadas and S. Farrell, “Licklider
Transmission Protocol – Motivation,” IETF Request for
Comments RFC 5325, Sep. 2008, Available:
http://www.ietf.org/rfc/rfc5325.txt

5. S. Burleigh, M. Ramadas and S. Farrell, “Licklider
Transmission Protocol – Specification,” IETF Request for
Comments RFC 5326, Sep. 2008, Available:
http://www.ietf.org/rfc/rfc5326.txt

6. B. Adamson, C. Bormann, M. Handley, J. Macker, “NACK-
Oriented Reliable Multicast (NORM) Transport Protocol,”
IETF Request for Comments RFC 5740, Nov. 2009,
Available: http://www.ietf.org/rfc/rfc5740.txt

7. L. Wood, W. Eddy, C. Smith, W. Ivancic, and C. Jackson,
“Saratoga: A Scalable File Transfer Protocol,” IETF Internet
draft, work in progress, Sep. 2011.

8. NASA CTS Channel Emulator. Available: http://channel-
emulator.grc.nasa.gov/

9. NASA CFDP Engine version 3.1a1, Greenbelt, Maryland:
NASA Goddard Space Flight Center.

10. S. Farrell, LTPlib. Available: http://dtn.dsg.cs.tcd.ie/sft/ltplib/
11. Naval Research Laboratory, NORM. Available:

http://cs.itd.nrl.navy.mil/work/norm/
12. Saratoga version 0, Brook Park, Ohio: NASA Glenn Research

Center
13. M. Ramadas, LTP Reference Implementation. Available:

http://irg.cs.ohiou.edu/ocp/ltp.html
14. ION Working Group, Interplanetary Overlay Network.

Available: http://sourceforge.net/projects/ion-dtn/
15. DTN2 Reference Implementation. Available:

http://www.dtnrg.org/wiki/Code
16. L. Wood, J. McKim, W. Eddy, W. Ivancic, and C. Jackson,

“Using Saratoga with a Bundle Agent as a Convergence Layer
for Delay-Tolerant Networking,” IETF Internet draft, work in
progress, May 2011.

http://tools.ietf.org/html/rfc4838
http://tools.ietf.org/html/rfc5050
http://www.ietf.org/rfc/rfc5325.txt
http://www.ietf.org/rfc/rfc5326.txt
http://www.ietf.org/rfc/rfc5740.txt
http://channel-emulator.grc.nasa.gov/
http://channel-emulator.grc.nasa.gov/
http://dtn.dsg.cs.tcd.ie/sft/ltplib/
http://cs.itd.nrl.navy.mil/work/norm/
http://irg.cs.ohiou.edu/ocp/ltp.html
http://sourceforge.net/projects/ion-dtn/
http://www.dtnrg.org/wiki/Code

	TM-2012-216047
	Abstract
	1.0 Introduction
	2.0 Protocols
	2.1 CCSDS File Delivery Protocol (CFDP)
	2.2 Licklider Transmission Protocol (LTP)
	2.3 Negative-Acknowledgement (NACK) Oriented Reliable Multicast (NORM)
	2.4 Saratoga

	3.0 Test Environment and Setup
	3.1 Test Systems
	3.2 Network Topology
	3.3 Protocol Implementations

	4.0 Performance Tests
	4.1 CFDP
	4.2 LTP
	4.3 NORM
	4.4 Saratoga
	4.5 Maximum Performance

	5.0 Test Results
	5.1 Baseline
	5.2 CFDP
	5.3 LTP
	5.4 NORM
	5.5 Saratoga
	5.6 Protocol Packet Analysis
	5.6.1 Example 1, Large Files, High Bandwidth
	5.6.2 Example 2, Small Files, Low Bandwidth

	6.0 Conclusion
	Appendix
	References

