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Abstract 

Delay-Tolerant Networking (DTN) is an active area of 
research in the space communications community. DTN uses a 
standard layered approach with the Bundle Protocol operating 
on top of transport layer protocols known as convergence 
layers that actually transmit the data between nodes. Several 
different common transport layer protocols have been 
implemented as convergence layers in DTN implementations 
including User Datagram Protocol (UDP), Transmission 
Control Protocol (TCP), and Licklider Transmission Protocol 
(LTP). The purpose of this paper is to evaluate several 
standalone implementations of negative-acknowledgment 
based transport layer protocols to determine how they perform 
in a variety of different link conditions. The transport 
protocols chosen for this evaluation include Consultative 
Committee for Space Data Systems (CCSDS) File Delivery 
Protocol (CFDP), Licklider Transmission Protocol (LTP), 
NACK-Oriented Reliable Multicast (NORM), and Saratoga. 
The test parameters that the protocols were subjected to are 
characteristic of common communications links ranging from 
terrestrial to cis-lunar and apply different levels of delay, line 
rate, and error. 

1.0 Introduction 
Delay Tolerant Networking (DTN) was created by the 

research community as a means of experimenting with the 
concept of standardized store and forward techniques (Ref. 1). 
Convergence Layers are a set of network and transport 
protocols utilized by the Bundle Protocol (Ref. 2) to connect 
various DTN nodes (forwarding agents). To facilitate 
communication across the DTN, these convergence layers 
must be selected based on their expected performance across 
network conditions between DTN agents. One set of 
conditions often found in space networks is links that have 
high latency, high error, frequent disruption, and asymmetrical 
rates. Frequent disruption is handled via placement of the 
DTN agents across the network. The remaining conditions are 
best handled by choosing an appropriate transport, or 
convergence layer. 

A variety of transmission protocols have been developed to 
handle the range of conditions found in space communication. 
We focus on the Consultative Committee for Space Data 
Systems (CCSDS) File Delivery Protocol (CFDP) (Ref. 3), 

Licklider Transmission Protocol (LTP) (Refs. 4 and 5), 
Negative-Acknowledgement (NACK) Oriented Reliable 
Multicast (NORM) (Ref. 6), and Saratoga (Ref. 7). Our goal is 
to test the performance of each of these protocols in a set of 
varying link conditions. In doing so, we hope that DTN agents 
may be configured to use the most appropriate transport 
mechanism available to them. 

2.0 Protocols 
The protocols discussed in this document are all designed to 

be reliable in the face of suboptimal conditions. A common 
trait of space links is asymmetry, where the link capacity 
differs greatly depending on the direction of communication. 
Space communication links are often highly asymmetric with 
Mb/s data transmission from a spacecraft and only a few Kb/s 
data transmission to a spacecraft. This restricts the ability to 
periodically transmit positive acknowledgments (ACK) of 
data reception, a typical feedback mechanism utilized in many 
terrestrial protocols.  

To prevent flooding these links with ACKs, we identified 
protocols that utilize negative acknowledgments (NACK). 
NACK based protocols transmit focus on sending status 
messages when data is considered missing or corrupt. This 
greatly reduces the amount of messages transmitted when the 
link is moderately prone to errors and loss. While space links 
can be considered fairly noisy and prone to large error rates, 
link layer coding techniques are often used to correct those 
errors reducing the impact to the transport layer protocols. 
Burst errors can still be prevalent; however, sequential loss of 
data is well accommodated by NACK based algorithms. 

As we will discuss, NORM is purely NACK based. 
Saratoga uses NACKs throughout a file transfer but sends an 
acknowledgment at the completion of a file transfer. CFDP 
uses both ACKs and NACKs. LTP offers both unreliable 
transmission and ACK-based reliable transmission. 

The convergence layers studied in this paper can be run in 
conjunction with several typical transports found on all major 
operating systems. In our studies, all of our tests were 
conducted over the User Datagram Protocol (UDP), which 
provides the best environment to observe the behavior of each 
convergence layer under study. In addition, the convergence 
layers automatically handle fragmentation and reassembly of 
any over sized data payloads that exceed the transports MTU.  
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UDP is unreliable, and thus timeout mechanisms are left to 
the convergence layer. Not all links in a disconnected network 
have high latencies. Therefore, sometimes timers are either 
short or unnecessary. This level of control varies. In the 
chosen implementation of LTP, the timer values are 
determined automatically. The timeout values in the version of 
CFDP used may be compiled in. Timeout values in NORM are 
not configurable. Saratoga timeouts are specifically 
unspecified. The version of Saratoga used for testing enabled 
manual control of timeout values.  

With NORM and with the version and implementation of 
Saratoga used in testing, reliability is always present. In 
CFDP, reliability is optional dependent on the class of service 
selected. In LTP, the user may select some or all of a given 
payload to be transmitted reliably. While both transmission 
error and link disruption may cause packet loss, only losses 
due to transmission error are studied in this paper. 

2.1 CCSDS File Delivery Protocol (CFDP) 
The CCSDS File Delivery Protocol (CFDP) is a 

recommended standard for transmission of files to and from 
spacecraft data storage. In addition to file transfer functionality, 
the protocol includes simple file management capabilities 
including the ability to create and remove directories. It is 
capable of operating in a wide variety of mission configurations 
ranging from relatively simple low earth orbit spacecraft to 
complex arrangements of orbiters and landers supported by 
multiple ground facilities and transmission links. It is 
independent of the data storage technology and makes no 
assumptions regarding the type of information being transferred 
so it can be used in a wide variety of scenarios involving 
loading, dumping, and control of spacecraft data storage. It is 
scalable and has been designed to minimize the required 
operational resources (Ref. 3). CFDP has the ability to cancel, 
suspend (freeze), and resume (thaw) an in-progress file transfer 
in order to deal with the intermittent connectivity associated 
with spacecraft. CFDP supports four classes of operations: 
Class 1—Unreliable Transfer; Class 2—Reliable Transfer, 
Class 3—Unreliable Transfer Via One Or More Waypoints In 
Series, and Class 4—Reliable Transfer Via One Or More 
Waypoints In Series (Ref. 3).  

For the purposes of this evaluation, the Class 2 Reliable 
Transfer mode was used to allow a file to be reliably 
transferred between two nodes using NACKs. A class 2 CFDP 
file transmission can be broken down into four phases. In 
phase 1, the file metadata followed by the file data are 
transmitted down to the receiver one block at a time until the 
transfer is complete. In phase 2, or handoff phase, the sender 
transmits an end of file notification to the receiver, which in 
turn is expected to acknowledge it. In phase 3, the receiver 
attempts to fill any missing gaps in the transmission by 
sending a negative acknowledgement to the sender to request 

that it retransmits the missing blocks. In phase 4, the receiver 
transmits that it has finished successfully receiving the file and 
the sender should acknowledge the end of transmission. 

2.2 Licklider Transmission Protocol (LTP) 
The Licklider Transmission Protocol (LTP) is designed to 

provide reliable connectivity over single-hop deep-space RF 
links with extremely long round-trip times and frequent 
interruptions in connectivity by using an Automatic Repeat 
reQuest (ARQ) error-control method that solicits selective 
acknowledgments (SACK). (Refs. 4 and 5) LTP treats user 
data as blocks, which may be comprised of two parts: a “red” 
part that must be acknowledged and retransmitted if lost, and a 
“green” part that is a best-effort delivery. Either part of the 
block may be omitted such that a packet consists of only a 
single color. (Ref. 5) The “red” and “green” parts of the block 
are not intended to denote any priority and “red” blocks will 
thus not be delivered with a higher priority than “green” 
blocks. While LTP is designed to run directly over a data-link 
layer protocol it may be deployed over UDP in software 
development or testing purposes to form a “local data-link 
layer” (Ref. 5). During these evaluation tests, the LTP 
implementation was configured to transmit wholly “red” parts 
in the data blocks over UDP, thus providing reliable 
retransmission of blocks dropped due to errors. 

2.3 Negative-Acknowledgement (NACK) 
Oriented Reliable Multicast (NORM) 

The Negative-Acknowledgement (NACK) Oriented 
Reliable Multicast (NORM) protocol is designed to provide 
reliable transfer of data from one or more senders to a group 
of receivers of an IP multicast network. However, NORM can 
be used for unicast transmission (multicast group of one). The 
primary design goal is to provide efficient, scalable, and 
robust bulk data transfer across possibly heterogeneous IP 
networks (Ref. 6). It is able to adapt to a variety of network 
conditions autonomously with little or no pre-configuration. It 
is tolerant of mobile and wireless networks that provide 
unreliable connectivity including situations where there is 
heavy packet loss and large transmission delays. NORM is 
designed mainly under the assumption of a single sender 
transmitting data content out to a group of receivers. Unlike 
the other protocols evaluated in this paper, NORM is not 
inherently designed to target space communications. However, 
its ability to tolerate large propagation delays makes it an 
interesting comparison to the others. 

2.4 Saratoga 
Saratoga is a peer-to-peer file transfer protocol capable of 

efficiently transferring small files, large files, and streaming 
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continuous data. It was originally developed as a low-
overhead alternative to CFDP and is used today to transfer 
data from Surrey Satellite Technology Ltd (SSTL) Disaster 
Monitoring Constellation (DMC) remote-sensing satellites in 
low-Earth orbit. The satellites feature a very fast downlink 
ranging from 8 Mbps to over 200 Mbps with uplink speeds of 
only 9.6 kbps. The Saratoga protocol was thus designed with 
these highly asymmetric links in mind in order to efficiently 
transfer the files to the ground (Ref. 7).  

Saratoga uses a Selective Negative Acknowledgement 
(SNACK) mechanism to provide reliable retransmission of 
data (Ref. 7). Like CFDP, the newest specification of Saratoga 
supports a number of file management operations including 
“get” downloads, “put” uploads, directory listing, and deletion 
requests. The “put” transactions allow the immediate sending 
of packets without waiting for a status acknowledgement from 
the receiver. This unidirectional behavior is ideal for deep-
space scenarios with large propagation delays where 
SYN/ACK style communications protocols are undesirable. 
The “get” transactions are better suited for scenarios with low 
propagation delays such as the transmission from LEO 
satellites to the Earth ground stations and were the only type 
of file transfer transaction supported by the original version 0 
protocol implementation.  

3.0 Test Environment and Setup 
3.1 Test Systems 

The experimental lab setup consists of three servers each 
running 64-bit Ubuntu GNU/Linux 10.04 and containing a 
2 GHz AMD Opteron 246 CPU, 1 GB of RAM, 80 GB SATA 
disk drive, and multiple Broadcom Tigon3 Gb Ethernet 
interfaces. Two of the systems were utilized to send and 
receive test data, while the third system was used to control 
and monitor the link between the source and destination hosts. 
The test path was constructed by directly cabling the three 
servers, configured in a simple dumbbell topology as show in 
Figure 1. 

The channel emulator system uses a software-based network 
emulator written for the NASA Compatibility Test Set (CTS) 
project that allows channels to be defined between interfaces 
with varying amounts of delay, bit error per packet, and rate 
constraints applied to it. The software provides an XML-RPC-
based API to interact and control the channel parameters 
dynamically based upon the requirements of the testing phase 
(Ref. 8). 
 

 
Figure 1.—Test environment network topology. 

 

In addition to the test path, each machine was also 
connected to an internal lab network providing a means of 
managing and monitoring the nodes without negatively 
impacting the test results. 

3.2 Network Topology 
The IP addressing scheme of the environment employed 

standard RFC 1918 private addresses in the 192.168.0.0/16 
range. The IP address of the source test interface was 
configured as 192.168.100.1 and the destination test interface 
as 192.168.100.2. The channel emulator acted as a bridge 
between the source and destination nodes and had no IP 
addresses accessible on its interfaces facing those systems. 
The second management interface for all three systems was 
connected to the internal laboratory network and used for 
Secure Shell (SSH) access and out-of-band configuration 
including instantiating the test runs. All test data was thus 
isolated between the 192.168.100.1 and 192.168.100.2 
interfaces of the test hosts. 

3.3 Protocol Implementations 
The protocol implementations ultimately chosen for testing 

were standalone protocol implementations that did not require 
any additional dependencies or frameworks to operate. For 
these experiments, we chose the following implementations 
for testing: 

 
•  CFDP—NASA GSFC CFDP Engine 3.1a1 (Ref. 9) 
• LTPlib—Mercurial snapshot (4-11-2011) (Ref. 10) 
• NORM—Subversion snapshot (3-25-2011) (Ref. 11) 
• Saratoga—v0 Perl snapshot (4-11-2011) (Ref. 12) 
 
We first evaluated versions of CFDP obtained from JPL; 

however, efforts to compile and run them in our environment 
were met with only limited success and the stability and 
results were erratic. We were able to later obtain the GSFC 
CFDP Engine. Upon evaluation, we found that the GSFC code 
compiled cleanly and ran very well in our environment. Due to 
limited time available for debugging the JPL CFDP code, the 
GSFC CFDP Engine was selected for these tests.  

For LTP, we found that there were two commonly available 
implementations available: a Java version from Ohio 
University (Ref. 13) and LTPlib from Trinity College in 
Dublin, Ireland (Ref. 10). The Ohio University Java version, 
lasted updated in late 2006, was deemed too dated to use. 
Unlike the Ohio University implementation, the LTPlib 
implementation was still actively maintained and provided 
LTP support to the DTN2 reference implementation. We 
initially faced a few variable type portability problems related 
to LTPlib being developed on a 32-bit architecture while we 
were using a 64-bit architecture, but these were patched. 
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Another problem we faced was that attempting to transfer files 
larger than a few megabytes would result in the ltpd daemon 
crashing. The author was able to make some simple fixes to 
the code that allowed us to transfer up to about 10 MB files 
successfully, but we continued to face problems transferring 
files much larger than that without the process crashing. The 
large file stability problem in the LTPlib code at the time of 
testing led us to constrain all the tests to use 10 MB files as the 
maximum size across all the protocols for consistency. If this 
limitation had not existed, it would have been preferable to use 
much larger files in the 100 MB to 1 GB range as the 
maximum size. 

The version of NORM we obtained to use for testing was 
the latest Subversion snapshot available at the time and was 
recommended over the stable version by the NORM 
development team. 

While there are various different versions and flavors of 
Saratoga implementations available, we decided to test the 
standalone version 0 implementation developed in Perl at 
GRC. While there are currently version 1 implementations 
being developed in both Perl and C++, it was determined they 
were not ready for a proper evaluation at the time of testing. 
Other versions of Saratoga available were custom-designed for 
a specific environment and could not be easily run in our 
environment without additional development effort to 
customize it. Ideally during these tests a “put” operation 
would have been used to transfer the data in order to more 
accurately model against the three other protocols. The other 
protocols operate by pushing data from the sender to the 
recipient immediately without waiting for acknowledgment, 
but the Saratoga's v0 protocol PERL implementation used did 
not support a “put” operation so we were constrained to use 
the “get” operation to initiate the file transfer instead. 

For the test setup, a set of UNIX shell and Expect scripts 
was designed to automate the testing and ensure each run was 
handled consistently. The Expect scripts began by configuring 
the network emulator, via its XML-RPC interface, to the 
desired delay, line rate constraints, and bit error per packet 
rate. The Expect script would then spawn a tcpdump packet 
capture of all the test traffic by listening on the network 
emulator interface’s connected to the receiver. It would then 
remotely connect to the source and destination nodes via SSH 
and execute the protocol executables for the desired protocol 
implementation run. Once the run was complete, it would tear 
down the spawned processes and loop back around for another 
run if necessary.  

Due to an oversight during the setup of the test 
environment, only a single tcpdump packet capture point on 
the receiver side of the channel emulator was in place 
resulting in traffic only being captured from the receiver's 
point of view. In order to try to compensate for not having a 
packet capture running on the sender's side of the channel we 
added the round-trip delay time to the total transmission time 

and sender-to-receiver transmission times in order to estimate 
the goodput1 and throughput2 from the sender’s point of view. 
The receiver-to-sender times and throughput statistics 
calculated during post-processing did not need to be adjusted. 

4.0 Performance Tests 
Each of the protocol implementations were put through 10 

runs of the 144 different permutations of line rates, delays, 
errors, and file sizes in Table I during testing to provide a pool 
of data for performance analysis. For each protocol, a series of 
test data files was created and put into their working 
directories to be made available for the sender to transmit. For 
the purposes of this evaluation, all the implementations were 
tested over symmetric links configured at the line rates 
specified in that permutation of the test. In all cases, attempts 
were made to configure the protocols that had a configurable 
MTU size, if possible, to send a packet of approximately 1 KB 
as a common size to match the implementations where the size 
was hard-coded at compile time like CFDP. 

 
TABLE I.—TEST PARAMETERS 

Line rates, Kb/s 1000, 10000 
Delay, ms 25, 250, 1250 
Bit error rate 0, 10×10–6, 10×10–5, 10×10–4, 10×10–3, 10×10–2 
File size, KB a 10, 100, 1000, 10000 

The Saratoga v0 Perl implementation was not able to consistently transfer 
files successfully at 10×10–6 b error rate due to implementation bugs and was 
excluded at this level from the results. 
a For the purposes of the creation of the test files and in all references to file 
sizes, 10 KB = 10×103, 100 KB = 100×103, 1 MB = 1×106, 10 MB = 10×106. 

4.1 CFDP 
The GSFC CFDP Engine was configured and compiled 

using its default “flight” profile as distributed. The default 
outgoing file chunk size and max chunk size were kept at 
997 B. The maximum concurrent transactions parameter was 
also set at the default of 1000 with 20 max gaps per 
transaction. Other default parameters of interest include the 
ACK limit of 250, ACK timeout of 50, an inactivity timeout of 
86400, NAK limit of 250 and the NAK timeout of 50. 
According to the tcpdump captures, the average packet size 
during the test runs was 1011 B, including protocol headers, 
keeping it near our 1024 B target for packet size. 

The command line execution of the sender side was as 
followed including sample output from a run: 

 
Sender> ./cfdp_flight 101 
CFDP Sample Application Version 2007_06_08 (static allocation 
only) 
   MAX_CONCURRENT_TRANSACTIONS=1000. 

 
1 Goodput is defined as the throughput of the payload file without regard to 
the protocol overhead.  It is calculated by taking the total number of bits of the 
file size and dividing it by the total time of transmission. 
2 Throughput is defined as the total number of bits transmitted divided by the 
total time of the transmission. 
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   MAX_GAPS_PER_TRANSACTION=20. 
   MAX_FILE_CHUNK_SIZE=997 
   MAX_PDU_LENGTH=1029. 
   MAX_DATA_LENGTH=1029. 
   Uses 672 bytes per open transaction. 
cfdp_engine: entity-id set to '101'. 
 
*** MIB parameter settings *** 
   Entity-ID = 101 
   Issue EOF-Sent Indication? = 1 
   Issue EOF-Received Indication? = 1 
   Issue File-Segment-Sent Indication? = 0 
   Issue File-Segment-Received Indication? = 0 
   (default) Ack-limit = 250 
   (default) Ack-timeout = 50 
   (default) Nak-limit = 250 
   (default) Nak-timeout = 50 
   (default) Inactivity-timeout = 86400 
   (default) Outgoing file chunk size = 997 (bytes) 
   (default) Save-incomplete-files = 0 

 

A single command was input into the sender’s session to 
initiate the transfer: 

 
Sender> put testfile.$size 102 
<Link_Type> We now have a two-way link. 
cfdp_engine: version = 3.1a1 

 

The receiver side command line execution was as follows 
including sample output from the corresponding test run: 

 
Receiver> ./cfdp_flight 102 
CFDP Sample Application Version 2007_06_08 (static allocation 
only) 
   MAX_CONCURRENT_TRANSACTIONS=1000. 
   MAX_GAPS_PER_TRANSACTION=20. 
   MAX_FILE_CHUNK_SIZE=997 
   MAX_PDU_LENGTH=1029. 
   MAX_DATA_LENGTH=1029. 
   Uses 672 bytes per open transaction. 
cfdp_engine: entity-id set to '102'. 
 
*** MIB parameter settings *** 
   Entity-ID = 102 
   Issue EOF-Sent Indication? = 1 
   Issue EOF-Received Indication? = 1 
   Issue File-Segment-Sent Indication? = 0 
   Issue File-Segment-Received Indication? = 0 
   (default) Ack-limit = 250 
   (default) Ack-timeout = 50 
   (default) Nak-limit = 250 
   (default) Nak-timeout = 50 
   (default) Inactivity-timeout = 86400 
   (default) Outgoing file chunk size = 997 (bytes) 
   (default) Save-incomplete-files = 0 
 
<Link_Type> We now have a two-way link. 
cfdp_engine: version = 3.1a1. 
----------> (101_1) MD:  'testfile.1m'. 
:::Machine_Allocated  trans 101_1. 
>>> Transaction 101_1 started (receiving; file name not yet 
known)... 
:::MD_Recv  trans 101_1, class 2, receiving 'testfile.1m' (1000000 
bytes). 
----------> (101_1) EOF: xsum=00000000, file-size=1000000. 
:::EOF_Recv  trans 101_1. 
<---------- (101_1) Ack-EOF:  . 
<---------- (101_1) Fin:  . 
----------> (101_1) Ack-Fin:  . 
:::Trans_Finished  trans 101_1 successful. 
:::Machine_Deallocated  trans 101_1. 
>>> Transaction 101_1 (testfile.1m -> testfile.1m): 

4.2 LTP 
The LTPlib build was configured using the default 

parameters using the GNU auto-configure script (./configure) 
and compiled. No source code or header files were modified 
during the build process and all parameters were configured 
on the command line during run time. LTP’s MTU size was 
configured to be restricted to 1024 B. The resulting packets, 
according to the tcpdump capture, were on average 1011 B 

including all protocol headers, keeping it near our 1024 B 
target for packet size. 

The receiver side was started first in server mode and the 
command line execution was as follows, including sample 
output from the corresponding run: 

 
Receiver> ./ltpd -L 192.168.100.2:1113 -D 192.168.100.2:1113 -S 
192.168.100.1:1113 -m server -g -v -2 1024 -b 12000000 
 
ltpd running in verbose mode 
LTPD: It seems silly to set a keyid () for the off or NULL 
ciphersuite (254)! 
LTPD: Local parameters are: 
LTPD:   crypto-cfg=ltpd.crypt 
LTPD:   disksync=false 
LTPD:   daemon=false 
LTPD:   input=ltpd.in 
LTPD:   log=ltpd.log 
LTPD:   mode=1 
LTPD:   output=ltpd.out 
LTPD:   verbose=true 
LTPD:   l2mtu=1024 
LTPD:   LTP-T cfg=ltpt.cfg 
LTPD:   dowait=true,sleeptime=10 
LTPD:   rxbufsize=12000000 
LTPD:   blocking=false 
LTPD: Protocol parameters are: 
LTPD:   dest=192.168.100.2:1113 
LTPD:   source=192.168.100.1:1113 
LTPD:   listen=192.168.100.2:1113 
LTPD:   redlen=-1 
LTPD:   cookies=0 
LTPD:   cookie_grace=5 
LTPD:   Cipher=254,KeyID= 
LTPD: Starting run at: 2011-09-21 15:14:46.553 
LTPD: ltpd running in process: 17433 
LTPD: calling recvfrom 2011-09-21 15:14:46.654 
LTPD: Got 1000000 bytes back (0-th time) from 192.168.100.1:1113 
at 2011-09-21 15:15:05.536 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: getsockopt(LTP_SO_SOP) returned error -1 
LTPD: too many getsockopt errors - 10 
LTPD: You have compiled ltpd as a DODGY FILE SERVER take a look at 
ltpd.cc:416 
LTPD: Request is  
LTPD: Wrote 1000000 bytes to ltpd.out-192.168.100.1.1113 
LTPD: calling recvfrom 

 

The sender side was started in client mode and the 
command line execution was as follows including sample 
output from the corresponding test run: 

 
Sender> ./ltpd -D 192.168.100.2:1113 -S 192.168.100.1:1113 -m 
client -v -2 1024 -b 12000000 -i testfile.$size 
 
ltpd: no process found 
ltpd running in verbose mode 
LTPD: It seems silly to set a keyid () for the off or NULL 
ciphersuite (254)! 
LTPD: Local parameters are: 
LTPD:   crypto-cfg=ltpd.crypt 
LTPD:   disksync=false 
LTPD:   daemon=false 
LTPD:   input=testfile.1m 
LTPD:   log=ltpd.log 
LTPD:   mode=0 
LTPD:   output=ltpd.out 
LTPD:   verbose=true 
LTPD:   l2mtu=1024 
LTPD:   LTP-T cfg=ltpt.cfg 
LTPD:   dowait=true,sleeptime=10 
LTPD:   rxbufsize=12000000 
LTPD:   blocking=false 
LTPD: Protocol parameters are: 
LTPD:   dest=192.168.100.2:1113 
LTPD:   source=192.168.100.1:1113 
LTPD:   listen=127.0.0.1:1113 
LTPD:   redlen=-1 
LTPD:   cookies=0 
LTPD:   cookie_grace=5 
LTPD:   Cipher=254,KeyID= 
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LTPD: Starting run at: 2011-09-21 15:14:48.632 
LTPD: ltpd running in process: 7208 
LTPD: Read 1000000 bytes from testfile.1m OK 
LTPD: sending 1000000 bytes from file testfile.1m at 2011-09-21 
15:14:48.734 to 192.168.100.2:1113 
LTPD: finished sending 

4.3 NORM 
In addition to the NORM source code itself, the ProtoLib 

library had to be obtained from the same site as NORM 
depends on it in order to compile. After NORM is unpacked 
into a directory, the ProtoLib library must be unpacked into 
the NORM subdirectory as a dependency for the configuration 
and compilation to be successful. 

Both ProtoLib and NORM are configured using their WAF 
configuration infrastructure by calling “./waf configure”. It is an 
autoconfiguration framework similar to GNU autoconf used by 
other programs like LTPlib. The default values were chosen 
wherever necessary. ProtoLib should be configured and compiled 
before the process is repeated within the NORM directory. 

Configuration of NORM is available entirely on the 
command line. According to the tcpdump packet captures of 
the test runs, the average NORM packet size was 1056 B, 
including protocol headers, keeping it near our 1024 B target 
for packet size. 

The Expect scripts first setup the receiver side. It is shown 
below with the executable command line and corresponding 
run output: 

 
Receiver> ./norm address 224.1.2.3/12347 interface eth2 rxcachedir 
. debug 10 id 8472 
 
Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 
to 10 
Proto Debug: NormApp::Notify() unhandled event: 10 
Proto Debug: NormSession::ReceiverHandleCommand() node>8472 new 
remote sender:8471 ... 
Proto Debug: NormApp::Notify(REMOTE_SENDER_ACTIVE) ... 
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC 
back-off: 0.785881 sec)... 
Proto Debug: NormApp::Notify(RX_OBJECT_NEW) ... 
Proto Info: 08:18:04.211756 start rx object>59332 
sender>15956196919349354775 
Proto Detail: NormSenderNode::HandleObjectMessage() node>8472 
sender>8471 new obj>59332 
Proto Debug: NormApp::Notify(RX_OBJECT_INFO) ... 
Proto Debug: NormSenderNode::HandleObjectMessage() node>8472 
allocating sender>8471 buffers ... 
Proto Trace: NormApp::Notify(RX_OBJECT_UPDATED) ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>0 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>1 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>2 completed block ... 
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472 
sender>8471 new grtt: 0.246600 sec 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>3 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>4 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>5 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>6 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>7 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>8 completed block ... 
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC 
back-off: 0.672307 sec)... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>9 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>10 completed block ... 

Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>11 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>12 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>13 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>14 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>15 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>16 completed block ... 
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472 
sender>8471 new grtt: 0.228400 sec 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC 
back-off: 0.792389 sec)... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>17 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>18 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>19 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>20 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>21 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>22 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>23 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>24 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>25 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>26 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>27 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>28 completed block ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>29 completed block ... 
Proto Debug: NormSenderNode::UpdateGrttEstimate() node>8472 
sender>8471 new grtt: 0.195800 sec 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC 
back-off: 0.686003 sec)... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 
sender>8471 obj>59332 blk>30 completed block ... 
Proto Debug: NormApp::Notify(RX_OBJECT_COMPLETED) 

 

The Expect script then executed the corresponding sender-
side call with the following command line parameters and run 
output. NOTE: $ratek is defined as the number of bits per 
second for the run and the intention was to have it match the 
network emulator line rate setting. So for this run for instance, 
$ratek = 1000000. This does differ slightly from the way the 
emulator was configured though as its configuration uses 
Kbps and was configured as 1000 Kbps, which works out to 
1024000 bps. 

 
Sender> ./norm address 224.1.2.3/12347 interface eth2 sendfile 
testfile.$size id 8471 debug 10 rate $ratek 
 
Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 
to 10 
Proto Info: 08:18:04.248854 enqueued tx object>59332 sender>8471 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to 
new grtt to: 0.246600 sec 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to 
new grtt to: 0.228400 sec 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::OnProbeTimeout() node>8471 decreased to 
new grtt to: 0.195800 sec 
Proto Debug: NormApp::Notify(TX_OBJECT_SENT) ... 
Proto Debug: NormApp::Notify(TX_QUEUE_EMPTY) ... 
Proto Fatal: norm: End of tx file list reached. 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:1)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:2)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:3)... 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 
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increased to new grtt>0.228400 sec 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:4)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:5)... 
Proto Info: REPORT time>08:18:14.246113 node>8471 
*************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>  825.234 
grtt>0.228400 
Proto Info: 
******************************************************************
********* 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:6)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:7)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:8)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:9)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:10)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:11)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:12)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:13)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:14)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:15)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:16)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:17)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:18)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:19)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush 
queued (flush_count:20)... 
Proto Trace: NormSession::Serve() node>8471 sender flush complete 
... 
Proto Debug: NormApp::Notify(TX_FLUSH_COMPLETED) 

4.4 Saratoga 
The Saratoga implementation was Perl-based and being an 

interpreted language, there are no source code configuration 
and compilation steps necessary. Saratoga v0 is configured via 
a single configuration file named sara.conf. Different versions 
of these were created with different line rate values contained 
within and the Expect script was responsible for adjusting 
symbolic links to these so that the Saratoga binary would read 
the right configuration file depending on the line rate 
associated with the test parameters on the network emulator. A 
sample sara.conf looks like: 

 
$C_hostaddr = "192.168.100.1"; #hostname of this machine Saratoga 
is running on 
$C_peeraddr = "192.168.100.2";#address of the peer machine 
$C_verbose  = 0; # set to 1 to turn debugging on 
$C_rate = 1000;  # servers transmission data rate in Kbps. 0 = 
line rate. 

 

Saratoga was then started on the sender side (verbosity and 
debugging was turned off for performance reasons so there is 
no further output during the test run): 

 
Sender> ./saratoga_v0.pl 
info: listening at 192.168.100.1:4000 

 

With Saratoga, the receiver side initiates the file transfer via 
a “get” command to the sender. The following is the receiver 
executing, followed by the test run output: 

 
 
 

Receiver> ./saratoga_v0.pl 
info: listening at 192.168.100.2:4000 
saratoga> get testfile.1m 
saratoga> Transferring file: testfile.1m, length is 1000.0 Kbytes. 
saratoga> writing file testfile.1m 
1000000 byte file was received in 8 seconds. 929.2 kbits per 
second. 

 

According to tcpdump packet captures at the time of the test 
runs, the average Saratoga packet during transmission was 
1034 B including protocol overhead, keeping it near our 1024 
B target for packet size.  

4.5 Maximum Performance 
In addition to the test runs of the protocols that were 

constrained by the network emulator, a series of “maximum 
performance” test runs were run to provide a performance 
baseline for each of the convergence layer protocols. While the 
network topology stayed the same physically, the network 
emulator software was disabled and replaced with a simple 
network bridge interface between the 2 Gb-Ethernet interfaces 
on the channel emulator system resulting in the link being 
completely unrestricted of any delay, packet error, or rate 
constraints. Traffic was again captured at the same location 
using tcpdump as each of the protocol implementations ran 
through their maximum performance runs with an 
unconstrained gigabit-Ethernet link, no delay, and no artificial 
bit error applied with results shown in Figure 2. To verify the 
unconstrained link, iperf was run on the sender (client mode) 
and receiver side (server mode) to show the link capable of 
approximately 940 Mb/s of TCP traffic. 

 
Sender> iperf -c 192.168.100.2 
------------------------------------------------------------ 
Client connecting to 192.168.100.2, TCP port 5001 
TCP window size: 16.0 KByte (default) 
------------------------------------------------------------ 
[  3] local 192.168.100.1 port 56424 connected with 192.168.100.2 
port 5001 
[ ID] Interval       Transfer     Bandwidth 
[  3]  0.0-10.0 sec  1.10 GBytes    941 Mbits/sec 
 
 
Receiver> iperf -s 
------------------------------------------------------------ 
Server listening on TCP port 5001 
TCP window size: 85.3 KByte (default) 
------------------------------------------------------------ 
[  4] local 192.168.100.2 port 5001 connected with 192.168.100.1 
port 56424 
[ ID] Interval       Transfer     Bandwidth 
[  4]  0.0-10.0 sec  1.10 GBytes    939 Mbits/sec 

 

 
Figure 2.—Baseline protocol goodput on an 

unrestricted link. 
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Command line and configuration file parameters were the 
same as the regular test runs with the exception of the two 
implementations that had to be passed the line rate as a 
configuration parameter, NORM and Saratoga. During initial 
performance testing it was found that NORM tended to 
perform unreliably if its rate option was set to more than 
100000000 bps (about 100 Mbps) and would actually result in 
longer transfer times than if set to a lower rate. For the sake of 
reliability, NORM was told to constrain itself to 
approximately 100 Mbps as it seemed to top out around 
60 Mbps in our environment. It was not clear whether this was 
due to hardware processing constraints or timing problems 
with the software itself related to its rate constraints. 

Likewise, Saratoga had problems when its line rate was set 
to a value above 85000 Kbps (approximately 85 Mbps) and so 
for the sake of reliable performance testing it was configured 
to constrain itself to a maximum of 85 Mbps. It is unclear 
whether the performance-related problems are related to the 
fact that the code is running in the interpreted Perl language or 
some other reason related to protocol timing or hardware 
processing constraints. While the Saratoga implementation is 
supposed to have a line rate option of “0”, meaning unlimited, 
it was found to not work reliably and resulted in bugs popping 
up in the code related to uninitialized variables and division by 
zero errors. Since this was not a code development effort, the 
bugs were noted so they could be passed along to its 
developers while we attempted to work around them as best as 
possible. As with NORM, Saratoga tended to top out less than 
60 Mbps in our environment so the artificial line rate 
constraint in its configuration did not appear to be an extra 
hindrance to its performance during this testing phase. 

5.0 Test Results  
5.1 Baseline 

The purpose of these protocols is to make the most out of 
unreliable links. Thus, the analysis will focus on how well the 
protocols cope with various error rates. Due to time 
constraints and the number of tests run there are ten runs for 
each permutation. This does not lend the tests to parametric 
statistical analysis and therefore box plots are employed for 
visualization purposes. Several types of measurements were 
taken during each test. The focus in this paper will be on the 
goodput, the number of packets sent from the sender to the 
receiver, and the number of packets sent from the receiver to 
the sender. As mentioned in the previous section, a baseline 
performance test was performed to determine the maximum 
goodput of the protocol implementations over an unrestricted 
link. A 100 MB file was sent without the channel emulator in 
place and the rate limiting options in Saratoga and NORM set 
to provide the maximum performance. 

As we see from the figure above, CFDP, NORM, and 
Saratoga all performed within the same order of magnitude 

when unrestricted by channel emulation. Despite many 
attempts to tweak the parameters of LTPlib, it was 
consistently sending at a lower rate than the other protocols. In 
Figure 3, the dot on LTP represents an outlier that is not 
visible on the scale that includes all protocols simultaneously. 
As can be seen in Figure 4, the number of packets from the 
sender to the receiver (STR) for the baseline is displayed. 

We would expect a 100 MB file transfer would require 
approximately 100,000 packets to be sent without factoring in 
protocol overhead, but as can be seen in Figure 5 the number 
of packets sent varied a bit due to the differences in payload 
size not exactly matching up with the desired 1024 B MTU 
size. For example, the average maximum packet sizes 
recorded in the captures despite tweaking the configurations of 
the implementations were: 

 

• CFDP—1011 B 
• LTP—1010 B 
• NORM—1056 B 
• Saratoga—1034 B 

 
Figure 3.—Baseline goodput of protocols on unrestricted link. 

 

 
Figure 4.—Number of baseline sender-to-receiver 

packets captured on the unrestricted link. 
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Figure 5.—Number of baseline receiver-to-sender 

packets captured on the unrestricted link. 
 

 
Figure 6.—Average protocol goodput rates of the 

protocols referenced in the analysis in Sections 4.2  
to 4.5. 

 

 
Figure 7.—The effects on the goodput of transferring 

different amounts of data using CFDP over the 
10 Mbps constrained link. 

As links to space assets are often asymmetrical, it is 
beneficial to see how many packets are sent from the receiver 
to the sender (RTS) when our link condition is ideal. The 
baseline RTS packet count follows. 

With no errors, the RTS packet count is between 2 and 9 on 
our ideal link with NORM and LTP requiring many more 
feedback packets to the sender than CFDP or Saratoga. The 
average goodput rates at 25ms can be seen in Figure 6. 

5.2 CFDP 
Intuitively, as the payload size increases we would expect 

the goodput to also increase because less of the transmission is 
consumed by protocol overhead and NACKs. To illustrate 
CFDP's behavior as the payload increases, the error rate is set 
to zero and 100K, 1M, and 10M files are sent. All non-
baseline tests (CFDP and otherwise) have the latency set to 
25 ms and line rate set to 10 Mbps. 

As we can see, the link is more efficiently used when the 
file size increases resulting in higher goodput as expected.  

Since we now know to send larger files we will discover 
what happens when the channel emulator induces errors at 
various rates. For the remainder of the figures in this section 
the file size is fixed at 10 MB, the line rate is set to 10 Mbps, 
and the probability of a bit error in a packet is set to 0, 
0.00001, 0.0001, 0.001, 0.01, and 0.1. As before, the goodput 
is used to show how much longer it takes to get payload data 
across a lossy link. 

The purpose of showing the case where ten percent of the 
packets have a bit error is to show how gracefully the protocol 
drops off. Naturally, we would expect the link would either 
improve at this point or drop off completely. It is remarkable 
how little variance there is in the goodput until it suddenly 
starts to steeply drop off.  

With the higher error rates, we would obviously expect the 
need for more retransmission of lost or corrupted packets. As 
the error varies, we plot the STR packet count. Figure 7 shows 
the effects on goodput by varying the overall data size. Figure 
8 shows the effects on goodput by varying the error rate on the 
link. Figure 9 shows the effects of the number of sender-to-
receiver packets transmitted by varying the error rate. 

Figure 10 is intuitive after seeing Figure 9—however it 
more clearly illustrates the direct relation between error 
probability and variance as they affect the goodput.  

Retransmission of lost or corrupted packets will occur when 
the receiver asks for it. The RTS packet count follows. 

Even with an unrealistically high error rate, only about 
70 KB worth of data are sent from the receiver to the sender to 
successfully transfer the 10 MB file. 

 



 

NASA/TM—2012-216047 10 

 
Figure 8.—The effects on goodput of CFDP by varying 

the error rate on the 10 Mbps constrained link. 
 

 
Figure 9.—The effects on the number of sender-to-

receiver packets transmitted by CFDP by varying the 
error rate on a 10 Mbps constrained link. 

 

 
Figure 10.—This chart shows the effects of the number 

of receiver-to-sender packets transmitted by CFDP by 
varying the error rate on a 10 Mbps constrained link. 

5.3 LTP 
We begin the study of LTP with goodput versus file size 

plots shown in Figure 11 as we did with CFDP. 
While the same relation holds, that is, the larger the payload 

the higher the goodput, the variance is much higher with LTP 
than CFDP. This appears characteristic of either LTPlib or 
LTP itself. In Figure 12, goodput is shown for the 
transmission of a 10 MB file with varying error rates. 

This plot is very hard to interpret by itself since the best 
performing test runs of each variety are very similar. The 0.1 
error rate case shows LTP outperforming CFDP in comparison 
charts. To try to understand what is happening in Figure 13 we 
plot STR packets versus error rates. 

 
 

 
Figure 11.—The effects on the goodput of transferring 

different amounts of data using LTP over the 10 Mbps 
constrained link. 

 
 

 
Figure 12.—The effects on goodput of LTP by varying 

the error rate on the 10 Mbps constrained link. 
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Figure 13.—The effects on the number of sender-to-

receiver packets transmitted by LTP by varying the 
error rate on a 10 Mbps constrained link. 

 
The case where there is no error exhibits comparatively low 

variance but shows thousands more packets are being sent than 
all other cases. When sending data over LTP in reliable mode, 
acknowledgments are used. To get the complete picture of the 
transmission we also need to visualize the RTS packet count. 

LTP divides the data (including the header) into two parts: the 
red part and the green part. The red part denotes the data to be 
sent reliably with acknowledgment and in a typical LTP 
transfer, at least the header is marked in this manner. The green 
part is sent without positive or negative acknowledgment and 
sent as a best effort. Figure 14 shows that two ACKs are sent 
when there is no error. At the next lowest error-level, between 2 
and 6 ACKs are sent. We see that with more two-way 
communication LTP retransmits less. This corresponds with 
Figure 12 where the goodput with an error probability of 
0.00001 is at least as high as the goodput of the no-error case.  

The behavior in Figure 12, Figure 13, and Figure 14 
indicate that LTP is optimized for a lossy link. 

5.4 NORM 
As expected, NORM shows the same performance trend as 

CFDP and LTP. As file size increases, so does the goodput as 
shown in Figure 15. 

Notice that the goodput of NORM is on the same order as 
CFDP for larger files but CFDP outperforms NORM when 
sending smaller 1 MB files. Figure 16 shows how NORM’s 
goodput is affected by the error rate.  

As expected, the variance increases with error and the 
goodput decreases with error. In Figure 17 the STR count is 
compared for various error rates. 

The variance is minimal until the worst case. Even so, the 
progression is very clearly defined—unlike LTP. However, LTP 
still sends fewer packets from the sender to the receiver when 
the packet error rate is at 0.1. Since the communication is bi-
directional, we have to consider the RTS packet traffic in our 
analysis. 

 
Figure 14.—The effects on the number of receiver-to-

sender packets transmitted by LTP by varying the 
error rate on a 10 Mbps constrained link. 

 

 
Figure 15.—The effects on the goodput of transferring 

different amounts of data using NORM over the 
10 Mbps constrained link. 

 

 
Figure 16.—The effects on goodput of NORM by 

varying the error rate on the 10 Mbps constrained link. 
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Figure 17.—The effects on the number of sender-to-

receiver packets transmitted by NORM by varying the 
error rate on a 10 Mbps constrained link. 

 

In Figure 18, the RTS numbers are similar between LTP and 
NORM (disregarding the outlier in LTP’s worst-case) and 
they are both less chatty than CFDP. 

5.5 Saratoga 
As we have shown in the previous three protocol examples, 

Figure 19 shows Saratoga’s goodput given a variety of file 
sizes. 

Saratoga performs in the same class as CFDP and LTP in 
error-free conditions. A clear logarithmic relationship is 
depicted. Figure 20 illustrates the goodput roll-off as error rate 
increases. It is interesting that Saratoga outperformed the other 
protocols for error rates from 0 to 0.01 but it would not work 
with an error rate of 0.1 due to a decoding bug in the Perl 
implementation that arose when the packets became too 
corrupted. As such, we could not test the Saratoga v0 
implementation at the 0.1 error rate reliably. It should be 
stressed that this is not an problem with the protocol itself, but 
rather the use of the Perl language in this particular 
implementation that gave rise a bug with highly corrupted data 
packets. 

The variances in Figure 20 appear wider than the 
competition, but keep the scale in mind since the 0.1-error 
case is not included. In Figure 21 we see the STR traffic for 
Saratoga. 

The high error case shows a STR packet increase of roughly 
100 packets. CFDP’s STR packet count increased nearly 
20000 from 0 error to 0.01 error. 

Figure 22 illustrates the RTS packet count for Saratoga. 
It is seen that Saratoga is minimally chatty for error under 

0.01. At the 0.01 error level, CFDP sends out between 7 and 9 
packets from the receiver to the sender. Similarly, NORM and 
LTP send fewer packets back to the sender at Saratoga’s 
maximum error rate. 

 
Figure 18.—The effects on the number of receiver-to-

sender packets transmitted by NORM by varying the 
error rate on a 10 Mbps constrained link. 

 

 
Figure 19.—The effects on the goodput of transferring 

different amounts of data using Saratoga over the 10 
Mbps constrained link. 

 
Figure 20.—The effects on goodput of Saratoga by 

varying the error rate on the 10 Mbps constrained link. 
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Figure 21.—The effects on the number of sender-to-

receiver packets transmitted by Saratoga by varying 
the error rate on a 10 Mbps constrained link. 

 

 
Figure 22.—The effects on the number of receiver-to-

sender packets transmitted by Saratoga by varying 
the error rate on a 10 Mbps constrained link. 

 

 
Figure 23.—Protocol goodput comparison of 10 MB file 

transfer at 1250 ms one-way delay at 10 Mbps. 

5.6 Protocol Packet Analysis 
In the following sections we took a closer look at a couple of 

example file transfer scenarios for each transport protocol using 
tcpdump packet captures recorded during a selected run to 
illustrate the variation in the number of packets needed to 
successfully transmit the file and cleanly terminate the session. 
We attempted to determine why some protocol implementations 
show a wide disparity in their performance in different link 
conditions compared to similar protocols to determine whether 
it was characteristic of the protocol itself or the implementation 
of the particular implementation we were testing. 

5.6.1 Example 1, Large Files, High Bandwidth 
The following example file transfers occur at a 10 Mbps 

line rate, with a 1.25 s one-way delay, and 0.0001 error rate on 
a 10 MB file. Figure 23 illustrates the goodput results of a 
high bandwidth, large file size transfer across varying error 
rates with a high delay. 

5.6.1.1 CFDP 
CFDP’s file transfer termination phase finishes much 

quicker than LTP or NORM and results in overall better 
performance than these protocols due to the small amount of 
time it waits before it concludes that the file was successfully 
transmitted. 

 
19:11:47.011739 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:47.012622 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:47.013507 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:47.014390 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 104 
19:11:47.014562 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 20 
19:11:47.014831 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 13 
19:11:47.015065 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 43 
19:11:49.518932 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:49.523781 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:49.523821 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
19:11:49.587337 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 12 
19:11:52.087918 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 13 

5.6.1.2 Saratoga 
Saratoga, like CFDP, concludes the file transfer phase of 

waiting for NACKs very quickly upon finishing sending the 
data from the sender to the receiver. 

 
13:12:40.716883 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
13:12:40.717785 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
13:12:40.718692 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 650 
13:12:40.783605 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 7 
13:12:40.888240 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18 
13:12:41.889693 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18 
13:12:42.891122 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18 

5.6.1.3 LTP 
LTP’s file transfer termination phase stays at the 

WAIT_RP_ACK state waiting for acknowledgment from the 
receiver that it has received all of the “red” parts before the 
transfer can conclude. (Ref. 5) This appears to contribute to poor 
performance when the file transfer is very small or there is a 
large amount of latency. It may be possible to adjust the default 
timers in LTPlib to help offset this to improve performance.  
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12:12:13.683679 IP 192.168.100.1.52059 > 192.168.100.2.1113: UDP, length 1012 
12:12:13.704069 IP 192.168.100.1.55879 > 192.168.100.2.1113: UDP, length 1012 
12:12:13.724461 IP 192.168.100.1.46087 > 192.168.100.2.1113: UDP, length 1012 
12:12:13.725345 IP 192.168.100.1.56090 > 192.168.100.2.1113: UDP, length 1012 
12:12:13.745081 IP 192.168.100.1.54561 > 192.168.100.2.1113: UDP, length 663 
12:12:23.267041 IP 192.168.100.1.39980 > 192.168.100.2.1113: UDP, length 663 
12:12:33.244261 IP 192.168.100.1.50456 > 192.168.100.2.1113: UDP, length 663 
12:12:37.648531 IP 192.168.100.2.60750 > 192.168.100.1.1113: UDP, length 73 
12:12:37.648764 IP 192.168.100.2.47909 > 192.168.100.1.1113: UDP, length 73 
12:12:37.700821 IP 192.168.100.2.36164 > 192.168.100.1.1113: UDP, length 73 
12:12:43.242798 IP 192.168.100.1.43766 > 192.168.100.2.1113: UDP, length 13 
12:12:43.280137 IP 192.168.100.2.48385 > 192.168.100.1.1113: UDP, length 12 
12:12:47.030608 IP 192.168.100.2.51587 > 192.168.100.1.1113: UDP, length 73 
12:12:47.030753 IP 192.168.100.2.33117 > 192.168.100.1.1113: UDP, length 73 
12:12:47.051047 IP 192.168.100.2.51706 > 192.168.100.1.1113: UDP, length 73 

5.6.1.4 NORM 
With NORM, the file transfer termination phase is quite a bit 

longer and occurs over the span of several minutes. In example 
2, we detail how this is the result of the random back-off timers 
to prevent flooding the multicast sender with feedback (Note: 
NORM is optimized for multicast operations, not unicast.). This 
obviously has a large impact on the goodput when we include 
this end-of-transfer wait in our calculations. If we were to 
ignore the nearly 2-minute wait, NORM would be much closer 
to Saratoga and CFDP in terms of speed of the actual transfer as 
it is just blasting UDP packets over the channel. 

 
21:43:30.081301 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056 
21:43:30.082220 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056 
21:43:30.083141 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056 
21:43:30.084061 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056 
21:43:30.084981 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 672 
21:43:30.085599 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:43:34.280349 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:43:34.519335 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 48 
21:43:34.689731 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:43:41.874831 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:43:50.414888 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 1056 
21:43:50.415801 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:43:53.266676 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:43:55.770422 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:01.124635 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:02.209320 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36 
21:44:06.480576 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:10.357683 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:44:11.835213 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:17.190228 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:22.544591 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:27.899326 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:33.253640 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:35.989226 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:44:38.608427 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:42.246225 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36 
21:44:43.963575 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:49.318088 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:44:54.672966 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:00.028188 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:05.383626 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:05.991198 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 
21:45:10.738577 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:12.850224 IP 192.168.100.2.37829 > 224.1.2.3.12347: UDP, length 36 
21:45:16.092833 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:21.447353 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:26.802354 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:32.156632 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 20 
21:45:35.994465 IP 192.168.100.1.51946 > 224.1.2.3.12347: UDP, length 28 

5.6.2 Example 2, Small Files, Low Bandwidth 
In comparison to the large file transfer, using a very small 

file of 10 KB, transferred at 1 Mbps with an error rate of 
0.0001, we can see the entire packet capture to illustrate the 
effects of the 1.25 s one-way delay on the file transfer with 
each of the protocols. Figure 24 illustrates the goodput results 
of a low bandwidth, small file size transfer across varying 
error rates with a high delay. 

 
Figure 24.—Protocol goodput comparison of 10 KB file transfer 

at 1250 ms one-way delay at 1 Mbps. 

5.6.2.5 CFDP 
05:11:09.129333 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 42 
05:11:09.130082 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.138363 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.146649 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.154933 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.163215 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.171500 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.179785 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.188067 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.196357 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.204637 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 1011 
05:11:09.212921 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 44 
05:11:09.213653 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 20 
05:11:09.214258 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 13 
05:11:09.214436 IP 192.168.100.2.2502 > 192.168.100.1.2501: UDP, length 12 
05:11:11.715268 IP 192.168.100.1.2501 > 192.168.100.2.2502: UDP, length 13 

 
As shown, CFDP is very efficient at transferring the file as 

fast as possible over channel starting with the file metadata 
and then the contents of the file itself followed by 
acknowledgements from the receiver.  

5.6.2.6 Saratoga 
01:34:06.898516 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 32 
01:34:09.400220 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 10 
01:34:09.408768 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 266 
01:34:09.417388 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.426008 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.434617 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.443226 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.451836 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.460470 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.469085 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.477693 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.486307 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 1034 
01:34:09.494914 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 794 
01:34:09.495976 IP 192.168.100.2.4000 > 192.168.100.1.4000: UDP, length 7 
01:34:10.496302 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18 
01:34:11.497755 IP 192.168.100.1.4000 > 192.168.100.2.4000: UDP, length 18 

 

As observed, Saratoga and CFDP’s performance is almost 
entirely impacted by the small number of packets transmitted 
vs. the large round trip latency for the NACK processing in 
these examples. Saratoga’s file transfer is very similar to 
CFDP with the exception of requiring the initial “get” packet 
from the receiver due to the limitations of the v0 protocol. 
Once the sender receives the “get” request, it sends the 
metadata and contents of the file in the ensuing packets in a 
similar manner as CFDP. The file transfer is then concluded 
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by the receiver acknowledging the transmission and, if 
necessary, requesting the retransmission of any missing blocks 
of data via NACKs. 

5.6.2.7 LTP 
00:20:27.634931 IP 192.168.100.1.42791 > 192.168.100.2.1113: UDP, length 1009 
00:20:27.643204 IP 192.168.100.1.60433 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.655298 IP 192.168.100.1.59690 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.675556 IP 192.168.100.1.51936 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.695793 IP 192.168.100.1.41218 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.716054 IP 192.168.100.1.47606 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.736278 IP 192.168.100.1.36030 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.756563 IP 192.168.100.1.58628 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.776804 IP 192.168.100.1.39097 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.797062 IP 192.168.100.1.59594 > 192.168.100.2.1113: UDP, length 1010 
00:20:27.817272 IP 192.168.100.1.39914 > 192.168.100.2.1113: UDP, length 100 
00:20:27.845487 IP 192.168.100.2.33163 > 192.168.100.1.1113: UDP, length 24 
00:20:30.368747 IP 192.168.100.1.47307 > 192.168.100.2.1113: UDP, length 15 
 
LTP is similar to CFDP and Saratoga in that it is waiting for 

the NACK to be processed and to receive the reply from the 
sender to conclude that the transmission is finished and is 
mostly affected by network latency at these parameters. 

5.6.2.8 NORM 
16:57:21.057915 IP 192.168.100.2 > 224.0.0.22: igmp v3 report, 1 group record(s) 
16:57:22.525799 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:22.526493 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 40 
16:57:22.527145 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.535765 IP 192.168.100.1 > 224.0.0.22: igmp v3 report, 1 group record(s) 
16:57:22.536294 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.544934 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.553574 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.562211 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.570849 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.579488 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.588123 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.596762 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 1056 
16:57:22.605405 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 816 
16:57:22.612178 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:23.141711 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:23.275457 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36 
16:57:23.525241 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:23.674569 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:24.127864 IP 192.168.100.2 > 224.0.0.22: igmp v3 report, 1 group record(s) 
16:57:24.207837 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:24.443204 IP 192.168.100.1 > 224.0.0.22: igmp v3 report, 1 group record(s) 
16:57:24.740769 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:25.025455 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:25.273794 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:25.799631 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36 
16:57:25.806569 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:27.276628 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:29.743414 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:30.651056 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:32.500036 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36 
16:57:34.701698 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:35.712811 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:39.663751 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:43.307130 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:44.621940 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:48.983011 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36 
16:57:49.582124 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:54.540280 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:57:54.698902 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:57:59.894738 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:05.249571 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:10.608750 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:11.786995 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
16:58:15.963021 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:19.537548 IP 192.168.100.2.42335 > 224.1.2.3.12347: UDP, length 36 
16:58:21.317683 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:26.672691 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:32.029043 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 20 
16:58:37.416924 IP 192.168.100.1.35454 > 224.1.2.3.12347: UDP, length 28 
 
Note that there is approximately 1 min and 15 s between the 

conclusion of the file transfer and the end of the NACK 
processing phase, at which point there is no further 
communication between nodes. 

The NORM console output on the sender side during the 
file transfer shows: 

 
Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 to 10 
Proto Info: 21:57:21.273860 enqueued tx object>41904 sender>8471 
Proto Debug: NormApp::Notify(TX_OBJECT_SENT) ... 
Proto Debug: NormApp::Notify(TX_QUEUE_EMPTY) ... 
Proto Fatal: norm: End of tx file list reached. 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:1)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:2)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:3)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:4)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:5)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:6)... 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>1.968000 sec 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:7)... 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>2.479000 sec 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:8)... 
Proto Info: REPORT time>21:57:31.273127 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    8.528 grtt>2.479000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:9)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:10)... 
Proto Info: REPORT time>21:57:41.277039 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    0.054 grtt>2.479000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:11)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:12)... 
Proto Debug: NormApp::Notify() unhandled event: 20 
Proto Debug: NormSession::SenderUpdateGrttEstimate() node>8471 increased to new grtt>2.677000 sec 
Proto Info: REPORT time>21:57:51.279509 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    0.054 grtt>2.677000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:13)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:14)... 
Proto Info: REPORT time>21:58:01.281004 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    0.054 grtt>2.677000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:15)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:16)... 
Proto Info: REPORT time>21:58:11.282546 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    0.054 grtt>2.677000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:17)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:18)... 
Proto Info: REPORT time>21:58:21.284552 node>8471 *************************************** 
Proto Info: Local status: 
Proto Info:    txRate> 1000.000 kbps sentRate>    0.032 grtt>2.677000 
Proto Info: *************************************************************************** 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:19)... 
Proto Debug: NormSession::SenderQueueFlush() node>8471, flush queued (flush_count:20)... 
Proto Trace: NormSession::Serve() node>8471 sender flush complete ... 
Proto Debug: NormApp::Notify(TX_FLUSH_COMPLETED) 

 

On the NORM receiver during the file transfer, the console 
output shows: 

 
Proto Info: ProtoDebug>SetDebugLevel: debug level changed from 1 to 10 
Proto Debug: NormApp::Notify() unhandled event: 10 
Proto Debug: NormSession::ReceiverHandleCommand() node>8472 new remote sender:8471 ... 
Proto Debug: NormApp::Notify(REMOTE_SENDER_ACTIVE) ... 
Proto Trace: NormSenderNode::HandleCommand() node>8472 begin CC back-off: 0.748614 sec)... 
Proto Debug: NormApp::Notify(RX_OBJECT_NEW) ... 
Proto Info: 21:57:22.507198 start rx object>41904 sender>14319463051248541975 
Proto Detail: NormSenderNode::HandleObjectMessage() node>8472 sender>8471 new obj>41904 
Proto Debug: NormApp::Notify(RX_OBJECT_INFO) ... 
Proto Debug: NormSenderNode::HandleObjectMessage() node>8472 allocating sender>8471 buffers ... 
Proto Trace: NormApp::Notify(RX_OBJECT_UPDATED) ... 
Proto Detail: NormObject::HandleObjectMessage() node>8472 sender>8471 obj>41904 blk>0 completed 
block ... 
Proto Debug: NormApp::Notify(RX_OBJECT_COMPLETED) 

 
The NORM NACK delays are apparently part of the 

protocol and are caused by the receiver scheduling random 
back-off timeouts before generating more NACK messages. It 
uses probabilistic suppression of redundant feedback based on 
exponentially distributed random back-off timers (Ref. 6). 
This behavior is implemented due to its nature as a multicast 
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protocol in order to avoid overwhelming the sender with 
potentially similar NACK replies from large groups of 
recipients at the same time requesting the retransmission of the 
same corrupted or lost parts of the file. 

6.0 Conclusion 
The purpose of this paper was to perform a comparative 

analysis of several transport layer protocol implementations to 
determine the ideal operating conditions to maximize 
performance. The various environments that the protocols 
were subjected to are characteristic of those found in 
terrestrial, geostationary orbit, and cis-lunar communications 
links. Communications over the latter two types of links are 
often subjected to restrictions that do not apply to typical 
terrestrial links such as limited contact time, high delay, and 
limited power. Therefore, while mitigating the problems 
inherent in the reliability, integrity, and availability of the link 
itself, the protocols must also be able to maximize 
performance while the link is available. 

CFDP performed consistently well across the entire 
collection of tests and satisfied our expectations that it would 
be able to handle the problems related to typical cis-lunar 
space links well considering that was the intent of its original 
design by CCSDS. 

Saratoga likewise performed very well across most of the 
test scenarios matching and occasionally even exceeding 
CFDP’s performance in many of the tests. We expected that 
due to the design of the Saratoga v0 protocol and lack of a 
“put” option, the higher-delay links would pose a performance 
problem considering the file transmission could not begin until 
the sender transmitted a “get” packet to the receiver. As seen 
in the appendix, this did in fact seem to affect performance 
slightly across the range of tests as Saratoga usually suffered a 
performance penalty from having to process the “get” request 
to initiate the transfer. If a future version of Saratoga such as 
version 1 is able to successfully implement a push-based file 
transfer initiated by the sender then it is very likely Saratoga 
will continue to meet and even exceed the performance of 
CFDP in higher-delay communications links. As it stands 
now, Saratoga appears best suited for low and moderate-delay 
communications links below geostationary orbit. One 
particularly frustrating problem faced with Saratoga v0’s Perl 
implementation was a bug that exhibited itself during the 
10 percent packet error tests. Saratoga could not properly 
handle the highly corrupted packets and the implementation 
would crash. Due to this problem we had to exclude the 
handful of successful runs captured at 10 percent packet error 

rate because they were not common enough and were too 
difficult to reproduce in a consistent fashion to find 10 
successful runs in a row. 

NORM was also highly reliable and its performance was 
consistent across a wide variety of link conditions, however 
the multicast-oriented design best suits those particular 
environments where data must be transferred to a large 
amount of receiver nodes at once. The random back-off timer 
used to avoid flooding the sender with NACKs did cause a hit 
to goodput performance during testing, but in a typical 
multicast environment where this protocol would be deployed 
this behavior is both expected and desired. If we were to 
exclude the delays associated with handling the NACK 
processing phase of the file transfer and instead concentrated 
solely on the unidirectional transfer of the file data itself, 
NORM would have performed just as well as CFDP or 
Saratoga considering it was simply blasting out UDP packets 
filled with data. It is the protocol’s designs to accommodate 
the multicast environment that ultimately limit its performance 
in a field of unicast-oriented protocols. 

LTP was expected to perform similarly to CFDP since the 
protocols are related and the design of the file transfer process 
is very similar, however this did not seem to be the case in 
practice with our LTPlib (Ref. 10) implementation. The 
variances in LTP observed using LTPlib are significantly 
higher than the other protocols tested and seem indicative of a 
problem with the version of the software implementation 
rather than the protocol design itself. It would be interesting to 
go back and compare the results of our testing against another 
independent standalone implementation of LTP such as the 
one from Ohio University written in Java (Ref. 13). 

Individual implementation problems aside, the design and 
performance aspects of each of these protocols seems like they 
would be suitable for use as a convergence layer in concert 
with the Bundle Protocol under the kinds of DTNs deployed in 
space communications links. Convergence layer 
implementations of several of these transport protocols already 
exist for popular DTN implementations including ION (LTP) 
(Ref. 14) and DTN2 (NORM, LTP) (Ref. 15). An 
experimental Internet-draft document for explaining how a 
DTN bundle agent could be implemented with Saratoga as a 
convergence layer has been proposed as well (Ref. 16).  

These tests show the importance of understanding and 
testing the particular convergence layer protocol and 
implementation prior to doing DTN network tests and the 
convergence layer performance will likely significantly effect 
to overall DTN network performance. 
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Appendix 
The following graphs were included to show the breadth of 

our tests keeping in mind it is not feasible to individually 
analyze every permutation of test run. The graphs may be used 
to supplement the analysis in order to satisfy the particular 
interests of the reader. The charts below show the average 
results of the protocols across a set of different file sizes 
(10 KB, 100 KB, 1 MB, and 10 MB) in a variety of link 
conditions where we vary the latency, throughput, and error 
rate. These charts were created using the average of the runs to 

give a closer look at the performance trends as the link 
conditions vary. Error bars were included to show the standard 
error of the mean for the test runs.  

Keeping in mind that no data was collected for Saratoga 
when the error was at 0.1, we see that Saratoga and CFDP 
performed very similarly. The random back-off timers that are 
employed for the NACK phase of the file transfer impact 
NORM clearly here. The variance and lack of a trend in LTP 
is illustrated. 
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