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ABSTRACT 

The goal of the DebriSat project is to characterize 
fragments generated by a hypervelocity collision 
involving a modern satellite in low Earth orbit (LEO).  
The DebriSat project will update and expand upon the 
information obtained in the 1992 Satellite Orbital Debris 
Characterization Impact Test (SOCIT), which 
characterized the breakup of a 1960’s US Navy Transit 
satellite.  There are three phases to this project:  the 
design and fabrication of DebriSat - an engineering 
model representing a modern, 60-cm/50-kg class LEO 
satellite; conduction of a laboratory-based hypervelocity 
impact to catastrophically break up the satellite; and 
characterization of the properties of breakup fragments 
down to 2 mm in size.  The data obtained, including 
fragment size, area-to-mass ratio, density, shape, 
material composition, optical properties, and radar 
cross-section distributions, will be used to supplement 
the DoD’s and NASA’s satellite breakup models to 
better describe the breakup outcome of a modern 
satellite. 

1 INTRODUCTION 

A key element to provide good short- and long-term 
orbital debris (OD) environment definition and OD 
impact risk assessments for critical space assets is the 
ability to reliably predict the outcome of a satellite 
breakup. The two major classes of satellite breakups are 
explosions and collisions. Before the anti-satellite test 
on the Fengyun 1-C (FY-1C) weather satellite by China 
in 2007, the fragmentation debris population was almost 
all generated by explosions. After the FY-1C event and 
the collision between Iridium 33 and Cosmos 2251 in 
2009, the numbers of the catalogued explosion 
fragments and collision fragments were about equal. 
Based on various modelling projection studies of the 
debris environments in low Earth orbit (LEO, the region 
below 2000 km altitude), collision fragments are 
expected to dominated the environment in the future – a 
phenomenon known as the “Kessler Syndrome” and 

predicted by Kessler and Cour-Palais in 1978 [1]. 

A satellite breakup model consists of three fundamental 
components – fragment size, area-to-mass ratio (A/M), 
and relative velocity (V) distributions. The fragment 
size distribution quantifies the amount of fragments 
generated from the event and the V distribution 
specifies the initial spread of the fragment cloud. The 
A/M distribution determines the solar radiation pressure 
and atmospheric drag perturbations on the fragments. 
The latter is directly related to the orbital lifetimes of 
fragments below about 1000 km altitude. These three 
components provide the key information to model the 
orbital evolution of fragments and their short and long-
term distributions, including spatial density, velocity 
distribution, and flux, in the near-Earth environment. 
For spacecraft (S/C) OD impact damage assessments, 
additional information, such as the shape and material 
density of the impacting debris, is needed to improve 
the reliability of the assessments. 

The U.S. Space Surveillance Network (SSN) provides 
tracking data and maintains a catalog for the large 
objects in the near-Earth space. The size limits for the 
catalogued objects are about 10 cm in LEO and about 1 
m in the geosynchronous region. The size information 
of a tracked debris can be inferred from its radar cross 
section (RCS). The A/M of a LEO debris below 1000 
km altitude can also be estimated based on the 
atmospheric drag perturbations on its orbital history. For 
smaller debris, however, no such data exist. Because of 
the high impact speed in LEO (with an average of 10 
km/sec), even a sub-millimeter debris could be a safety 
concern for human space activities and robotic missions. 
Laboratory-based satellite impact experiments, 
therefore, are necessary to provide data for the physical 
properties of fragments smaller than 10 cm. 

To characterize the outcome of a satellite collision and 
the properties of the generated fragments, the 
Department of Defense (DoD) and NASA conducted 
several series of laboratory impact tests in the 1980’s 
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and the early 1990’s. One of the test series, the Satellite 
Orbital Debris Characterization Impact Test (SOCIT), 
led to a key laboratory-based dataset used in the 
development of the current NASA and DoD satellite 
breakup models [2]. These models have been used for 
various orbital debris applications for more than 10 
years. The target used for SOCIT was a flight-ready 
Navy Transit navigation satellite (46 cm diameter by 30 
cm height, 34.5 kg) fabricated in the 1960’s. As 
materials, components, and construction techniques for 
satellite design and fabrication continue to advance, 
there is a need to conduct new impact experiments on 
targets more representative of the modern satellites. The 
data can be used to supplement the existing models to 
better describe the breakup outcome of a modern 
satellite. 

The justification for a new impact experiment is also 
supported by the FY-1C destruction and the collision 
between Cosmos 2251 and Iridium 33. Cosmos 2251 
was an older satellite while Iridium 33 and the target for 
the ASAT test, Fengyun-1C weather satellite, were 
relative modern. The U.S. SSN data have indicated that 
Cosmos 2251 fragments are well-described by the 
NASA standard satellite breakup model, as indicated by 
the comparison in Fig. 1 [3]. 

 

Figure 1. A/M comparison of the Cosmos 2251 
fragments. NASA breakup model prediction (blue) 

matches well with the observation data (red). 

For the Iridium 33 and FY-1C fragments, noticeable 
discrepancies exist between the model predictions and 
the observation data, as shown in Figs. 2 and 3, 
respectively. By design, lightweight composite materials 
were extensively used in the construction of the Iridium 
vehicles and each vechicle was equipped with two solar 
panels (3.9 m2 each) [4]. This could be a reason behind 
the discrepancy between the model prediction and the 
data. For FY-1C, it is reasonable to assume the vehicle 
included some lightweight material materials as well. In 
addition, FY-1C was covered with approximately 13 m2 
of Multi-Layer Insulation (MLI) and equipped with two 
larger solar panels (6 m2 each). It is very likely that the 

excess of fragments with A/M values above ~0.3 m2/kg 
consist of composite material, solar panel, and MLI 
pieces [5]. 

 

Figure 2. A/M comparison of the Iridium 33 fragments. 
NASA breakup model prediction (blue) and the 

observation data (red) are off by approximately a factor 
of 3. 

 

Figure 3. A/M comparison of the FY-1C fragments. 
NASA breakup model (blue) under-predicts the amount 
of fragments. There is also a significant excess of high 

A/M fragments. 

The effort to conduct an impact experiment on a new 
target satellite, the “DebriSat”, was initiated by the 
NASA Orbital Debris Program Office (ODPO) in 2011. 
The responsibilities of the ODPO are to provide project 
and technical oversight and lead the efforts for data 
collection, analyses, and NASA model improvements. 
The DebriSat project is co-sponsored by the Air Force’s 
Space and Missile Systems Center (SMC). The SMC 
team provides technical oversight, supports data 
analyses, and leads the effort for DoD model 
improvements. The design and fabrication of DebriSat 
are led by University of Florida (UF) with subject 
matter experts’ support provided by the Aerospace 
Corporation. The UF team also leads the post-impact 
fragment collection and measurements. The 
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measurements will include the selection of sample 
representative fragments. Those fragments will be 
subjected to additional three-dimensional digital 
scanning for more accurate cross-sectional area and 
volume data. Additional radar, photometric, and spectral 
measurements on selected fragments are also planned to 
provide data for the development of the optical size 
estimation model and potential improvements to the 
existing NASA radar size estimation model. 

5 CONCLUSIONS 

The DebriSat project was initiated in 2011. Major 
milestones and planned activities are summarized in 
Tab. 2. This project is a good collaboration among 
academia, DoD, and NASA. Once the data are 
processed and analysed, the results will be published to 
help the orbital debris research community to better 
model future satellite breakups and improve the orbital 
debris environment definition. 

Table 2. Major milestones of the DebriSat project. 

Date Milestone 

Sep 2011 Project kickoff 

Jun 2012 Preliminary DebriSat design 

Jan 2013 Final DebriSat design 

Sep 2013 Complete fabrication of DebriSat 

Oct 2013 Vibration and thermal vacuum tests 

Mar 2014 Hypervelocity impact 

Dec 2014 Complete fragment measurements 

Dec 2015 
Process and analyse data for model 
improvements 
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