National Aeronautics and Space Administration

Penetration Degradation Calorimetry Industry Overview

Wesley Johnson Andrew Kelly Kevin Jumper Wayne Heckle

Cryogenics Test Laboratory Kennedy Space Center

Agenda

- Test Purpose and Objectives
- Technical Goals
- Test Approach
- Hardware Configuration
 - Experimental Uncertainty
- Test Matrix
- Sample Test Data
- Modeling
- Results
 - No Penetration Repeatability
 - Materials Trade
 - Methodology Trade
 - Scaling Testing
 - Modeling
- Summary
- Forward Work

Test Purpose and Objective

• Test Objective is to quantify heat losses with integrating MLI into real life situations

- The specific focus is on penetrations through the MLI
 - Load bearing structure
 - Electrical conduit
 - Fluid lines (fill/drain/pressure taps)

• The purpose of the test is to provide experimental data...

- To validate thermal models
- To estimate integration thermal losses associated with MLI and penetration

Technical Goals

The success of the project will be measured by two Key Performance Parameters (KPPs):

- Degradation radius (m) the radius of the area of MLI degradation will be less than:
 - This generally starts at the center of strut and assumes a 13 mm diameter strut
 - Minimal Success: 0.05 m (400% of strut diameter)
 - Full Success: 0.02 m (150% of strut diameter)
- System delta Q (W) the differential power input between the test and the undisturbed insulation + penetration conduction:
 - Minimal Success: < 0.2 W
 - Full Success: < 0.1 W</p>

Test Approach

- Goal: Determine ΔQ due to integration
 - Measure plain MLI blanket thermal performance (No Penetration)

$$Q_{MLI} = V \rho h_{fg}$$

- Know penetration material thermal properties and geometry
- Measure temperature gradient down the penetration

$$Q_{Strut} = \frac{k \ A \ (\Delta T)}{x}$$

- Measure total system heat load $Q_{Meas} = V \rho h_{fo}$

Subtract out knowns to get integration losses

$$\Delta Q_{Pen} = Q_{meas} - Q_{MLI} - Q_{Strut}$$

- Goal: Determine effected zone
 - Measure MLI temperatures radially outward on four different layers
 - Layers 3, 8, 16, & 25
 - At MLI ID (if no penetration, then r = 0), 25 mm, 51 mm, 102 mm

Hardware Configuration

Strut/penetration configurations

- 0.5" OD x 0.035" wall strut
- 0.25" OD x 0.035" wall strut
- 1.0" OD x 0.049" wall strut
- Internals diagramed on right

Composite strut

- Made from tube material (2 ply) with warp direction down the length of the strut (1K carbon fiberglass)
- 1.060" OD
- 0.032" wall (0.996" ID)
- Wrapped on a 1" mandrel

Punching a Hole

Schematic

9

Temperature Sensors

Uncertainty Analysis

$$U_{\Delta Qpen} = \sqrt{\left(\frac{kA\Delta T}{x}\right)^{2} \left[\left(\frac{U_{k}}{k}\right)^{2} + \left(\frac{U_{A}}{A}\right)^{2} + \left(\frac{U_{\Delta T}}{\Delta T}\right)^{2} + \left(\frac{U_{x}}{x}\right)^{2}\right]} + 2\left(\rho h_{fg}V\right)^{2} * \left[\left(\frac{U_{V}}{V}\right)^{2} + \left(\frac{U_{\rho}}{\rho}\right)^{2} + \left(\frac{U_{hfg}}{h_{fg}}\right)^{2}\right]}$$

			Test	Test	P103	Test	P105	Test	t P113	Test	P116	Tes	t P104	Test	P101
		MLI Seria	al Number	SN	002	SN	002	SN	006	SN	006	SN	1 002	SN	002
		D	escription	1/2" strut, 1/4" thick	k buffer	1/2" strut, 1" thick A	G buffer	1/4" strut, 1/4" thic	k Cryolite buffer	1" strut, 1/4" thick (Cryolite buffer	1/2" strut, 1/2" vac	uum buffer	1/2" strut, 1/8" vacu	um buffer
	Uncertai nty Term	Related Parameter	Units	Relative Uncertainty Ux/x	Nominal Value	Relative Uncertainty Ux/x	Nominal Value	Relative Uncertainty Ux/x	Nominal Value	Relative Uncertainty Ux/x	Nominal Value	Relative Uncertainty Ux/x	Nominal Value	Relative Uncertainty Ux/x	Nominal Value
Thermal Conductivity	$\frac{U_k}{k}$	k	W/m-K	0.005	133.9	0.005	133.93	0.005	106.9	0.005	124.2	0.005	132.4	0.005	135.6
Volumetric	$\frac{U_V}{V}$	Vmeas	sccm	0.05	956.7	0.05	766	0.05	154.6	0.05	463.7	0.05	963.8	0.05	796.9
Flow Rate	r	VMLI	sccm	The set of	31		31		71	The second	71	1.1	31		31
Density	$\frac{U_{\rho}}{\rho}$	ρ	Kg/m ³	0.0223	1.167	0.0223	1.167	0.0223	1.167	0.0223	1.167	0.0223	1.167	0.0223	1.167
Vaporization	$\frac{U_{h_{R}}}{h_{fk}}$	h _{fg}	kJ/kg	0.02	199.2	0.02	199.2	0.02	199.2	0.02	199.2	0.02	199.2	0.02	199.2
Heat Transfer	$\frac{U_x}{x}$	x	m	0.0019	0.18603	0.0020	0.1752	0.0043	0.082	0.0032	0.1115	0.0019	0.18603	0.0020	0.1752
Area of Strut	$\frac{U_A}{A}$	А	m²	0.0003	3.04E-05	0.0003	3.04E-05	0.0002	1.53E-05	0.0003	9.44E-05	0.0003	3.04E-05	0.0000	0.00E+00
Temperatur e Difference	$\frac{U_{\Lambda T}}{\Delta T}$	ΔT	к	0.0211	133.9	0.0325	87	0.1230	23	0.0232	121.7	0.0215	131.7	0.0228	123.8
Heat Leak	Q		w	-	3.96	-	3.17		0.64	-	1.919	-	3.988	-	3.298
Total Uncertainty	and sig			0.0	0651	0.0	0673	0.0	0564	0.3	3072	0.0	0643	0.0	0108
Percent Uncertainty			and the	1.6	43%	2.1	24%	8.8	307%	16.	006%	1.6	513%	0.3	28%

Test Matrix

Test	Test Description	Reason	Figure
1	No Penetration	Baseline	
2	No Integration a) Without gap b) With gap (a no buffer case)	Worst Case	当 ビ
3	Isolated Penetration a) 1/2" Aerogel Blanket b) ½" Bead Pack c) 1" Aerogel Blanket d) ½" CryoLite e) 1" CryoLite	Isolate bulk insulation from penetration insulation	
4	Temperature Matched a) Lockheed b) Test #1	Best Case (assumes single warm temperature)	۲
5	Variable Size a) 0.25" strut with best from above b) 5a. disturbed MLI c) 1" strut with best from above	Change size of strut	
6	Composite Strut a) Isolated b) No Adaption	Change penetrations conductivity	

Aerogel bead pack

NASA

Temperature Matching

No Penetration

Sample Test Data - Flows

13

Sample Test Data – Temperatures & Vac Pressure

Cryostat-600: Temperature and CVP Profiles P104, 0.5" Strut, 0.5" Vacuum Buffer

14

Sample Test Data – MLI Temperatures

Cryostat-600: Temperature and CVP Profiles P101, 0.5" strut, no integration

15

Sample Test Data – MLI 2-D Temperatures

16

Modeling – For Validation

Detailed thermal models of the tests were developed in Thermal Desktop (using Sinda/Fluint)

The detailed model includes the components of the cold mass including:

- Test and guard chambers
- Insulation surrounding the guard chamber
- Fill tubes
- Penetration
- Penetration insulation
- Passive Heater
- Edge Guard
- Test section of MLI
- G10 MLI support ring

NA SA

Modeling - Details

- MLI
 - Each layer of MLI was modeled as an individual surface
 - Used radial nodes (assumed no theta dependence)
 - Conduction between nodes on same layer
 - Conduction and Convection between layers modeled with Lockheed Equation (4-56) with degradation factor
 - Radiation between layers modeled using Thermal Desktops' radiation solver (RadCad)
 - "Temperature Sensors" were placed in the MLI at similar locations to the actual test

Cold Mass

- Used saturated LN2 boundary nodes with convection turned on
- Created a slight temperature peak at penetration
- Saw this in temperature data as well
- Penetration
 - Dimensions taken from drawings

Temperature Along Cold Mass

Model Validation

Test		Average Percent Error In Temperature Match Between Test Results And Model		
		Strut	MLI	
12.7mm AL Strut, 25.4mm buffer	P106 Run 1	1.03%	1.87%	
6.35mm AL Strut, 25.4mm buffer	P115 Run 1	1.03%	0.71%	
25.4mm AL Strut, 12.7mm buffer	P116 Run 1	0.25%	2.96%	
25.4mm AL Strut, 25.4mm buffer	P117 Run 1	0.23%	2.61%	
25.4mm Composite Strut, 25.4mm buffer	P121 Run 1	2.13%	1.12%	

Test		Penetration H	leat Load
		Test (W)	Model (W)
12.7mm (½") AL Strut,	P106 Run 1	2.906	0.844
25.4mm (1") buffer			
6.35mm (¼") AL Strut,	P115 Run 1	0.645	0.916
25.4mm (1") buffer			
25.4mm (1") AL Strut,	P116 Run 1	0.56	0.872
12.7mm (0.5") buffer			
25.4mm (1") AL Strut,	P117 Run 1	1.476	1.78
25.4mm (1") buffer			
25.4mm (1") Composite	P121 Run 1	0.153	0.397
Strut, 25.4mm (1") buffer			

Model – For Scaling

- To scale outside of testing bounds a few changes were made:
 - Calorimeter specific geometry was removed
 - Guard chamber
 - Edge effect containment
 - Etc
 - Flat plate extended so that much greater than penetration dimension

Model – Scaling - Diameter

Delta Heat Leak vs Penetration Diameter 25 Layers, 6.4mm Cryolite Buffer Thickness

Penetration Details	Change in Heat Leak (W) with Strut Diameter (x in meters)				
25 Layers, 6.4mm Cryolite Buffer	$2.95x^2 + 0.346x + 0.00826$				

Model – Scaling – Buffer Thickness

Penetration and Environment	Change in Heat Leak (W) With Buffer Thickness (x in meters)
152.4 mm Strut, 25 Layers MLI	Y = 29.5x - 0.0608
76.2 mm Strut, 25 Layers MLI	Y = 13.1x - 0.0168

Delta Heat Leak vs Buffer Thickness

Model – Scaling - # Layers

Penetration Details	Change in Heat Leak (W) With MLI			
	Layers (x)			
152.4mm Penetration, 25.4mm Buffer, 20 K Cold Boundary	3.03E-5x ² - 7.97E-3x + 0.607			
152.4mm Penetration, 25.4mm Buffer, 77 K Cold Boundary	$2.68E-5x^2 - 6.44E-3x + 0.491$			
76.2mm Penetration, 12.7mm Buffer	$9.51E-6x^2 - 2.17E-3x + 0.134$			

Results

- No Penetration
- No Integration
- Buffer Material Trade
- Strut Size Trade
- Temperature Matching
- Composite Strut
- MLI Disturbance
- Modeling

Results – No Penetration

- Tested 5 different MLI blankets
- Heat load depended on OD
 - When OD repeated, within 6% repeatability
 - Due to radiation tunneling in outer gap & conduction to guard ring
 Blanket Serial
 Outer
 Heat load
 - On P112 measured
 ~10 K lower
 temperature on
 green ring

Series #	Blanket Serial Number	Outer Diameter (mm)	Heat load (W)	Blanket Usage
P100	SN2	305	0.130	Buffer
stalling &				Materials
P107	SN3	305	0.122	None
P109	SN5	300	0.203	Temperature
				Matching
P112	SN6	285	0.294	Penetration
				Sizes
P118	SN3	297	0.194	Composite
				Strut
P122	SN7	300	0.191	Retesting

Results – No Penetration

Typical Temperature plots for no penetration testing

Each line is one layer of MLI

Shows heat flowing across layer(s)

Test on left is 305 mm diameter, test on right is 300 mm diameter

Results - No Integration

- Aluminum Strut
 - Punched 5/8" hole
 - ½" strut
 - Measured ΔQ of 0.50 W
 - Degraded radius over 100 mm
- Composite strut
 - Punched 1 1/16" hole
 - 1.020" diameter strut
 - Measured ΔQ of 0.31 W
 - Degraded radius over 100 mm

Aluminum Strut Data shown

Results – Buffer Material Trade

Material	ΔQ at 0.5" (W)	ΔQ at 1.0" (W)
Aerogel Blanket	0.764	0.942
Aerogel Beads	N/A	0.759
Cryolite	0.750	0.262
Vacuum	0.979	N/A

- Tested 3 materials and vacuum (i.e. gap but no buffer)
- Results indicate Cryolite best performer at all thicknesses
 - Significantly better at large thicknesses
 - Due to pliability
 - Thickness can be varied much easier than other materials investigated

Results - Buffer Material Trades

29

Results – Strut Size Trades

- Top table show test #s
- Middle table shows ΔQ in watts
- Bottom table shows degradation radius in mm
- For 0.25" strut, only need 0.25" buffer
- For 1" strut, 0.5" buffer required
- For 0.5" strut, somewhere in between
- Degradation radii had little to do with actual integration losses
 - Low conductivity of mylar

Cryolite Buffer material

Aluminum	6061-T6	Buffer T	hickness/radi	us, in
struts Te	est log	0.25	0.5	
D H	0.25	P113	P115	
Stru (in)	0.5	P103	P106	
Siz	1	P116	P117	

Aluminum	6061-T6	Buffer T	hickness/rac	dius, in
struts	, dQ	0.25	0.5	
b t	0.25	0.200	0.288	
Stru ie, ((in)	0.5	0.750	0.262	
Siz	1	0.656	0.231	

Aluminum	6061-T6	Buffer Thickness/radius, ir		
struts, R	effect	0.25	0.5	
D t	0.25	25	< 25	
itru ie, ((in)	0.5	51	<25	
Siz	1	>100	>100	

Results – Strut Size Trades

31

Results – Warm Boundary Dependence

- On Test P116 (1 inch strut, 0.25" thick buffer) the warm boundary was increased to 325 K
- Minimal increase seen in degradation, both heat load and temperatures
- Results used to calculate power factor between warm boundary temperatures
 - A successfully used method on MLSTC to scale MLI performance
 - Power factor calculated to be 1.56

WВТ (К)	Delta Heat Load (W)	Radius of Degradation (mm)		
297	0.68	> 100		
325	0.78	> 100		

$$\frac{\Delta Q_1}{\Delta Q_2} = \left(\frac{T_{warm,1}}{T_{warm,2}}\right)^n$$

Results – Temperature Matching

- Used two different methods to determine length
 - Lockheed MLI equations & strut material properties
 - As tested temperatures from P112
- Temperature gradients shown to the right
- Increased WBT to 330 K on second test

Results – Temperature Matching

- Initial testing using Lockheed data didn't perform well
- When modified locations to as tested data, got nearly optimal performance
- So, then increased heating to 330 K and got large increase in heat leak again

Temperature (K)

Test	∆Q (W)	R (mm)	WBT (K)
Lockheed	0.783	>100	297
As Tested	0.010	50	297
As Tested	0.570	100	331

34

Results - Composite Strut

- Assumed similar thermal conductivity to IM2/977
- Made from 1K carbon & Araldite LY8604
 Epoxy system on a 1" round mandrel (i.e. ID)
- Tested:
 - No Integration
 - 0.5" Cryolite Buffer
 - 1.0" Cryolite Buffer

Results – Composite Strut

Buffer Size (in)	ΔQ (W)	Radius (mm)		
0	.31	>100		
0.5	.256	51		
1.0	.252	35		

Results – Test Summary

Test#	Test Configurations	Date of Test	Vacuum Pressure	WBT	Punch Diameter (in)	delta Q	R-affect
	5		μ	K	0	W	mm
P100-1	No Penetration	10/04/11	5.81E-04	291.8	0	-0.005	>100
P101-1	Hot Poker	10/18/2011	7.00E-04	296.7	9/16	0.50	100
P101-2	Hot Poker	10/21/2011	4.70E-04	296.7	1 2/16	0.52	100
P102-1	0.5" strut, 0.5" aerogel blanket	10/26/2011	6.24E-04	300.8	1 2/16	0.779	35
P103-4	0.5" strut 0.5" Cryolite Buffer	11/4/2011	3.10E-04	296.5	1 2/16	0.75	51
P104-1	0.5" strut, 0.5" Vacuum Buffer	11/8/2011	4.03E-04	296.7	1 2/16	0.979	25
P105	0.5" strut, Aerogel Blanket (1")	12/1/2011	3.99E-04	296.5	1 10/16	0.942	35
P106-1	0.5" strut, Cryolite Buffer (1")	12/9/2011	5.71E-04	296	1 10/16	0.262	<25
P107	No Penetration	11/18/2011	2.34E-04	297.2	0	0	
P108	0.5" strut, Aerogel Bead Pack(1")	12/16/2011	1.38E-03	297	1 10/16	0.759	<25
P109	No Penetration	12/22/2011	5.12E-04	297.5	0		75
P110-2	Temp Matched - LM, 0.5" strut	1/12/2012	7.72E-04	297.6	1 1/16	0.759	>100
P111-2	Temp Matched - TD, 0.5" strut	1/24/2012	1.85E-03	296.6	1 1/16	0.01	50
P111-4	Temp Matched - TD, 0.5" strut	1/26/2012	9.50E-04	330.8	1 1/16	0.570	100
P112	No Penetration	1/31/2012	7.10E-04	297.3	0	0	25
P113	0.25" strut, 0.5" cryolite buff	2/8/2012	7.96E-04	296.9	14/16	0.200	25
P114	0.25" strut, 0.5" cryolite buff, disturbed	2/15/2012	4.57E-04	297.01	14/16	0.264	25
P115	0.25" strut, 1" buffer	2/22/2012	7.36E-04	296.6	1 5/16	0.288	< 25
P116	1.0" strut, 0.5" buffer	2/28/2012	7.53E-04	297.3	1 10/16	0.656	>100
P116-2	P116 at high temp	3/5/2012	1.18E-03	325.4	1 10/16	0.783	>100
P117	1.0" strut, 1.0" buffer	3/8/2012	6.25E-04	297.2	2	0.231	>100
P118	No Penetration	3/15/2012	2.41E-03	297	0	0.000	
P119	Composite Strut no buffer	3/22/2012	1.09E-03	296.3	1 1/16	0.305	>100
P120	Composite Strut, 0.5" cryolite buffer	3/30/2012	5.97E-04	296.9	1 10/16	0.256	51
P121	Composite strut, 1.0" cryolite buffer	4/9/2012	4.89E-04	296.9	2	0.252	35
P122	No Penetration	4/16/2012	5.42E-04	295.9		0.000	

37

Results – Model Summary

- As a result of the model scaling, a multipart equation was developed
- Takes into account warm boundary temperature, MLI system # of layers, penetration diameter, and buffer thickness

 $dq = q_{ref} \left(\frac{q_{actual}}{q_{ref}'}\right)_{\#layers} \left(\frac{q_{ref}'}{q_{ref}}\right)_{buffer \ thick} \left(\frac{q_{actual}}{q_{ref}}\right)_{diameter} \left(\frac{q_{actual}}{q_{ref}}\right)_{buffer \ thick} \left(\frac{T_h}{297}\right)^{1.56}$

Requires the use of two reference states

– Recommend:

Reference 1: 0.0762 m diameter penetration with 25 layers MLI, and 0.064 m buffer Reference 2 (or prime): 0.0762 m diameter, 25 layers, 0.127 m buffer

- Alternate: use 0.1524 m diameter penetration for both with same other variables

Calculate the degradation due to a 104 mm (4 inch) pipe going through 60 layers of MLI using an 8 mm (~0.75 inch) Cryolite buffer with a warm boundary temperature of 297 K.

$$dq = q_{ref} \left(\frac{q_{actual}}{q_{ref}'}\right)_{\#layers} \left(\frac{q_{ref}'}{q_{ref}}\right)_{buffer \ thick} \left(\frac{q_{actual}}{q_{ref}}\right)_{diameter} \left(\frac{q_{actual}}{q_{ref}}\right)_{buffer \ thick} \left(\frac{T_h}{297}\right)^{1.56}$$

 For reference case one use 25 layers of MLI with a 76.2 mm penetration and a 6.4 mm Cryolite buffer.

Qref equals 0.052 W from Slide 21.

- For reference case two use 25 layers of MLI with a 76.2 mm penetration and a 12.7 mm Cryolite buffer. Qref' then equals 0.086 W from Slide 23.
- Q actual for the pipe diameter (using a 104 mm penetration with 25 layers of MLI & 6.4 mm Cryolite buffer) is 0.076 W from Slide 21.
- Q actual for the buffer thickness (using an 8 mm Cryolite buffer with 76.2 mm penetration and 25 layers) is 0.088 W from Slide 22.
- Q actual for the number of layers (using 60 layers with a 12.7 mm buffer and a 76.2 mm penetration) is 0.038 W from Slide 23.
- Since the WBT is 297 K, we can neglect the last term as 1

$$dq = 0.052 \left(\frac{0.038}{0.086}\right)_{\#layers} \left(\frac{0.086}{0.052}\right)_{buffer\ thickness} \left(\frac{0.076}{0.052}\right)_{diameter} \left(\frac{0.088}{0.052}\right)_{buffer\ thickness} = 0.095W$$

Summary

- Minimal Success: 0.05 m met frequently
- Full Success: 0.02 m met with P113 & others
- System delta Q (W) the differential power input between the test and the undisturbed insulation + penetration conduction:
 - Minimal Success: < 0.2 W met with P113 (0.25" strut), P117 (1" strut very close)
 - Full Success: < 0.1 W met with P111 (Temperature Matching)

Total of 22 Tests completed

- 5 no penetration
- 3 no integration
- 6 material trade study
- 2 temperature matched
- 6 strut size trade study
- 3 composite strut
- 1 MLI disturbance
- Thermal model developed of test results
- Model validated and expanded to better gauge extrapolation issues

Acknowledgments

Cryogenics Test Lab

- James Fesmire
- Johnny Kerce
- Jeff Wall
- Mark Velasco
- Mike Gutherie
- Darrel March CPST/CRYOSTAT
- Mike Doherty
- Mike Meyer
- Steve Barsi
- Al Parrish
- Richard Stevens

Prototype Lab

- Tom Bonner
- Rusty McAmis
- Duane Dickey
- Phil Stroda
- Eric Roessler
- Jim Niehoff
- Luke Catella
- Adam Dokos
- Adam Cofield

Questions

A more detailed paper about this work can be found online: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120017916_2012018112.pdf