

EXPERIMENTAL VALIDATION OF STAR CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

Brandon Marsell

a.i. solutions, Launch Services Program, Kennedy Space Center, FL

Agenda

- Introduction
- Problem
- Background
- Experiment
- Star ccm+ CFD model
- Results
- Conclusion

Introduction

Launch Services Program

- Provide leadership, expertise and cost effective services in the commercial arena to satisfy agency wide (NASA) space transportation requirements and maximize the opportunity for mission success
- Interface between launch service provider (commercial) and NASA spacecraft
- Requires engineering success
- Mission Analysis Division
 - Verify and validate mission engineering/analysis
 - Conduct any analysis required by NASA's unique missions
 - Reduce technical risk to NASA missions

Problem

Fuel Slosh

- Liquid propellants account for most of the mass on a launch vehicle
- During flight, these liquids "slosh" back and forth within the tanks
- This sloshing motion causes forces on the vehicle which must be accounted for in the flight software
- Both frequency and damping rate for all liquid propellant tanks must be accurately predicted in order to create an efficient autopilot design
- The idea is to keep the rocket flying straight!
 - » This will lead to engineering success
- Typical propellant tanks on NASA missions
 - 2 on booster stage
 - 2 on upper stage
 - 1-16 tanks on payload

Background

Guidance Navigation and Controls (GN&C) analyses use simplified mechanical analog models

- Spring mass system
- Pendulum system
- These simplified models require parameters as inputs
 - Pendulum mass
 - Fixed mass
 - Pendulum length
 - Hinge point
 - Fixed mass location
- These parameters vary as a function of fill level

Background

How to derive these parameters

- Experimental data
 - » Expensive
 - » Time consuming
 - » Lots of data reduction necessary
- CFD
 - » Quick
 - » Inexpensive
 - » Simple
- Analytical Methods
 - » Very easy to apply
 - » Only valid with simple geometry
- CFD must first be validated
 - Producing engineering success

Experiment

- Carried out at Embry-Riddle Aeronautical University
- Simplified case
 - 8 inch diameter sphere
 - Water
 - 60% fill level
 - Linear excitation
 - Step impulse and hold
 - No breaking waves

Star-CCM+ Model

- Same geometry was modeled using Star-CCM+
 - Volume of Fluid (VOF)
 - » Phase 1 = water
 - » Phase 2 = air
 - Implicit unsteady
 - » 2nd order Time
 - » Timestep 0.0025 s
 - » Total time 20 s
 - Gravity
 - » 1g
 - Constant density (incompressible)
 - » 997.561 kg/m^3 water
 - » 1.18415 kg/m^3 air
 - Three dimensional

d'A	-1-	hti
		htinchsphere@08000
		Geometry
9		Continua
		Mesh 1
	9	Physics 1
		Models
		e Eulerian Multiphase
		Phase 1 ← ☐ Phase 1
		→ ☐ Phase 2
		Gradients
		Gravity Implicit Unsteady
1		& Laminar
		Multiphase Equation of State
		Multiphase Interaction
		Multiphase Mixture
		Segregated Flow
		Three Dimensional
		Volume of Fluid (VOF)
		Reference Values
		- Initial Conditions
	ca.	Regions
		Region 1
	T	e Boundaries
		- Default Boundary
		- Feature Curves
		Mesh Conditions
		→ Mesh Values
		Physics Conditions
		- Physics Values
0-		Derived Parts
		Solvers
		& Implicit Unsteady
		& Segregated Flow
		& Segregated VOF
0		Stopping Criteria
Ī		Maximum Inner Iterations
		Maximum Physical Time
		Maximum Steps
		Stop File
1		Solution Histories
-	Bhi	Solution Views
0-		Reports
		Monitors
		Plots
		ForceX Monitor Plot
		Force' Monitor Plot
	0	ForceZ Monitor Plot
	0-	Residuals
		Scenes
		Representations
		Tools

Star-CCM+ Model

Mesh

- Used simple (new shape part) sphere
- Surface remesher
- Trimmer Mesh
 - » Works well with VOF formulation
 - » Need high resolution throughout domain
- Prism layer mesher for accurate viscous damping
- 3.1 M cells
- Boundary Condition
 - 1 region
 - » Walls
 - » No-slip

Star-CCM+ Model

Stopping Criteria

- Maximum inner iterations = 10
 - » Reduced residual by at least 2 orders of magnitude
- Maximum physical time = 20 s
- Maximum steps disabled
- Reports/monitors/plots
 - Fluid forces on tank walls
 - » Pressure and viscous
 - » X, Y, Z direction
 - » Plot every time step
- Initial condition
 - Fluid velocity = 0.065 m/s

Results

Results Frequency

Results Frequency

- difference roughly 5%
- Very sensitive to fill level
 - Experiment was filled using fluid volume
 - CFD initialized using fill level converted from volume
 - Frequency content in "stinger"?

Damping Ratio

- Logarithmic decrement Δ
 - $-\Delta$ =In(peak oscillation / peak one cycle later)
- Damping ratio γ
 - $\gamma = \Delta/2\pi$
 - 2.9% difference
 - Very difficult to calculate properly

	Damping Ratio
Experiment	0.004002
Star ccm+	0.003887

Conclusion

- Star-CCM+ validated for low amplitude, simple geometry slosh modeling
- Both frequency and damping rate match fairly well
 - Frequency off a bit more than desired but that could be caused by inaccurate fill procedures during experimental testing
 - Further research will be carried out to investigate the causes
- Increases LSP confidence in this method for slosh calculations
- Will add to LSP's engineering success!