https://ntrs.nasa.gov/search.jsp?R=20130011589 2019-08-31T00:29:34+00:00Z

# Ground Operations Demonstration Unit for Liquid Hydrogen (GODU LH2)

Dr. William Notardonato Cryogenic Test Laboratory NE-F6, KSC FL 32899

(321) 867-2613 (office) (321) 412-5352 (cell)

## Content

#### Historical Context

- Hydrogen and NASA
- Shuttle Operations
- Economics
- Environmental

#### GODU LH2 Project

- Goals and Objectives
- Design
- Status

#### Future Plans

- GODU LH2
- Project H
- In space



# HISTORICAL CONTEXT

### NASA LH2 Background

- NASA helped drive the development of large scale LH2 industry
- LC 39 built for Apollo and reused for Shuttle



## Status of KSC LH2 Systems

- Since the completion of LC 39, cryogenic technology has progressed, in many cases by two generations
  - Refrigeration systems
  - Transfer lines and disconnects
  - Compressors and valves
  - Controls and instrumentation
- Spaceport hydrogen operations are different from every other industrial gas customer, and industry is not optimized to meet our needs
  - Very large scales
  - Very unsteady demand and high peak demand
  - Strict delivery requirements
- Hydrogen has a reputation as a difficult and expensive fuel choice, but necessary due to performance benefits

#### LC-39 Use and Loss for STS Program

- Replenish
  - heat leak during transit, chill-down of transfer system, and tanker press.
  - Approx. 13% of the KSC hydrogen purchased over the Space Shuttle Program
- Normal Evaporation Loss
  - heat leak from the ambient to the ground storage tank
  - Approx. 12% of the KSC hydrogen purchased over the Space Shuttle Program
- Load Loss
  - chill-down of ground and flight system and ET heat leak during replenish
  - Approx. 21% of the KSC hydrogen purchased over the Space Shuttle Program
- On-board Quantity
  - Volume of the External Tank
  - Approx. 55% of the KSC hydrogen purchased over the Space Shuttle Program.

#### **Historical Consumption Summary**



#### Liquid Hydrogen Consumption over Entire Space Shuttle Program

| Liquid Hydrogen Purchased | 100.0% | 54,200,000 lb |  |
|---------------------------|--------|---------------|--|
| Replenish Loss            | 12.6%  | 6,800,000 lb  |  |
| Normal Evaporation Loss   | 12.2%  | 6,600,000 lb  |  |
| Load Loss                 | 20.6%  | 11,200,000 lb |  |
| On-board Quantity         | 54.6%  | 29,600,000 lb |  |

7

#### Future Spaceport LH2 Goals

- Goal is to increase the efficiency of hydrogen operations to >80%
  - Current KSC practice is approximately 55%
  - Defined by mass launched/mass purchased
- Targeted hydrogen losses
  - Storage tank boil off
  - Chill down losses
  - Tanker venting recovery
  - Line drain and purge
  - Tank venting
- Local hydrogen production and liquefaction capability
  - Sized for KSC needs but allowed to sell offsite
- Propellant conditioning and densification
  - Bulk temperature to 16 K
  - Thermal energy storage for load balancing
- Reduction in helium use
- Reducing in spaceport carbon footprint

#### **Economic Justification**

- Several studies over the past 40 years have shown economic payback of hydrogen ZBO system at LC-39
- Basic economic models have been developed
- Average annual hydrogen demand for both business as usual and advanced systems scenarios is estimated
  - All losses except for loading losses are assumed to be recovered
- Capital costs for hydrogen production, distribution, liquefaction, and transfer lines are estimated
  - Well known cost models for production, distribution, and liquefaction used
  - No cost savings for smaller storage volumes included
- Operational costs only considers natural gas and electrical cost, does not include labor savings
- Payback period depends on system size, LH2 cost, electric cost, storage volume, refrigeration efficiency, hydrogen recovery modes, and capital costs
- Payback period varies from 5 years to 12 years compared to current system
- Estimates shown are for average demand only, peak demand calculations and load balancing is in work
- More detailed models are currently being developed, including peak and unsteady demand estimates

#### Losses

#### Demand

|                 |             | Hydro                  | gen Sinks  |           |             |
|-----------------|-------------|------------------------|------------|-----------|-------------|
|                 |             | Vehicle Re             | quirements |           |             |
|                 | LH2 Volume  |                        | LH2 Mass   |           |             |
|                 | Gal/launch  | M <sup>3</sup> /launch | lb/launch  | kg/launch |             |
| HLV (Ares V)    | 760,000     | 2,877                  | 429120     | 195055    |             |
| Delta IV medium | 125000      | 473                    | 70579      | 32081     |             |
| Delta IV heavy  | 350000      | 1,325                  | 197621     | 89828     |             |
| Atlas V         | 13000       | 49                     | 7340       | 3336      |             |
| Falcon X        | 10000       | 38                     | 5646       | 2567      |             |
| STS             | 385000      | 1,457                  | 217383     | 98811     |             |
| 181             |             | Load                   | Loss       |           |             |
| ×.              | LH2 V       | olume                  | LH2        | Mass      |             |
|                 | Gal/launch  | M <sup>3</sup> /launch | lb/launch  | kg/launch |             |
| HLV (Ares V)    | 190000      | 719                    | 107280     | 48764     |             |
| Delta IV medium | 50000       | 189                    | 28232      | 12833     |             |
| Delta IV heavy  | 150000      | 568                    | 84695      | 38498     |             |
| Atlas V         | 7000        | 26                     | 3952       | 1797      |             |
| Falcon          | 5000        | 19                     | 2823       | 1283      |             |
| STS             | 100000      | 379                    | 56463      | 25665     |             |
|                 |             | Scrub                  | Loss       |           |             |
|                 | LH2 Vo      | olume                  | LH2        | Mass      |             |
|                 | Gal/scrub   | M <sup>3</sup> /scrub  | lb/scrub   | kg/scrub  | loss factor |
| HLV (Ares V)    | 152000      | 575                    | 85824      | 39011     | 0.8         |
| Delta IV medium | 40000       | 151                    | 22585      | 10266     |             |
| Delta IV heavy  | 120000      | 454                    | 67756      | 30798     |             |
| Atlas V         | 5600        | 21                     | 3162       | 1437      |             |
| Falcon          | 4000        | 15                     | 2259       | 1027      |             |
| STS             | 80000       | 303                    | 45171      | 20532     |             |
|                 |             | Normal Ev              | aporation  |           |             |
|                 | LH2 V       | LH2 Volume             |            | Mass      | loss factor |
|                 | Gal/year    | M <sup>3</sup> /year   | lb/year    | kg/year   | %/year      |
| LC39A           | 146000      | 553                    | 82436      | 37471     | 0.172       |
| LC39B           | 365000      | 1,382                  | 206091     | 93678     | 0.429       |
| LC41            | 6750        | 26                     | 3811       | 1732      | 0.150       |
| LC40            | 4950        | 19                     | 2795       | 1270      | 0.150       |
| LC37            | 219000      | 829                    | 123654     | 56207     | 0.258       |
|                 |             | Suppl                  | y Loss     |           |             |
|                 | LH2 Volume  |                        |            |           |             |
|                 | % purchased |                        |            |           |             |
| LC39A           | 1.145       |                        |            |           |             |
| LC39B           | 1.145       |                        |            |           |             |
| LC41            | 1.1         | 145                    |            |           |             |
| LC40            | 1.1         | 145                    |            |           |             |
| LC37            | 1.145       |                        |            |           |             |

| Current State of the Art |        |            |                |        |        |        |
|--------------------------|--------|------------|----------------|--------|--------|--------|
|                          | Case A | Case B     | Case C         | Case D | Case E | Case F |
| HLV launch               | 0      | 2          | 4              | 6      | 6      | 8      |
| HLV scrub                | 0      | 2          | 3              | 4      | 6      | 6      |
| Delta IV medium launch   | 0      | 2          | 4              | 6      | 8      | 8      |
| Delta IV medium scrub    | 0      | 1          | 2              | 3      | 4      | 6      |
| Delta IV heavy launch    | 0      | 0          | 1              | 2      | 4      | 6      |
| Delta IV heavy scrub     | 0      | 0          | 0              | 1      | 2      | 4      |
| Atlas V launch           | 0      | 4          | 8              | 10     | 12     | 18     |
| Atlas V scrub            | 0      | 2          | 4              | 5      | 6      | 8      |
| Falcon X launch          | . 0    | 2          | 6              | 10     | 12     | 18     |
| Falcon X scrub           | 0      | 1          | 3              | 5      | 6      | 8      |
| STS launch               | 6      | 0          | 0              | 0      | 0      | 0      |
| STS scrub                | 3      | 0          | 0              | 0      | 0      | 0      |
| PWR WPB                  | 0      | 0          | 0              | 0      | 0      | 0      |
| Total ( M gal)           | 4.46   | 4.47       | 8.52           | 12.66  | 14.83  | 19.28  |
| GPD                      | 12208  | 12237      | 23346          | 34688  | 40628  | 52828  |
| mmscfd                   | 1.40   | 1.41       | 2.68           | 3.99   | 4.67   | 6.08   |
| mmscf/yr                 | 512    | 514        | 980            | 1456   | 1705   | 2217   |
| TPD                      | 3.45   | 3.45       | 6.59           | 9.79   | 11.47  | 14.91  |
|                          |        | Proposed H | lydrogen Syste | m      |        |        |
|                          | Case A | Case B     | Case C         | Case D | Case E | Case F |
| HLV launch               | 0      | 2          | 4              | 6      | 6      | 8      |
| HLV scrub                | 0      | 2          | 3              | 4      | 6      | 6      |
| Delta IV medium launch   | 0      | 2          | 4              | 6      | 8      | 8      |
| Delta IV medium scrub    | 0      | 1          | 2              | 3      | 4      | 6      |
| Delta IV heavy launch    | 0      | 0          | 1              | 2      | 4      | 6      |
| Delta IV heavy scrub     | 0      | 0          | 0              | 1      | 2      | 4      |
| Atlas V launch           | 0      | 4          | 8              | 10     | 12     | 18     |
| Atlas V scrub            | 0      | 2          | 4              | 5      | 6      | 8      |
| Falcon 9 Iaunch          | 0      | 2          | 6              | 10     | 12     | 18     |
| Falcon 9 scrub           | 0      | 1          | 3              | 5      | 6      | 8      |
| STS launch               | 6      | 0          | 0              | 0      | 0      | 0      |
| STS scrub                | 3      | 0          | 0              | 0      | 0      | 0      |
| PWR WPB                  | 0      | 0          | 0              | 0      | 0      | 0      |
| Total (M gal)            | 2.94   | 2.94       | 6.26           | 9.66   | 11.36  | 15.04  |
| GPD                      | 8055   | 8062       | 17163          | 26477  | 31136  | 41216  |
| mmscfd                   | 0.93   | 0.93       | 1.97           | 3.04   | 3.58   | 4.74   |
| mmscf/yr                 | 338    | 338        | 720            | 1111   | 1307   | 1730   |
| TPD                      | 2.27   | 2.28       | 4.85           | 7.47   | 8.79   | 11.64  |

#### **Reduced Demand**



#### **Environmental Benefits**

- Hydrogen production and liquefaction is a very energy intensive operation
- Reduction in hydrogen losses will have environmental benefits
- Preliminary environmental impact estimates have been done to quantify the carbon savings associated with this proposed system
- Savings come from reduced production demands, reduced liquefaction energy demands, and transportation cost.
- Does not account for increased production efficiency or carbon capture technology during production
- CO2 savings equate to eliminating the carbon footprint of 2100 people or eliminating 2800 cars from the road.

|        | Annual LH2 Production<br>(millions of gallons) | GH2 Production Energy<br>Required (MWh) | Liquefaction Energy<br>Required (MWh) | Total Energy Required<br>(MWh) | CO2 Emitted<br>(millions of lbs) | CO Emitted<br>(millions of lbs) | Total Carbon Emitted<br>(millions of lbs) |
|--------|------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------|----------------------------------|---------------------------------|-------------------------------------------|
| Case 1 | 13.76                                          | 21342                                   | 68969                                 | 90311                          | 107.9                            | 37.6                            | 42.8                                      |
|        |                                                |                                         |                                       |                                |                                  |                                 |                                           |
| Case 2 | 10.85                                          | 16829                                   | 54384                                 | 71213                          | 85.1                             | 29.7                            | 33.7                                      |

# GODU LH2

# **Advanced Exploration Systems**

- The Advanced Exploration Systems (AES) program is pioneering new approaches to rapidly develop prototype systems and subsystems, mature and demonstrate key capabilities, and validate operational concepts for future human missions beyond Earth orbit.
- The AES program goals will be achieved through of a set of HSF-Works In House Activities. The teams performing these activities will be comprised almost entirely of NASA civil servants to maximize the leveraging of available workforce, and will have very limited procurement funding.
- They will use innovative approaches, partnerships, and management practices, aimed at rapidly developing, building, testing and/or deploying hardware in a skunkworks like environment.
  - Reference Kelly's rules at <a href="http://www.jamesshuggins.com/h/u-2a/u-2">http://www.jamesshuggins.com/h/u-2a/u-2</a> kellys rules.htm
  - Project management team is small and is technical in nature
  - Small teams with responsibility to produce
- The activities will typically last 1 to 3 years to drive a rapid pace of progress.

## GODU- LH2 Background

- The concept is based on the principle that hydrogen losses can be eliminated if a refrigeration system is integrated into the storage tank (IRAS).
- Placing the cold heat exchanger in the liquid hydrogen allows for direct control over the liquid state.
- Oversizing the refrigerator allows for propellant densification and liquefaction.
- Lab scale operations (150 l) have been successfully demonstrated at Florida Solar Energy Center
- GODU LH2 will expand the scale and operations of the FSEC demonstration



# Objectives

- Demonstrate zero loss storage and transfer of LH2 at a large scale
- Demonstrate hydrogen liquefaction using close cycle helium refrigeration
- Demonstrate hydrogen densification in storage tank and loading of flight tank
- Also includes a number of secondary objectives including creating a densified hydrogen servicing capability, maintaining critical cryogenic design and operations skills, demonstrating low-helium usage operations, and validating modern component technologies



#### **GODU LH2** Functional Diagram

# **Refrigeration System**

- Procurement of 850W at 20K cryogenic refrigerator (Linde R1620)
  - Helium circulation capability
  - Long pole in schedule
  - LN2 Precooling
- Procurement of commercial chiller units
- Installation and checkout at test site
- Design and installation of cold heat exchanger
- Integration with transportable skid

# **Test Articles**

- Integrated Refrigeration and Storage Tank
  - 33000 gal tank from Cx 41
  - Modify manway for helium and instrumentation feedthru
  - Install Cold HX and supports
- Cryostat 900
  - 44" dia vacuum chamber with removable upper lid
  - Interface with HETL
- Flight tank
  - Space Act Agreement with ULA to use Centaur 3 tank
  - Used for final simulated load demonstration with densified propellants



# Fluid Transfer

- Vacuum jacketed transfer lines
  - Reuse 240' existing 3" x 5" VJ lines from X-33 site
  - Procure new VJ lines to interfaces
  - Design/analyze piping support system
- High efficiency transfer lines (HETL)
  - Quad axial semi flex piping
  - Need to design end connections and interfaces
- Gaseous hydrogen vent system
- Gaseous hydrogen flare system
  - Refurbish existing X-33 flare stack
  - 8" dia vent pipe from simulated flight tank
- Liquid hydrogen vaporizers
  - Reuse from NASA Plumbrook K-Site



# Command and Control/DAQ

- Use of Allan Bradley PLC based hardware
- COTS hardware and software
- Local and remote control
- Need to define data requirements
- Low speed data acquisition
- Leak and fire detection

## **Test Site**

- Site layout
  - Ground preparations (gravel, concrete)
- Access control
- Paging and area warning system
- Ground power modifications
  - Fuel cell UPS
- Pneumatics
  - Refurbish panels from LC-39, OPF, HMF
- Communication and video systems
- Process Safety Management





# Modeling/analysis

- Provide design analysis as needed
  - Cold heat exchanger sizing
  - Tank and feedthru thermal analysis
  - High efficiency transfer line thermal analysis
  - Pressure vessel systems analysis
- Systems level SINDA/FLUINT modeling
  - Lumped parameter thermal and fluid model
  - Transient, open systems, two phase
- Tank stratification model
  - Modify existing LSP code with internal heat exchanger and geometrical constraints
  - Predict IRAS and flight tank temperature profile during operation

# **Specific Test Objectives**

| Objective                  | Operation                          | Current State of the Art          | Full Success Criteria                |
|----------------------------|------------------------------------|-----------------------------------|--------------------------------------|
|                            | Zero Loss Sto                      | orage and Transfer                |                                      |
|                            |                                    |                                   | 0% per day- No hydrogen venting in   |
| Zero Boil Off Storage      | Store LH2 in main storage tank     | 0.1% to 0.5% per day boil off     | steady state storage operation       |
|                            | Transfer hydrogen from tanker      |                                   | 0% loss - Offload 100% of tanker     |
| Zero Loss Tanker Offload   | to main storage tank               | 10% loss                          | with no venting                      |
|                            | Chill down transfer lines prior    |                                   | 0% loss - Full recovery of all chill |
| Zero Loss Chill Down       | to operation                       | Varies by system mass             | down vapor                           |
|                            |                                    |                                   | 0% loss - No hydrogen vented for     |
|                            | Leave transfer lines serviced      | Lines drained and purged          | two days during simulated scrub      |
| Zero Loss Stop Flow        | between launch attempts            | between launch attempts           | turnaround                           |
| A State States             | Hydroge                            | n Liquefaction                    |                                      |
| In Situ Liquefaction       | Allow for local liquefaction       | Hydrogen liquefied in New Orleans |                                      |
| in Main Storage Tank       | inside storage tank                | and trucked to KSC                | 50 gallons per day at 5% COP         |
|                            | Maintain positive pressure in      | Densification operations create   | 15 psia with bulk liquid temp below  |
| Tank Pressure Control      | tank during densification          | subatmospheric pressure inside    | 16K                                  |
|                            | Hydroge                            | n Densification                   |                                      |
|                            | Use refrigeration to control state | Past densification systems used   | Continuous densification inside      |
| Storage Tank Densification | of bulk fluid in tank              | large quantities of hydrogen      | storage tank with bulk fluid         |
|                            | Load simulated flight tank with    |                                   | Simulated tank loading with bulk     |
| Flight Tank Densification  | densified hydrogen                 | None                              | fluid temperature of 17K             |

# PART 3

# FUTURE

## GODU LH2 Future Uses

- Used as a basis of a Space Hydrogen Energy research lab
  - Hydrogen fleet applications
  - Cryostat 900 testing
  - Fuel Cell and electrolysis research
  - Superconductivity
- Servicing on upper stages or test stands with densified hydrogen
- Spacecraft loading ground support equipment
- Helium refrigeration capability
  - Superconducting power transmission and generation development

#### **Project H Elements**

- Ultimate goal is a complete KSC/CCAFS hydrogen system optimized for spaceport operational demands
- Economic and energy efficiency for minimal life cycle costs
- Consists of 4 elements
  - Local hydrogen production system
    - Tie into existing natural gas pipeline and electrical grid
  - Hydrogen compression and gaseous distribution system
    - Advanced compressors and hydrogen pipeline feeding LC 39 A and B, LC 40, LC 41, and LC 37
    - Addition of vehicle refueling station for fleet applications
  - Integrated refrigeration and storage system
    - Provides for liquefaction, conditioning, and zero loss storage and transfer
    - · Hybrid cycle uses closed helium refrigerators for cooling hydrogen flow
  - High efficiency transfer lines
    - Vapor shielded for 10x reduction in heat leak
    - Integrates vent cycle back to liquefier
- All components and subsystems are commercially available
- Major development challenge is engineering and integration, not technology development



### Local Hydrogen Production

- No current hydrogen production within 400 miles of KSC
  - Currently come from New Orleans (700 miles)
  - Gap in national hydrogen production map
- Steam methane reformation (SMR) is currently the preferred method
  - Experience base allows for cost estimates with engineering certainty
  - Cost (\$M) = 5.384 \* Capacity (TPD)^ 0.6045
- Existing natural gas line sized for eventual hydrogen production at KSC
- KSC demands smaller than typical plants being built
  - Sizing fits within DoE goals for distributed scale production



Figure adapted from Connousie Engineering by Thomas M Flynn Debter NV (1997) n 127

## Hydrogen Compression and Distribution

- Optimal method of distributing hydrogen from production plant to refrigerator/liquefier is using gaseous hydrogen pipeline
- Hydrogen compression is a mature technology but there are efficiencies to be gained over current oil lubricated piston compressors
- Linde has recently developed ionic liquid hydrogen compressors that can be used
- Spaceport scale distribution can use gaseous pipelines between the central production facility and various launch pads for liquefaction
- Gaseous hydrogen pipelines are a mature technology with hundreds of miles of pipe in Europe and North America
  - Cost models are known with engineering certainty
  - Cost (\$) = 200,000 \* length (miles) \* diameter (in)
- Gaseous distribution system additional capabilities
  - Can be used for high pressure GH2 fleet refueling
  - Gas source eliminates need for vaporizer, increases effective tank capacity
  - Serves as compression source for hybrid liquefier cycle
- It is desirable to locate the hydrogen production plant some distance away from the launch pads to mitigate launch hazards and minimize corrosion from salt.
- Keeping the refrigeration system near the launch pads is essential for storage tank and transfer line hydrogen recovery
- Compression required for pipeline distribution is used in hybrid open/closed cycle liquefier
- Compressors can be oil lubricated piston or screw compressors with appropriate downstream purification or potentially use ionic liquid compressors
- Ionic liquid compressors starting to be used in Europe for compressed hydrogen servicing of fleet vehicles

# Integrated Refrigeration and Storage System

- Many past studies and projects have used active refrigeration with storage tanks
  - Early work focused on reliquefier concepts
    - Open cycle liquefiers using the ullage gas as the working fluid
  - Later NASA work used close cycle refrigerators for zero boil off applications
    - Coldhead condensers in ullage space
    - Pumps with forced liquid convection to cold heat exchanger
- Recent KSC demonstrations have proved IRAS concepts for LH2 and LOX on small scale (<100 gallons)
  - Uses close cycle refrigeration with heat exchange in liquid region of tank, will depend on natural convection
  - Hydrogen system has demonstrated liquefaction, zero boil off, and hydrogen densification
- Advantages
  - Less active systems
  - Ability to control liquid temperature
    - Allows for greater thermal storage
    - Allows for propellant conditioning and densification
    - Final stage of a single pass open cycle liquefier
- Liquefaction accomplished by a hybrid system, part open cycle liquefier and part closed cycle refrigerator.





## High Efficiency Transfer Lines

- Current operational techniques lose approximately 20,000 gallons during chilldown
  - Brute force approach using only latent heat
  - Vapor is route to flare stack and burned
- In the event of scrub, lines are purged with GHe and warmed back up
  - Similar loss profile the next attempt
- Current Line Heat Leaks (1" LN2 pipe)
  - Bare Pipe (190 W/m): Foam (20 W/m) Vacuum Jacket (0.4 W/m)
- Targeted Heat Leak Values
  - Vapor Shielded Lines 0.04 W/m
  - Reduces LC39 transfer line heat leak from 1000 W to 100 W, within range of refrigeration system
- High efficiency transfer lines, based on similar helium lines for national laboratory systems, can be developed for spaceport hydrogen applications
- Lines are custom designed for individual applications
- Cost models are well known
- LH2 HETF application has unbalanced flow, extended no flow durations, higher temperatures than LHe





FIGURE -1 SSC DIPOLE CRYDSTAT CROSS-SECTION

.3.

## Conclusions

- Current Kennedy Space Center practice results in half the hydrogen purchased being lost
  - Leads to large economic losses
- KSC needs are different than other industrial gas customers
- The industrial gas companies are optimized for other customers needs
- KSC should modernize its liquid hydrogen systems, taking into account cryogenic advances made in the past 50 years, to optimize life cycle costs for the unique KSC application
- Project H ideas for local hydrogen production, gaseous distribution, integrated refrigeration and storage, and high efficiency transfer lines should be investigated further