
A Project Management Approach to Using Simulation for Cost Estimation on 

Large, Complex Software Development Projects 

Abstract: It is very difficult for project managers to develop accurate cost and schedule estimates for large, 

complex software development projects. None of the approaches or tools available today can estimate the 

true cost of software with any high degree of accuracy early in a project. This paper provides an approach 

that utilizes a software development process simulation model that considers and conveys the level of 

uncertainty that exists when developing an initial estimate. A NASA project will be analyzed using 

simulation and data from the Software Engineering Laboratory to show the benefits of such an approach. 
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Cost and schedule estimation for large software development projects is historically inaccurate. Popular 

estimating models have been shown to be only within 25% of actual costs for 50% of the time (Ferens and 

Christensen 1998). Using a simulation tool, this paper presents an estimation approach that illustrates the 

effects of normal working dynamics on the cost of a large software development project throughout the 

project's evolution. Simulation models can be used to communicate the uncertainty and complexity of the 

development process and can provide a check on other estimating methods that may be used. 

The ability to obtain an accurate estimate of an entire project prior to its start is unfortunately unrealistic. 

And yet, cost and schedule estimates are necessary as management commits to funding such projects or 

bidding on a job. Simulation models are typically used to analyze the effects of process changes, and not 

for developing initial cost and schedule estimations. This paper will describe how simulation models can be 

used for this purpose and will show the benefits that can be obtained by using simulation as an estimation 

tool. The tool will illustrate the difficulties management faces in forecasting budgets at the beginning of a 

project and may encourage more realistic approaches to budgetary planning including phased funding.
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The task of cost estimation for project managers of software development projects becomes more and 

more daunting as the size and complexity of the project increases. Complex software development projects 

are likened to pure research and development projects, with all of the inherent difficulties of managing and 

planning for work that is innovative and unique and that has uncertain requirements (Abdel-Hanhid and 

Madnick 1991). 

Planning purposes require that an estimate be developed at a time in the project when the values of key 

parameters such as product size and staff capabilities are unknown. This makes it unrealistic to provide an 

accurate estimate. Even if the values of key variables could be known with certainty at the beginning of a 

project, software activities are labor intensive and prone to all the complex and dynamic factors which 

affect human performance. Therefore, software development is not a deterministic activity and an estimate 

will require adjustments throughout the project until all the variables are known. 

The initial estimate for a project is the most difficult and least accurate since there is less data available. 

Different tools and techniques for developing software project estimates exist, but none are guaranteed to 

give an accurate estimate. Often, though, the initial (and highly uncertain) estimate becomes the official 

estimate for the entire project and is used to judge whether or not the project is successful. 

Trying to obtain a precise estimate at a very early stage in a project has lead to the use of techniques that 

do not depict uncertainty and complexity of the factors. Human nature prefers a single number for an 

estimate as opposed to a range of numbers, even though a range estimate will have a much higher chance of 

including an accurate value (Boehm and Fairly 2000). Much of the research work carried out in the 

software cost estimation field has been devoted to algorithmic models such as COCOMO and yet, methods 

that rely on expert judgment are still the most commonly used approaches (Agarwal and Kumar 2001). 

Expert judgment approaches rely on experience on past projects and published industry averages. 

Average data does not tell the whole story and although past projects may seem similar, they will not have 

the same development costs, since estimates based on past experience do not account for changes in 

environments, politics, or organizations (Abdel-Hamid and Madmck 1991). In addition, historical data 

and experts' memories of the past can be tainted. Even though expert judgment is the most often used 

technique, empirical software estimation models such as COCOMO are still widely used. These tools 

provide rigor to the estimating process, but the portability of these tools to environments different from that 

for which the tool was developed comes into question. The developer of COCOMO, Barry Boehm, admits 

that COCOMO is not right for every development environment (Boehm, Abis et al. 2000). 

In essence, none of the approaches or tools available today can estimate the true cost of software with 

any high degree of accuracy early in a project. Managers should be presented with a technique that 

identifies risk and uncertainty based on the seemingly random nature of the variables and the complexity of 

the project system. Although managers must commit to a budget number and schedule, they should not be 

given a false sense of confidence in a point estimate. Adequate management reserves and phased funding



should be considered to account for uncertainty, especially for larger and more complex software 

development projects.

Baseline Simulation Model 

Simulation models have been used to derive implications about the behavior of an organization through 

integration of the multiple functions of the software development process (Abdel-Hamid and Madnick 

1991) and to qtIantitatively evaluate the performance of alternative software processes and process changes 

(Raffo 1996). Simulation is typically used for these types of analyses after a project is underway or 

completed. This paper will demonstrate the benefits of using a simulation model for early cost estimation 

that is done before a project begins or very early into a project when uncertainty about key parameters is 

very high. 

The Process Analysis Tradeoff Tool, PATT ©, is a discrete event process simulation model that was 

developed for NASA to assess the benefits of Independent Verification and Validation (IV&V) on the 

IEEE 12207 software development process (Raffo and Wakeland 2003). The tool is intended to enable 

adaptation to multiple projects and IV&V techniques. The model uses industry average data for input 

variables such as product size, productivity (LOCIIfr), and defects (per KSLOC). The user provides the per 

cent of overall effort that should be allocated to each process step as well as the number of desired staff for 

each step. The model outputs the size, effort, rework effort, entire process duration, average duration, 

number of injected defects, detected defects, and corrected defects. 

Model In put Data 

The use of probability distributions for key variables such as size, productivity, and defects is a truer 

model of reality, especially in the early stages of a project. The model's outcomes will be driven by 

random variables drawn from the probability distributions. Numerous runs of the process with different 

random numbers will provide the most meaningful information and will allow for the calculation of 

confidence intervals for each quantity of interest. 

The Software Engineering Laboratory (SEL) began collecting data for NASA flight software 

development projects at Goddard Space Flight Center in 1976 and served as a major resource in software 

process improvement activities. (Basili, McGarry et al. 2002). Extensive project and product data was 

collected for over 200 projects and is available to the public (SEL 1997). It is recognized that the 

collection, analysis and retention of historical data for software development needs to be increased (Fairley 

1992), but the process of doing so is complex, costly and time-consuming. Therefore, many organizations 

do not have adequate amounts of reliable data at their disposal. Data from the SEL have served as the basis 

of many software development "rules of thumb" concerning lifecycle activities and defect generation 

activities. However, this data has not been used for developing appropriate probability distributions for use



in stochastic simulation. The use of the SEL historical data for cost estimation using stochastic simulation 

should provide benefit for early estimation in similar environments. The SEL data is especially appropriate 

for projects developed in the NASA environment with its stringent testing and reliability requirements. 

As mentioned, the entire set of project data collected by the SEL is available. For the purposes of this 

research, subsets of the data that were collected and organized by the NSF Center for Empirically Based 

Software Engineering (CeBASE 2005) were used. Probability distributions were fitted for productivity 

data and defect injection data. 

The uncertainty that exists in estimating the size of the final software product is also very important 

since size has been shown to be the key factor, followed by the effort adjustment multipliers, in models 

such as COCOMO (Musilek and Pedrycz 2002). Experts claim that the problem of how to accurately size 

software is the greatest roadblock to improving estimation (Boehm 1981). The problems of incomplete, 

vague requirements as well as requirements creep are almost always present for software development 

projects and will cause the size of the project to change over its development life cycle. 

In order to capture the impact and uncertainty of sizing a software development project, a uniform 

distribution is used for the estimated size of the product. The he figure in Exhibit 1 is adapted from a figure 

given in Software Cost Estimation with Cocomo II and portrays how much size can be underestimated at 

different points in the project lifecycle. For example, at the very early stage of a project where there is a 

concept of operations but no firm requirements,, a size estimate can be off by a factor of 2. This means that 

an estimate at this point in the project of 1 Million LOC could actually end up being as high as 2 Million 

LOC by the end of the project. Therefore, using the figure in Exhibit 1 as a guide for size estimates at 

specific lifecycle phase such as concept of operations, a size estimate of 1 Million LOC would equate to the 

following distribution: Uniform (1 Million, 2 Million). The parameters of the distribution will change 

based on the estimate and the phase of the lifecycle for which the estimate is developed.
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Exhibit 1: Size Uncertainty According to Lifecycle Phase (Adapted from Boehm 2000) 
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NASA Project 

NASA's software development projects are often large and complex due to the mission critiltmture of 

their business. With human life and billion dollar payloads at risk, the NASA development envilnainent is 

more stringent and complex than that of many other software development industries. For exanylh. a bug 

in a windows product can cost money and customer dissatisfaction, but an error in launch proenEii1 

software can lead to loss of life and vehicle. 

NASA faces all of the same estimating difficulties discussed thus far. It is not uncommon tolhwe 

managers who underestimate costs and then must continually request new funding at the risk 1prect 

cancellation. In fact, the U.S. General Accounting Office has criticized NASA managers for et 

decade for failing to create realistic budgets for new projects. A recent government watchdog nmlsis



showed that a majority of 27 recent projects was found to have costs that were very different from the 

initial estimates, some by as much as 94% (Asaravala 2004). 

In order to explore the benefits of using simulation for cost estimation on large, complex software 

development projects, a real NASA project will be used as the subject of this study. The project was 

cancelled after seven years and experienced cost overruns and schedule slippages throughout its history. 

The project faced many of the following common problems that make software development cost 

estimation especially difficult: costs and schedules are pre-determined by an outside source, the software 

development process is not fully understood or analyzed, requirements are not well-defined and prone to 

changes, new projects are almost always different from past ones, and software practitioners do not collect 

enough data for past projects (Agarwal and Kumar 2001). 

Different estimating techniques were used to develop estimates for the project. This paper will focus on 

the project's early estimates and will outline how the simulation tool could have been used during this 

timeframe as well as throughout the project.

The Approach 

The information known at the time of the early estimates will be used with the simulation appnch to 

analyze the benefits of such an approach. 

1. Utilize Software Development Process Model 
A graphical representation of a software development lifecycle process is useful when educating 

decision makers on the inherent complexity which makes large, complex software development pmjects so 

difficult. The model allows for the user to understand the flow of work that needs to be accompIed and 

to analyze the impact of things such as rework through graphic display of the software product nnwing 

through the lifecycle steps. 

2. Capture Uncertainty for Key Parameters by Using Probability Distributions 
Three key parameters that greatly affect the cost and schedule of a software development pmjare size 

of the product, productivity of project personnel, and defect rates. It is possible to find avera uihes for 

productivity and defect rates in the literature, but it is important to point out that these parametu 

subject to many influences that can greatly vary the value of the parameters throughout the conua 

project. A great deal of uncertainty exists when trying to estimate values for these very impoI 

parameters before a project begins and early in the project. Therefore, the use of probability &iiIutions 

will allow for developing range estimates considering the uncertainty that exists before a projins. 

It is desirable to have data from similar projects and environments for developing data distiuths in 

order to obtain credibility for using the data as inputs to the simulation model. If adequate datiniit 

available, the parameters for reasonable distributions can be estimated.



3. Run Model and Obtain Confidence Intervals for Effort and Schedule 
Calculate confidence intervals for the two primary estimation parameters of effort and duration. When 

presenting the data, the top half of the confidence interval should be focused on in order to deter the desire 

to accept the lower bound of the interval in order to meet the lowest possible cost and schedule. This will 

take into account other factors that may not be accounted for and will remind decision makers that all will 

never go as planned and that Murphy's Law is alive and well when it comes to large, software development 

projects. 

4. Compare Model Results with Other Estimating Techniques 
Ideally, estimates developed with other techniques should fall within the upper half-width of the 

confidence interval in order to allow for those unplanned and unfavorable events that will occur during the 

course of every big project. 

5. Use Model Results to Debate Unrealistic Budgets 
If a budget is set with values that do not fall within the confidence intervals produced by the simulation 

model, then the model should be used as a tool for debate. The key input parameters can be varied to show 

the impacts of such variation. The model should be run with animation so that decision makers can 

visualize the process and reasons for its complexity. 

6. Update Model with Actual Project Data as Project Evolves 
Actual project data can be used as inputs to the model as the project evolves. The model can be used to 

analyze effort and schedule to complete based on actual project values to date. The model can also be used 

to study problem areas and the effects of potential solutions. 

Approach Applied to Project: 
The NASA project documentation shows that there were two official estimates before the project staited. 

The first was an estimate by analogy and the second a bottoms-up estimate. Both of these estimates would 

officially result in the same total cost and schedule for the project. A review of interim bottoms-up 

estimate documents and personal notes show that the total project cost values were lowered for the final 

and official estimate. Even at this very early point in the project, there was great pressure to develop 

estimates that matched an acceptable budget and schedule. The budget was set for a cost of approximately 

1400 labor years of effort and five years for the schedule. 

1. Baseline Model 

The earliest estimated size for the project was 1.4 million lines of code and this was

based on a rough analogy with previous projects. At this point in time, no decisiofis had 

been made on an acceptable concept of operations, architecture, or lifecycle process for



the project. Previous similar projects had used a structured waterfall process so it is 

reasonable to utilize the baseline PATF discrete event process model. 

2. Data Distributions 

Since there is no actual project data at this point, data from the Software Engineering Laboratory will be 

used to develop appropriate distributions for use in the model. 

jz : Referring to Exhibit 1, the size estimate can be underestimated by up to a factor of 4 at this very 

early point in the lifecycle. Therefore, a uniform distribution with parameters 1.4M and 5.6M will be used 

in the simulation. Note: An interesting fact to point out is that the estimated size of the project at the time 

it was cancelled was 5.8M LOC. 

Productivity: Productivity data for over 140 projects from the Software Engineering Laboratory was 

analyzed and fitted with distributions using "best fit" software. The following distribution was selected for 

productivity: Erlang (1.36, 3). For different environments where there is not adequate historical data, a 

triangular distribution could be used and the parameters approximated by considering the minimum, 

maximum, and most likely values. 

Defect Rates: Values for defect insertion rates that range between 10 and 60 defects per thousand lines 

can be found in the literature (CeBASE 2004) with the smaller rates observed for projects that utilize 

disciplined and structured software engineering practices. The SEL data was used to analyze the number of 

defects inserted per thousand lines of code for different phases in the lifecycle. The PATT model is setup 

to accept six different types of defects, three of which relate to the lifecycle phases of requirements, design, 

coding, and testing. The other two types of possible errors are from bad fixes and documentation errors. 

Four distributions were developed for the phases of requirements, design, coding and testing and are 

provided in Exhibit 2.. 

Exhibit 2: Defect Probability Distributions by Phase 
Phase	 I Distribution 

Requirements Lognormal (2.62,7.1) 

Design Lognormal (17.13,73.35) 

Coding Weibull (28.39, 0.81) 

Testing Exponential (40.9)

A nominal value of 30 defects per thousand lines was used for bad fixes and documentation errors, since 

this type of defect data was not available for distribution fitting. 

For development environments where there is not adequate data to fit distributions and for which the 

SEL data is not appropriate, lognormal distributions can be used. Previous work demonstrates that a 



lognormal distribution for defect injection rates is appropriate in software process simulation modeling 

(Raffo 1996). Industry averages can be used for selecting parameters of the distribution. 

3. Run Model. 

The model was run for five replications with the following results for size, productivity, and defect 

injection rates: 

Based on the initial run set of five replications, the 95% confidence intervals for effort and schedule are: 

Effort:	 16,705+1-7536.2 Labor Months 

Duration:	 68.1 +1- 37.24 Months 

These are not very useful confidence intervals since the half widths are too large. 

In order to obtain a smaller half-width, the model needs to have a substantially higher number of 

replications. 

With the desire of obtaining less than 10% error on both parameters, the number of replications is solved 

for by the following: 

Effort: 

n 5 [7536,>/ 21= 101.8. 

Duration: 

5[37,421m 140 

Therefore, run the model for 150 replications and calculate confidence intervals. 

Exhibit 3 provides the PATT main screen table of results: 

Exhibit 3: Results for PATT Model Run of 150 Replications 

Metric Mean S.D. Units 
Size 4812.8 55 KSLOC 
Effort 21040.5 1048.2 Person Months 
Rework 
Effort 1682.2 129 Person Months 
Duration 91.7 11.2 Months 
Avg. 
Duration 73.9 9.5 Months 
Inj. Defects 103277.3 3582 
Det. Defects 94093.6 3149 
Cor. Defects 93866.7 3144 
Latent 
Defects 9410.6 526



Exhibit 4 summarizes the results of a run set with 150 replications: 

Exhibit 4: Effort and Duration Confidence Intervals 

Mean 

Half-Width 

Confidence Interval 

Presented Confidence Interval (Upper Half)

Effort 

1416 Labor Years 

65 Labor Years 

[1351, 14811 Labor Years 

[1416, 1481] Labor Years

Duration 

6.25 Years 

0.32 Years 

[5.93,6.57] Years 

[6.25,6.571 Years 

4. Compare Results with Other Estimating Techniques 

The estimate by analogy led to a budget of 1400 labor years and 5 calendar years. The simulation model 

produces values that demonstrate that there is substantial risk in accepting this budget. The model can be 

used to show that many factors must be considered and that these add to the complexity, time and cost for 

the project. For instance, decision makers need to be made aware of the impacts of defects and rework on 

the project, which can be substantial. The rework effort calculated using the simulation model is 8% of the 

overall effort. Also, the size of the project and the productivity of workers that have not yet been 

assembled cannot be estimated with any degree of accuracy. The model tries to account for this complexity 

and uncertainty. The visual display that lays out the waterfall process also adds value in considering 

aspects that are important and that can be of great impact. 

5. Debate Unrealistic Budgets 

The first area of concern should be the schedule. Fred Brooks states in his famous book (Brooks 1978) 

that more software development projects fail due to a lack of calendar time than all other factors combined. 

Capers Jones states that, "Once a project blindly lurches toward an impossible delivery date, the rest of the 

disaster will occur almost inevitably" (Jones 1998). 

One of the top ten software management tenets states that software development schedules shonld not be 

compressed by more than 25% of nominal (Royce 1998). The initial schedule of five years is danrously 

close to a 25% compression of the time estimate from the simulation model. Therefore, decision makers 

need to be made aware that a five year schedule is very risky and that a longer development schedele 

should be given serious consideration and its impacts assessed at this very early point since NASA LS 

always concerned with launch manifests being affected by delivery dates. 

The estimate of 1400 labor years falls a little short of the values in the confidence interval. Mnmgement 

should be made aware that factors such as productivity and size can greatly impact this estimate- t this 

point in time, the size of the product will most likely vary from the estimated 1.4 Million LOC. ITFLe 

productivity distribution is based on a NASA development environment of cohesive developimtteams 

with low personnel turnover and in some cases, high reuse and development language advantagm. It is



appropriate to accept these conditions for this project's development environment at this early point, but the 

environment could easily be different and these types of differences could substantially affect the 

productivity numbers. The benefit to closely analyzing a very early budget and emphasizing obvious risks 

such as schedule in this case is that decision makers do not become too comfortable with unrealistic 

estimates. The longer unrealistic numbers are considered as acceptable, the harder it becomes to change 

those numbers. Also, changes to budgets later rather than earlier (preferably before a project starts) more 

negatively affect the team's reputation and management's confidence in the ability to successfully complete 

the project. 

Second Estimate: 

The objective of the Bottoms-Up Estimate was to develop a rough order of magnitude cost and schedule 

for a five year project. As part of this estimate, the system architecture was selected and a concept of 

operations was developed. 

1. Baseline Model 

The size of the software was estimated to be 3.8 Million LOC. A productivity rate of 1 LOC/Hr was 

used for the estimate. The bottoms-up estimate adheres to the original schedule of five years. The 

estimate summary states that the schedule is aggressive and success-driven, but does not recommend a 

longer schedule. 

2. Data Distributions 

There will be changes in the size and productivity distributions for this estimate based on wh was 

known at this point in the project. The defect distributions will be unchanged from the values l for the 

first estimate. A Uniform Distribution with parameters 3.8M and 7.6M will be used for size. Aiangular 

distribution with parameters of 0.5 for minimum, 3 for maximum, and 1 for most likely will be itilized for 

one run set and then compared to a second run set with the original productivity distribution of 

Erlang (1.36, 3). 

3. Run Model 

The model was run two times with 150 replications for each. Exhibit 5 summarizes data mtbe runs: 

Exhibit 5: Summary Data for Multiple Run Sets with Different Productivity Distributions 

Effort Confiden	 Duration Confidence 

Input Size	 Input Productivity 	 interval (Upper E1	 Interval (Upper Halt) 

Uniform 
Run Set #1	 (3800,7600)	 Erlang (1.36,3)	 [2322, 23841	 [10.25, 10.61 

Uniform 
Run Set #2	 (3800,7600)	 Triangular (0.5,1,3) [2028,20801 	 [8.7, 8.9] 

4. Compare with other Estimating Techniques



The data from these two run sets should clearly send up a warning signal about accepting the established 

budget of 1400 labor years of effort and five years of schedule. The simulation model demonstrates the 

impact of the 3.8 million LOC size estimate and productivity estimate of 1 LOCIHr. The established 

budget represents an unrealistic goal that is setting the project up for failure. 

5. Debate Unrealistic Budgets 

This approach would have allowed project members to raise concern over the established and unrealistic 

budget from the initial time it was presented. This second run of the model in conjunction with the detailed 

bottoms-up should add validity to describing the predetermined budget as impractical. Even if decision 

makers agree to an aggressive schedule and budget, the simulation model can be used to bound the 

aggressiveness and to instruct on reasons for concern. 

Summary and Conclusions: 

Simulation process models can provide benefit to the estimation process for software developnnt 

projects, although they are not typically used for this purpose. A simulation tool can be used to aphically 

portray the complexity of the development process and can be used to explore the effects of unceaainty in 

the key parameters of size, productivity, and defects. Simulation process models can be used in 

conjunction with other popular estimating methods to serve as a check on the validity of the estinIe 

developed with these other techniques. It is necessary to develop estimates before a project begin but it is 

also necessary to understand that a point estimate developed with many unknowns and uncertaildy LS not 

going to be accurate. There is the danger that unrealistic cost and schedule estimates agreed to innder to 

get a project started can become the official budget and schedule with no easy way of revisiting J 

changing them. The goal of this work has been to demonstrate the benefits of using a simulalica del 

when estimating to allow for more realistic budget and schedule determination including an lalenal 

estimate to help focus on the uncertainty of the estimates. 
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