

_Introduction		Kennedy S
Lunar dust principally basalts containing plagioclase (Na,Ca)Si ₃ AlO ₈	Mineral	Wt. %
pyroxene (Mg,Fe,Ca)Si ₂ O ₆	Plagioclase	20 - 50
and ilmenite $\text{Fe}_2 \text{SiO}_4$	Pyroxene	40 - 65
Two simulants developed to replicate	Olivine	2 - 15
he mineralogy and chemistry of lunar soil from Apollo missions: MLS-1 and	Ilmenite	2 - 15
ASA JSC-1 atest development JSC-1A verage size of Lunar dust particles on loon = $45-100 \ \mu m^2$	Summary of co obtained from	omposition: literature

Separation data in air

Charger	Plate	Mass %
Al < 25 μm	+ ve	70
Al < 25 μm	- ve	30
PTFE < 25 μm	+ ve	52
PTFE < 25 μm	- ve	48
Al > 100 μm	+ ve	84
Al > 100 μm	- ve	16
PTFE > 100 μm	+ ve	14
PTFE > 100 μm	- ve	86

Mass fractions [%] and elemental compositions [relative atomic %] for two MLS-1 simulant sieved size fractions

_Homemade simulant (KSC-1)

Kennedy Space Center

Feldspar: (Na,K)AlSi ₃ O ₈ ;SiO ₂
Spodumene: LiAISi ₂ O ₆
Olivine: (Mg,Fe) ₂ SiO ₄
Ilmenite: FeTiO ₃

Mineral	Wt. %
Plagioclase	20 - 50
Pyroxene	40 - 65
Olivine	2 - 15
Ilmenite	2 - 15

Summary of compositions obtained from literature

Reade Advanced Materials ~ 300 mesh sieved Further sieved to 50-75 μ m size range

	Na	Fe	0	Ti	к	C	Si	Mg	AI
Ilmenite	2.2	4.0	65.3	13.5	-	15.0	-	-	-
Olivine	0.5	1.1	66.7	-	-	7.0	12.3	12.5	-
Spodumene	0.6	-	55.1	-	-	22.9	15.9	-	5.4
Feldspar	4.3	-	55.7	-	2.2	16.5	16.4	-	4.9
As mixed	5.2	0.8	61.2	1.9	1.5	6.3	13.9	3.4	5.7

Relative atomic concentrations [%] by XPS (mean of 5 samples)

40% 40% 10% 10%

st pass in	air Sta	inless	s stee	1		1997			
Sale I	Na	Fe	0	Ti	к	С	Si	Mg	AI
Bottom tray	-26%	+62%	-	-40%	-100%	+11%	-7%	+217%	+13%
-ve plate	+19%	+11%	•	+33%	• •	+16%	+7%	-100%	•
+ve plate	-	•	-	+6%		+13%	+9%	-100%	-
Bottom tra	y 2nd p	ass in	air St	ainles	s stee	1			
	Na	Fe	0	Ti	к	C	Si	Mg	AI
Bottom tray	-70%	+34%	•	-49%	-100%	+67%	-7%	+220%	+13%
-ve plate	-20%	•	-15%		-20%	+201%		-100%	+10%
+ve plate	-35%		-7%	+13%	+27%	+268%	-20%	-100%	+15%
-ve plate	2 nd pas	s in ai	r Stai	nless	steel				
to plato	Na	Fe	0	Ti	к	С	Si	Mg	AI
re plate i				+7%		+6%	+10%	-100%	•
-ve plate		-30%							

+1 Na Fe 0 Ti κ С Si Mg AI -ve plate --63% -. -29% +219% -33% -100% +38% +ve plate +27% -34% . . +52% -34% +227% -100% +30%

KSC-1 in vacuum

KSC-1 50 - 75 µm AI

	Na	Fe	0	Ti	С	Si	AI
Bottom tray	-9%	-69%	-6%	-48%	+26%	+17%	+6%
-ve plate	+31%	-43%		-38%	+12%	+15%	-
+ve plate	-	-	-	+40%	-7%	+11%	-23%

KSC-1 50 - 75 μm Cu

	Na	Fe	0	Ti	C	Si	AI
Bottom tray	-10%	+11%	-	-34%	-11%	+20%	+13%
-ve plate	-7%	+86%		+14%	-8%		-8%
+ve plate	-27%	-	-	-32%	-	+11%	-

KSC-1 50 - 75 µm PTFE

	Na	Fe	0	Ti	С	Si	AI
Bottom tray		-36%	-	-31%	-10%	+23%	+18%
-ve plate	+13%	-32%	-	-26%	+9%		-
+ve plate		+27%	-	+46%	+9%	-7%	+30%

_XPS and Raman data

Separation data from XPS using AI charger – percent change in surface concentration of detected elements compared to control sample JSC-1

Sample	Na	Fe	Ca	Si	AI
- ve plate	- 31 %	+ 8.6 %	+ 13 %	+ 28 %	+3%
+ ve plate	+ 5.7 %	- 18 %	+4%	+ 8.9 %	- 11 %

Raman data showed separated fractions had less plagioclase and silicate rich minerals, but were richer in Ti and Fe minerals such as ilmenite, anatase, magnetite, hematite, and pseudobrookite

Large database of Raman mineral spectra for planetary exploration

K. Kuebler et al., LPI XXXVII (2006) 1907

	Reinledy Spac
Regolith excavation and transport	For radiation/micro-meteorite shielding and thermal moderation
Water production	From regolith for life support and radiation shielding
Oxygen production	From regolith for life support and propulsion
Fuel production	From regolith for Earth return, lunar surface/orbital science expeditions, etc.
Energy production, transport, storage, and distribution	For outpost use
Structural and building material fabrication	For outpost use
Spare part, machine, and tool production	For outpost use
Construction and site preparation	Using in-situ materials and in-situ energy

*