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Teams at NASA have conducted studies of time-delayed communications as it effects 
human exploration.  In October 2012, the Advanced Exploration Systems (AES) Analog 
Missions project conducted a Technical Interchange Meeting (TIM) with the primary 
stakeholders to share information and experiences of studying time delay, to build a 
coherent picture of how studies are covering the problem domain, and to determine possible 
forward plans (including how to best communicate study results and lessons learned, how to 
inform future studies and mission plans, and how to drive potential development efforts).  
This initial meeting’s participants included personnel from multiple NASA centers (HQ, 
JSC, KSC, ARC, and JPL), academia, and ESA.  It included all of the known studies, analog 
missions, and tests of time delayed communications dating back to the Apollo missions 
including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and 
Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog 
Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars 
Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and 
Apollo experiences.  Additionally, the meeting attempted to capture all of the various 
functional perspectives via presentations by disciplines including mission operations (flight 
director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity 
(EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education 
and Public Outreach (EPO), and data management.   The paper summarizes the 
descriptions and results from each of the activities discussed at the TIM and includes several 
recommendations captured in the meeting for dealing with time delay in human exploration 
along with recommendations for future development and studies to address this issue. 

I. Introduction
HIS is a summary compilation of the materials presented at the TIM.  As such, much of the content of this 

package is directly or indirectly attributed to the presenters.  The presentation materials presented are available 
on the Internet at:  

https://oasis.jsc.nasa.gov/projects/advdev/analogs/Delay TIM/default.aspx 
 
Attendees are listed below with presenters noted.  Also, each of the presentation packages (available on the 

website listed above) is referenced with their authors at the end of this paper. 
 

Andrew Abercromby (Presenter) – JSC – Representing EAMD 
Mathias Basner (Presenter) – University of Pennsylvania Perelman School of Medicine  -Representing the Mars 520 

Analog Mission 
David Coan (Presenter)  - JSC – Representing the EVA Community 
David Dinges (Presenter) – University of Pennsylvania Perelman School of Medicine - Representing the Mars 520 

Analog Mission 
Benjamin Douglas (Presenter)  – ESA – Representing the Medical Community 
                                                           
1 Analog Missions Data Manager, Exploration Mission Systems Office, JSC\YX. 
2 Analog Missions Project Management Support, Systems Architecture and Integration Office, JSC/EA36. 
3 Analog Missions Project Manager, Systems Architecture and Integration Office, JSC/EA32. 
4 Analog Missions Systems Engineering and Integration Lead, Systems Architecture and Integration Office, 
JSC/EA34. 

T 

https://ntrs.nasa.gov/search.jsp?R=20130011552 2019-08-31T00:39:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10574181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Michael D
Dean Eppl
Jeremy Fra
Steve Gibs
Stephen H
Barbara Ja
James John
Young Lee
Lauren Lev
Darlene Li
Stan Love 
Richard M
Andrew M
Frank Mor
Michele Pa
Steve Rade
Marc Reag
Michael R
William To
Sharada V
Wendy Wa
Nick Wins
 

The fo
These mis
Technolog
Station Tes
Mars 520, 

 

A. NASA 
Marc R

the time d
NEEMO m
coast of K

Figure 1
NOAA's u

owns (Presente
er (Presenter)  
ank (Presenter)
son (Presenter)
offman (Presen

anoiko – JSC – 
nson (Presenter
e (Presenter) – 
veton (Presente
im (Presenter) 
(Presenter) – J

McGinnis – NAS
Mishkin – JPL –
rino (Presenter)
arker – JSC – R
er (Presenter) –
gan (Presenter)
odriggs – JSC 
odd – JSC – R
italpur – JSC –
atkins (Present
ski (Presenter) 

ollowing sectio
ssions include

gy Studies (DR
st-bed for Ana
Autonomous M

Extreme Env
Reagan and Wi
delays studies
missions were 

Key West, Flor

 Aquarius Un
underwater resea

Americ

er) – KSC – Re
– JSC – Repre

) – ARC – Rep
 – JSC – Repre
nter)  – JSC – R
Representing t
r) – JSC – Rep
JPL – Represe
er)  – JSC – Re
– ARC – Repr
JSC – Represen
SA HQ – Repr
– Representing 
) - JSC – Repre
Representing th
– JSC –TIM Or
 – JSC – Repre
– Representing
epresenting the

– Representing
ter)  – JSC – Re
– JSC – Repre

II. Summ
on provides br
e NASA Extr

RATS/RATS, E
alog Research (
Mission Operat

vironment Mis
illiam Todd fro
 that have be
performed in 
ida.  These un

ndersea Habita
arch habitat faci

can Institute of

epresenting the
esenting the Sc
presenting the A
esenting Missio
Representing A
the AES Analo

presenting the D
enting JPL and
epresenting the
resenting Pavili
nting the Astro
resenting HQ A
JPL and Mars

esenting ISTA
he AES Analog
rganizer/Facili
esenting the NE
g ISTAR 
e NEEMO Ana
 JSC Engineer
epresenting the

esenting Missio

maries of An
rief summaries
reme Environm
Exploration An
(ISTAR), Pavil
tions (AMO), D

ssion Operatio
om NASA’s Jo
een performed
an undersea h

ndersea mission

at 3D Model a
ility .

 
f Aeronautics a

 
 

2

e Communicat
cience Commun
Advanced Miss
on Operations 

Antarctic Analo
ogs Office & T
Desert RATS A

d Mars Rover M
e Behavioral H
ion Lakes Rese

onaut Commun
Analog Leaders
s Rover Mission
R 
gs Office & TI
itator 
EEMO Analog

alog Missions
ring 
e Education & 
on Operations P

nalog Mission
s of each of t
ment Mission 
nalogs and Mis
lion Lake Rese
Devon Island A

ons (NEEMO)
ohnson Space C
d as part of t
habitat (NOAA
ns provide an 

r
i
d
m

s
7
d
m
N
s
T
o
a

and layout of

and Astronauti

tions Communi
unity 
sion Operation
Planning 
og (and histori

TIM organizer
Analog Mission
Missions 
Health and Perfo

earch Project 
nity & TIM org
ship 
ns 

IM organizer 

g Missions & T

Public Outrea
Planning 

n Presentatio
the presentatio

n Operations (
ssion Developm
earch Project (P
Analog Missio

)
Center presente
the various N

A’s Aquarius f
analog extrem

reduced gravity
in a facility s
dependency on
missions with t

To date, N
successful miss
7, 9, 13, 14, an
delay on the ab
missions inclu
NOAA Under
support crew) 
These mission
operations tec
addition to the 

NEEMO 
focused on e
navigation, etc

ics 

ity 

ns (AMO) Proj

ic) Missions 

ns & TIM orga

formance Comm

ganizer 

TIM organizer 

ach Community

ons
ons for analog
(NEEMO), D
ment (EAMD)
PLRP), JPL M

ons, and Apollo

ed an overview
NEEMO missi
facility located
me environmen
y simulated E
similar in size
n life support s
timelines, obje

NEEMO has ex
sions.  Of thos

nd 16 all studie
bility to perfor

uded a crew of
rsea Research
and lasted bet
ns studied a 

chniques, tools
effects of time

missions 7 
exploration con
c.    It’s time d

ect. 

anizer 

munity 

y 

g missions pro
Desert Researc

, International 
Mars Orbiters/R
o experiences.

w of 
ions.   
d off the 
nt to space inc
VAs, isolated 
e to space ha
systems, and re
ectives, and sci
xecuted 16 saf
e, NEEMO mi

ed the effects o
rm the mission
f 6 (4 NASA 

h Center or N
tween 10 – 18

number of 
s, and scenar
e delay. 

and 9 obje
ncepts for tra

delay studies fo

ovided.  
h and 
Space 

Rovers, 

luding 
living 

abitats, 
ealistic 
ence.   
fe and 
issions 
of time 
n.   All 

and 2 
NURC 
8 days.   

space 
rios in 

ectives 
acking, 
ocused 



 
American Institute of Aeronautics and Astronautics 

 
 

3

on tele-robotic and tele-mentoring operations.  A time delay of 0 – 2 seconds (One way light time or OWLT) was 
used for robotic controls testing, but not for nominal crew operations.    High-level results from these missions 
showed that successful tele-surgery is not possible with a time delay of greater than approximately one second. 

NEEMO mission 13 was a 10-day mission designed specifically to address how to operate when the crew is 
“autonomous.”   The crew operated in “crew autonomous” mode for 5 continuous days where operations were 
designed to minimize ground team resources (vice maximize crew productivity).   This mission included real-time 
voice, email and data communications with crew/ground conferences held in the mornings and evenings.   During 
the “crew autonomous” days (mission days 5 – 9), the operations were modified to include a 20-minute 
communications delay (OWLT).  The team replaced crew/ground conferences with exchanging daily reports and 
voice communications was not used operationally (limited to use only if autonomy test failed or aborted).  The 
summary findings from NEEMO 13 were: 

1) Simple information should be transferred via a simple method (e.g. text) so as to require less bandwidth and 
a reduced chance of a “nuanced interpretation.”  

2) Voice and video clips can be very powerful (for better or worse) in that they are very effective for 
transferring technical or schedule information, but they can be distracting and are packed with 
psychological meaning.  

3) Caution should be used with psychological messages being sent to the crew and possible effects to crew 
moral.  
 

NEEMO mission 14 was a 14-day mission designed to address lunar exploration concepts.   The time delay 
studies focused on a mars delay of 20 minutes (OWLT) where communications was limited to twice a day.   Half of 
the mission was executed with no time delay and half of the 
mission was executed with the time delay.   Mission objectives 
included evaluating advanced space suit designs, lunar 
exploration activities, life science experiments, and 
investigation of crew autonomy operations concepts.   The 
results of the time delay studies were: 

1) Over 340 exploration tasks were performed and 
measured in both the real-time and delayed 
environments and there was little detectable difference 
in the total number of tasks completed, the average 
time per task to complete, or the total time to complete 
all tasks.    

2) Recorded videos between crew and MCC were useful 
mostly for psych / morale reasons with important 
information being conveyed by text/email/file transfer. 
 

NEEMO mission 16 was a 12-day mission designed to address Near-Earth Asteroid (NEA) exploration concepts 
including evaluations of NEA exploration tools and techniques and a habitability study.   This mission included the 
most comprehensive communications latency investigation for a multi-day human spaceflight mission to date.  It 
included a full spectrum of communications times including voice, video downlink, video conference, text, file 
transfer, etc. and full scope of purposes including operations, medical, psychological support, and public outreach.  
The mission time delay studies focused on a NEA mission time delay of 50 seconds (OWLT) with continuous 
communications coverage.   The emulator accurately delayed voice, text messaging, and video streams (however file 
transfer was not modeled and assumed not relevant at 50 seconds).  This mission also conducted two simulated 
emergency events with 5 and 10 minutes OWLT delays.   Summary findings from the time delay studies were:  

1) Both voice and text messaging were useful and complimentary (with texting the preferred method for non-
time critical communications). 

2) Communications tools need significant enhancements to be operational robust in a delayed environment 
(i.e. voice recording/playback, visual audio alerts of incoming texts, etc.)  

3) While it sometimes degraded capabilities, all nominal activities were able to be accomplished with a 50 
second latency 

4) During simulated emergency events, communications between the ground and crew significantly broke 
down (both for 5 and 10 minute latencies).  This illustrated the need for better tools to help cope 

Figure 2 Aquarius Habitat Actual underwater view
of the facility.
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Results from these RATS 2012 investigations were still being documented as of the TIM. 
 
In the future, the AES Integrated Test Project may evaluate the following un-vetted, notional goals with respect 

to delayed communications: 
1) Communications delay considerations for robotic tele-operations on the Lunar surface.  This would 

examine Cis-Lunar to Lunar surface operations (~400ms round-trip) vs. Earth to Lunar surface operations 
(~2.6s round-trip).  

2) Quantify the operational effects of various Cis-Lunar orbital architectures on communications coverage.  
3) Further evaluation of communications delay mitigation tools (texting clients, message tracking, mission 

planning tools, etc.) in collaboration with tool developers.  
4) Investigation of time delay effects on human spacecraft system failure response and recovery.  These 

evaluations would be performed in close collaboration with teams investigating crew autonomy and human 
spacecraft system design.  
 

C. Exploration Analogs and Mission Development (EAMD)  
Andrew Abercromby from JSC provided a presentation to the TIM on the time delays studies performed across 

several analogs by the EAMD office.  The EAMD was initiated by the Directorate Integration Office (DIO) and 
Lunar Surface Systems (LSS) project in March 2009 to ensure a rigorous approach and the use of consistent 
operational products, tools, methods and metrics across all NASA analog activities to enable iterative development, 
testing, analysis, and validation of evolving exploration ops concepts.   Note that the EAMD presentation was 
extensive with a lot of excellent supporting data about the studies performed.  Only a high level summary is 
provided here. 

 
The hypotheses for the EAMD studies was that the crew productivity during LER mission tasks (EVA and IVA 

science operations and vehicle maintenance tasks) would not significantly vary among different communications 
scenarios which included both continuous real-time communications and intermittent communications (66% 
coverage, 34% no coverage based on single highly-elliptical south pole coverage relay satellite).   The study 
gathered productivity metrics (Exploration Productivity Index) from the crewmembers and the flight control team as 
well as observation and data quality measurements. 

For DRAT S2009 the study found that unintended communication dropouts precluded meaningful comparison of 
modes using Exploration Productivity Index. Decrements were measured in the mean Data Quality and Observation 
Quality during intermittent communications, but were not found to be practically significant. 

The overall conclusions and observations of the EAMD studies were: 
1) Communication protocols developed and tested during DRATS, PLRP and NEEMO are acceptable overall 

for nominal science operations.  However, there needs to be better integrated communication, traverse 
planning, timeline, and data curation capabilities. There was also significant variability in preferences (e.g. 
audible alerts, when to use voice) and resulting questions about how much flexibility the software and 
procedures should allow.  

2) It would be valuable to have CAPCOMs on both ends of comm delay, especially if using voice.  For voice 
communications, the verbal pre-alert protocol developed during PLRP proved important in DRATS and 
NEEMO testing. The voice communications was observed to be more important from space-to-ground than 
ground-to-space. 

3) The configuration where the MCC CAPCOM talked to the crew IV/CAPCOM on separate loop from SEV 
pilot and EV crew worked well.  The MCC hears and sees all loops but nominally only talks to Crew 
IV/CAPCOM. 

4) All of the text-to-space communication (email, messaging, file transfer) was judged to be very important 
(possibly prime) based on DRATS and NEEMO testing.  This had not been possible to test at PLRP. 

 
EAMD recommendations from these studies included: 
1) Establish standard metrics to be used across all test environments 
2) Develop performance benchmarks for current spacecraft operations and identify those systems and tasks 

that are most susceptible to comm latency based on current designs & operations (ISTAR)  
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3) Develop hi-fidelity models, test articles, and procedures for vehicle systems and use integrated testing to 
understand the impacts of comm latency on the design and operation of these systems during nominal and 
off-nominal operations (JSC Integrated Testing)  

4) Iteratively develop and test the integrated suite of software tools and procedures necessary to conduct 
human exploration missions  

5) Extend approach implemented in NEEMO 16 and RATS12 using standard metrics and questionnaires to 
identify, prioritize, implement, and test capabilities in operational environments 

6) Utilize PLRP Phase 3 (and other science testing?) to evaluate these tools and procedures during real 
scientific exploration 

7) Utilize JSC Integrated Testing in simulation environment to evaluate during other mission operations and 
contingencies 

D. International Space Station Test-bed for Analog Research (ISTAR)  
Frank Moreno from JSC presented an overview of the planned analog 

activities for the International Space Station, also referred to as ISTAR.  ISTAR 
was initially established in 2010 to 1) facilitate the use of ISS as a test platform to 
reduce risks for manned missions to Exploration destinations, 2) utilize ISS as a 
micro-g laboratory to demonstrate technologies, operations concepts, and 
techniques that mitigate the risks of crewed Exploration missions, 3) utilize the ISS facility as an in-space testbed to 
exercise crew activities during simulations of Exploration missions to mature operational capabilities for crewed 
missions, 4) conduct long duration Mars Transit and Landing Transition simulations utilizing technology and 
operational tools & concepts developed and tested during previous ISTAR and Earth-based Analogs, and 5) 
strategically plan increasingly complex ISS-based exploration mission simulations. 

Early in 2012, HEOMD AA challenge to conduct a Mars analog mission before 2016.  To date, initial ISTAR 
missions starting with ISS Increment 31, by necessity, have focused on discrete exploration forward activities (e.g., 
Comm Delay Countermeasures, Autonomous Procedures, Tele-robotics, EVA suit microbial sampling, 
Anthropometric measurements, Radiation Dosimetry).  Additionally, ISTAR has developed a notional ISS Mars 
SIM plan and begun to coordinate with AES projects to refine Simulation objectives and solicit their participation. 

Additionally, the ISS Expert Working Group (IEWG) Team 6, composed of NASA (including ISTAR) and IP 
members, was established to study ISS-based ops simulations and technique.  This team is developing a response to 
a Russian Space Agency (RSA) proposal to fly a Russian crewmember on ISS for 1 year and execute a Mars 
simulation similar to the Mars 500 ground analog.  ISTAR is a major contributor in the effort to develop and execute 
the ISS Mars simulation plan. 

Since July 2012 ISTAR has been working with HQ/Human Exploration & Operations Mission Directorate to 
include ISS exploration risk mitigation testing and NEA/Mars simulations as part of an executable framework for 
spaceflight through 2021 and a strategy for BLEO missions post 2021. ISTAR is a member of a product team 
responsible for developing plans to support ISS testing and simulations. 

ISTAR is currently involved in efforts of exploration risk mitigation, ops techniques and SIMS, ISS exploration 
testing  “Scorecard”, and exploration planning. 

Two ISTAR autonomous crew procedures have been performed to date including: 1) IMV Flow Measurement 
(VelociCalc), performed by Andre Kuipers on May 17, 2012 and 2) T2 Monthly Inspection, performed by Joe 
Acaba on July 16, 2012.   From these experiences, 
there were several lessons learned.  1) The crew can 
perform these procedures without ground 
interaction; crew response has been favorable, 2) 
Procedures took nominal time (we anticipate time 
will actually be saved for many autonomous 
procedures), 3) Several procedure writing 
suggestions, 4) Identified the need for a better way 
to input large amounts of data, 5) Pictures are good, 
video clips are even better, 6) Need to add more 
rationale for the procedure – if the crew knows why 
something is performed, they can better respond to 
unexpected conditions, 7) Ground coordination 
improvements, and 8) Suggestion to use automation 
(such as Robonaut) for repetitive tasks. 

Figure 11 Deep Worker Submersible Exploring the lake bottom
using delayed communications to the surface to simulate a NEA
mission.
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The ISTAR team forward work includes 1) Updating more procedures using the lessons learned to make them 
autonomous, 2) Performing more procedures, and include debrief (questionnaire), 3) Developing and using “Just In 
Time Training,” 3) Uplinking and using Text Messaging, the second aspect of the ISTAR-1 study, and 4) 
performing an HRP comm delay test is planned starting with Increments 35/36. 

E. Pavilion Lake Research Project (PLRP)  
Darlene Lim from ARC presented an overview of the work that has been going on with PLRP.  PLRP is a multi-

disciplinary science and exploration initiative with funding from NASA (MMAMA, DIO, ASTEP), CSA (CARN), 
Nuytco Research, NGS Science and Exploration Grant, NSERC, McMaster University, University of British 
Columbia.  It is focused on determining what mechanisms and associated interactions control microbialite 
morphogenesis in Pavilion and Kelly Lakes, British Columbia, Canada examining biological, chemical, and physical 
mechanisms.  

In 2011, PLRP operated at Kelly Lake that has been surveyed using SCUBA and was found to have similar 
microbialite formations to Pavilion Lake. The lake is sufficiently deep (~40 m) and large to support the deployment 
of the DW and the associated exploration program. This was an opportunity to apply PLRP exploration strategies 
beyond one site and to test their relevance on a broader scale, including in relation to NEO exploration architecture 
designs.    PLRP 2011 utilized the SNRF communications infrastructure, which enabled real-time and Near Earth 
Asteroid (NEA) (50 sec one-way) delayed communications.  The communications network utilized a fiber optic 
tether approx. 200 meters to connect the submersible to the surface control vessel.  The surface vessel had a fiber 
optic to Ethernet converter similar to the hardware used on the Deep Worker. Two way “hardwire voice 
communication was available as well as real time video from the submersible’s main camera. This Ethernet data was 
then be broadcast wirelessly using the existing network system to the Science Back-Room.    

Improved collaborative planning and tighter integration of traverse planning with a-priori science data. A web-
based traverse planner was developed which supported smooth integration of a-priori map data (e.g. sonar data 
collected with an AUV) with an interactive planning tool.  This provided the science team with essential context 

information to develop and annotate effective 
traverse plans on a very tight schedule.  The web 
based centralized architecture of the planner 
provided our geographically distributed team the 
ability to view the most up-to-date version of a 
traverse plan at all times.  

The fiber optic and Wi-Fi connection from lake 
to shore allowed the Science Stenographer (SS) to 
be relocated from the chase boat to the Mobile 
Mission Command Trailer (MMCC) nearly 20 km 
away.  This was a major operational shift for the 
PLRP team. While contingencies were developed 
to deal with Loss of Communications scenarios and 

the associated actions of the remotely located SS, 
we did not have to implement these emergency 
procedures given that the communications and gas 

tools performed flawlessly throughout the 2011 mission.  Science data from each sub flight was similarly collected 
without issue, and synthesized on a daily basis by the xGDS team to enable science discussion and video review on 
a nightly basis.  This rapid turn around capability, even with the remotely located SS, enabled scientific discourse 
and flight replanning in response to daily discoveries. 

An important finding to date is that time delayed communications did not significantly hamper the team’s 
scientific productivity or data return.  This was enabled by the extensive training of the SP, surface support crew and 
SBT during the pre-mission phase, and by a reliable communications infrastructure and our xGDS data integration 
support tool. In some cases, the DQ increased during NEA communications mode.  However, the Observational 
Quality did not waiver significantly between NEA and real time communications.  

Results from these PLRP investigations were documented in the following publications: 
1) A Historical Overview of the Pavilion Lake Research Project – Analog Science and Exploration in an 

Underwater Environment, Lim, D.S.S., Brady, A.L. and PLRP Research Team, GSA Special Paper: 
Analogs for Planetary Exploration. 2011 

2) PLRP Geobiology Special Issue due out Spring 2013 
 

Figure 12 Tracks of the Submersible along the lake floor with
images of microbialite formations.
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nominal mission activities, and increases the complexity of attaining a “safe state” and remaining in this state for 
long periods.  Current (unmanned robotic mission) fail-safe strategy allows for “pause” of mission activities and you 
have the luxury of long periods of time to diagnose/recover from problems without additional worries about S/C 
health (presume long ” time to criticality”).  However, the presence of crew puts additional time pressure on the 
diagnosis/recovery loop; additional health/safety concerns from crew may drive shorter time-to-criticality durations.  
But presence of crew also allows for on-site observations, troubleshooting (monitoring of equipment status) and 
repair; all of which can improve the rate at which diagnosis and recovery is performed.  Limited ground contact may 
require transfer of fault management responsibilities from ground to flight system/crew.  With the detect-diagnose-
plan-respond (e.g., OODA loop), primary consideration will be time-to-criticality, but other factors may also 
contribute (efficiency, cost, resources, etc.).  Additionally, ground contact may be shorter/less frequent, with lower 
data rates.  

 
Human-rating requirements, that require multiple failure tolerance, dramatically increase the failure space that 

must be covered by a fault management solution.  Current JPL spacecraft must be able to safe in the presence of any 
given single failure whereas human-rated spacecraft must keep the crew safe in the presence of any two failures.  
The implication is a much larger set of conditions that must be addressed, both by design/analysis, and operations 
procedures.   The definition of crew controls for on-board fault management will require careful allocation of 
function between crew and flight system, and ability for crew to override or halt autonomous action. 

 
The navigation for a deep space crewed mission might not be able to depend solely upon Earth-based radio-

metrics (in comparison with Apollo era navigation).  NASA has fewer tracking stations now than in the Apollo era, 
and the ranges will be much greater (reducing accuracy).  If the next mission is to an asteroid, we generally will 
have a poor idea of where that asteroid is (unlike the Moon whose orbit is well determined).  Unlike returning from 
the Moon, plotting a return course from 0.75 au range to Earth will not be possible with slide rules and view-port 
reticle measurements.  A crewed flight to a NEO will likely utilize electric propulsion – requiring constant 
controlled guidance of the engines to achieve a fuel-optimal delivery of several km/s over many weeks – this cannot 
easily be managed by manual control.   A ground/flight interface will be much more complex than what could be 
accomplished over a back-up voice link – there will be many Mb of data that need to be transmitted. 

 
How Might these Differences Affect the Spacecraft?  The spacecraft will likely have to have optical navigation 

in order to have target-relative navigation capability.  Because manual navigation won’t be possible, a fully 
automated trajectory planning and navigation system will likely be required in order to insure safe return if com-
links are compromised, and because the system will be too complex to have “cook-book” style manual procedures.  
Low-thrust (e.g. SEP) trajectory design requires highly compute-intensive non-linear path-planning operations.  
These trajectory design methods will have to be onboard at some level, for crew safety, with a high degree of 
automation.  High interface-bandwidth requirements imply a high degree of automation and processing capability 
onboard to cope with a com-link degradation.  (Anything the ground might have to do to support the navigation 
system, the s/c would have to do on its own in contingency situations) 

 
Additionally, there are likely to be other operational challenges to consider including:  
1) Operations approach and implementation strategy for affordable and reliable crewed missions.  
2) Complex on-board systems management including ECLSS, Navigation, Propulsion, Power etc.  
3)  Optimum level of automation and autonomy 
4) Work allocation between crew and robotic systems 
5) On-board information systems to maximum crew and mission safety 
6) Shared responsibilities between flight and ground 
7) Mission planning (strategic, tactical and short term)  
8) On-board resource management 
9) Crew activity planning and on-board schedule management 
10) Mission control addressing response time and situational awareness needs 
 

G. Mars 520 
David F. Dinges, PhD and Mathias Basner, MD, PhD, MSc  from the University of Pennsylvania Perelman 

School of Medicine presented a summary of the time delay studies that were conducted as part of the Russian lead 
Mars 520 analog mission (also referred to as the Long Duration Russian Chamber Study or Mars 520).  In this 



mission, a 
date.   By 
on the Mi
Russians c
extended u

simulated 
Mars. 9) L
attention r
excitement

For com
outside co
communic
length of d
(audio or 
hours.   
simulated 
landing 
simulated 
months, 
minutes 

Feichtin
key elem
was n
crewmemb
Russian 
as much pe
double the
for crew s
communic
video 
fluctuation

increase af
increase).  
data on
by the crew

H. Autono
Jeremy

(AMO) Pr
aspects of

Figure 15 
perform a 

crew of 6 spe
comparison, a 
ir space statio
confined in con
up to 363 days.

emergency eve
Limited consum
regarding the 
t of major disco
mmunications,
ommunication. 
ations coverag

delay was depe
video) 

mars 
crew.  

real-
every 

nger et 
ent in 
notable 
bers 

ersonal 
e PC as 
sending 
ation 

ns due 

fter 3-4 

the 
w. 

omous Mission
y Frank from 
roject.  The g
f mission oper

Mars 500 Con
520 day simulat

Figur
EVA
simula

Americ

ent 520 days in
total of 4 peop
n set by Vale

nnected hyperb
   

ents. 8) Realis
mable resource
mission.  Not
overy.   
 interfaces wer
 During the 

ge assumed eve
endent on the d

n Operations 
AMO present

goal of AMO 
ration respons

ncept, Facility, 
ted Mars mission

re 16 Simulat
 EVA crewmem
ated Mars surfac

can Institute of

n a Mars miss
ple spent more
ery Polyakov. 
baric chambers 

stic changes in
es (food and w
te that simula

re restricted to
initial 8-Wee

ery 1.5 hours d
distance betwee

(AMO)  
ted an overvi
experiments w

sibilities shoul

& Crew  Used
n.

ted Mars Sur
ber shown explo
ce.

 
f Aeronautics a

 
 

12

ion simulation
e than 1 year in

 The longest 
for 240 conse

Ecolog
simulation
including:
demograph
days of c
volume an
interconne
with life 
environme
maintenan
Isolation

cycles, tem
simulation
Work thro

 communicatio
water), and 10)
ation did not i

be between th
eks, real-time 
during daytime.
en the simulate

was sen
Message
landing,
Commu
commun
time co
1.5 hour
al. conc
coping 
variation
had 6-8
crewme
commun
the aver
persona
preferre
commun
to speci

months 
Addition
volume 

ew of the Au
was to answer
d be allocated

d to

rface
oring

and Astronauti

n, which was th
n space, with t

Earth-based 
ecutive days. A

gical validity 
n was based o
  1) a multina
hically similar
confinement i
nd configuratio
ected habitable
support syste

ent. 4) Activ
nce work, scien

from Earth’s

mperatures, an
n under the di
oughout the m
on modes and 
) a crew that w
include micro

he crew and mi
communicatio

.  On week 9, t
ed spacecraft a

nt to crew durin
es sent from c
, there was a 3 

unication betw
nication satelli
ommunication 
rs during dayti
cluded that per
with an isolat
n in PC amo
8 times mor

embers.  The C
nication as E
rage European

al communic
ed by Europea
nication prefe
ial events (holi

(“monotony 
nally, the pres
on data exchan

utonomous Mi
r the following
d to ground b

ics 

the longest sim
the record of 4
spaceflight sim

Antarctic winter

of the Mar
on a number o
ational crew o
r to spacefarers
in a pressuriz
on comparable
e modules. 3) 
ems and an ar
vities simulate
ntific experime
s daily enviro

nd seasons. 6) R
irection of mi

mission include
time delays in

was aware of 
gravity, radiat

ission control c
on was used w
time delay was
and earth.   Wr
ng a 2 hour win
crew had no r
person orbital

ween orbiter an
ite visibility.  

was used w
ime. 
rsonal commu
ted environme
ng the crewm

re personal c
Chinese crewm
European crew
n crewmember
cation varie
ans and Russi
erred by Chin
idays, birthday

phase”) then
sentation inclu
nged and the c

ission Operati
g question: W
based or vehi

mulation, execu
437 consecutiv
mulation invol
r-over mission

rs 520-day m
of mission attr
of healthy volu
s. 2) 520 conse
zed facility w
 to a spacecraf
A facility equ

rtificial atmos
ed ISS with 
ents, and exerc
onmental ligh

Realistic Mars
ssion controlle
ed both routin
n transit to and
publicity and 

tion, risk to li

center with no
with 30 minu
s introduced w
ritten or pre-rec
ndow twice ev
restriction.   F
l crew and a 3 p
nd lander limit
During the fin
ith coverage 

unication (PC) 
ent.  However
members.  Eur
communication
member receive
wmembers, bu
.  The main m

ed with w
ians and audi

nese.   There
ys, etc.) and a s

n stable (or 
uded very inter
communication

ions 
What 
icle based pla

uted to 
ve days 
lved 4 

ns have 

mission 
ributes 
unteers 
ecutive 
with a 
ft with 
uipped 
spheric 

daily 
cise. 5) 
ht-dark 

s flight 
ers. 7) 
ne and 
d from 
media 
ife, or 

 direct 
utes of 

with the 
corded 

very 24 
For the 
person 
ted by 
nal 1.5 
of 30 

was a 
r there 
ropean 

n then 
ed half 
ut sent 
method 
written 
io and 
e were 
sudden 

slight 
resting 
ns used 

anning, 



 
American Institute of Aeronautics and Astronautics 

 
 

13

monitoring, and control in the presence of significant light-time delay 
between the vehicle and the Earth?  To answer the question the team: 
Constructed a 2 hour quiescent mission timeline; Inserted various 
unexpected events (systems failures, crew medical emergency) into the 
timeline; Varied the time delay (low, 50 second, 300 second one-way 
light-time delay); Varied crew responsibility, communications and support 
tools (baseline: ISS-like; mitigation: crew autonomy); Analyzed task 
completion, communications, crew workload, and team coordination for 
both flight controllers and crew.     

For the mission operations simulation, the systems failures included an 
EPS failure (power converter failure), a fluid transfer failure (valve stuck 
open), and the fault isolation procedures and workarounds required in both 
cases.   For the crew medical emergencies, the team simulated a urinary 
retention issue, a kidney stone, and an ultrasound diagnosis required in 
both cases.    The experiment design included utilization of the Deep Space 
Habitat (DSH), which served as the analog spacecraft with one astronaut serving as CDR and three MOD flight 
controllers/trainers (one of whom is Chief Medical Officer).  Additionally, certified Flight Controllers and Flight 
Directors staffed the Flight Control Team located in the Operations Technology Facility (OTF) within JSC’s 
Mission Control Center (MCC) complex.  For the experiment, there were 4 distinct crews; each crew has one 
astronaut who was commander.  Each crew was set to experience every long (50 and 300 second) time delay and 
each crew experiences every scenario variation.  Not all combinations of time delay and scenario variation were 
evaluated and each crew experienced the same combination of time delay / scenario in both Baseline and Mitigation 
configurations. 

The experiment examined both baseline and mitigation 
methods to perform 4 main operations functions affected by 
time delay including communications, fault management, 
procedure format, and situational awareness.  The baseline 
methods for providing these functions were voice, limit 
checking, PDF file format, and voice respectively.   For time 
delay mitigation, a combination of voice and text messaging 
was used for communications, advanced caution and warning 
software was used for fault management, electronic 
procedures were used for procedure format, and a 
combination of voice and electronic procedures was used for 
situational awareness. 

The experiment used both subjective and objective 
measurements to capture the differences in performance.  The 
subjective measurements were captured by using 

questionnaires which were given to participants after each 2 hour run and after participants completed all runs.   The 
ratings used were both the Bedford (Workload Rating – an anchored 10 point scale) and Likert (Coordination 
Difficulty Rating – a 5 point scale).   Additionally, flight controller and crew comments were captured with 
explanations of ratings, assessment of simulation fidelity, and value of mitigation tools.   The objective 
measurements provided empirical measures of performance.  They included recording the number of tasks 
completed and the number and type of communications acts (voice activation, text messages, etc). 

The resulting data was analyzed simulation fidelity, workload, coordination, task completion, and 
communications analysis.   The package presented provides an in depth look at this analysis (highly recommended). 

The conclusions from the AMO project were as follows.   
1) The experiment was a medium fidelity simulation of space mission operations.   

Figure 18 Workload Ratings Results from workload
ratings for 50 and 300 second time delays.

Figure 17 Deep Space Habitat prototype
used in the AMO project simulation
Shown with inflatable upper section
provided by a university as the winners of
a competition of inflatable habitat designs.
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Cable damage is that John Young identified this as a problem prior to the mission, but he was ignored.  After the 
cable was broken, Bendix made sure that the re-design and fix was completed in time for Apollo 17. 

III. Summary Discipline Specific Perspective Presentations 
The second day of the TIM focused on the discipline perspectives.   These included a communications, Data 

management perspective, mission operations, flight crew, Capcom, EVA, behavioral health and performance (BHP), 
medical/surgeon, science, and education and public outreach (EPO)/public affairs office (PAO). 

A. Communications Perspective 
The second day of the TIM focused on the discipline perspectives.   The first presenter of the day was Michael 

Downs from KSC.  The communications presentation provided an overview of the communications tools and 
techniques used supporting multiple analog missions including NEEMO, Desert RATS, PLRP, ISRU, AMO, and 
the DSH Standalone test.  It covered the tools of the trade with  
time-delayed communications  (“what’s under the hood”).   The communications systems utilize a mix of true 
operational systems, as well as hybrid systems that enable the simulation / test.  Experience has shown a mix of 
functional flight like systems, and “faking it” by various groups. This has been effective since the real concern is 
about what is learned from operating under time delay.   To date, what has been learned IS DRIVING the 
architecture of what will be flight systems.    

There are several tools utilized for simulating and dealing with time delay.   For data (telemetry/packet delay), a 
network-layer delay emulator enables test setup, development, and configuration and provides developers with a 
suite of powerful yet flexible capabilities to accurately emulate a variety of conditions of time delay, bandwidth, 
packet loss and jitter.  Combined with the SNRF backbone, enables testing of a variety of network frameworks.   
The need for real-time AND delayed voice, video, and data communications for simulation supervision, or other 
operational needs required a unique setup. Voice was the easiest to delay (data stream, no controls). The team 
performed some extra work integrating delay system directly into voice system.  For texting, the team started with a 
simple design for emulation of a delayed chat room and then transformed into a flight like architecture with a 
Disruption/Delay Tolerant Networking (DTN) tolerant open source system.   Video is the hardest to delay.  The 
sizes of the data, as well as TCP controls in current COTS products become the problem.   DTN has enabled high 
definition cameras in work.  For file/data transfer & management DTN was used along with a user GUI and data 
prioritization are highest priorities. 

The analog delay emulator system is in use today in six locations 
across NASA for HEOMD/SMD Analog mission testing.  Use of this 
system is more than just using a box, it’s becoming part of a team 
learning to operate human and robotic missions over delay.  
Knowledge is being shared across the “delay testing.”  The system 
imposed deep space-link delays.  Long deep space delays can be 
imposed, only limited by the size of the drive in the unit, and the 
“bandwidth delay product” For packet loss, the unit can impose packet 
losses similar to those that might be anticipated during a deep space 
mission.   The unit can also restrict the total amount of bandwidth 
traversing the system, to provide a high-fidelity experience for users 
learning to communicate over a data-constrained deep-space 
communications link.  Jitter is configurable with this system.  
Additionally, packet duplication, corruption and re-ordering are 
addressed.  While this is seldom used to emulate space links, but 
available features to those who choose to use them (ESMD versions 
are set for “pure FIFO queues”.   

Along with the delay emulator, the KSC team provides the space network research federation (SNRF).  This 
network provides a way to link teams working analog missions together in an organized manner to enable 
cooperative and coordinated missions around the world.  It provides a private, secure “network of networks” linked 
together in a mutually agreeable manner, to ensure rapid changes can be made in near-real time as needed, and 
ensure connectivity and bandwidth.  The SNRF is not owned by any single organization – each segment of the 
SNRF is owned and managed by partners who tap into the federation.  It is a combination of “bandwidth assured” 
terrestrial circuits, “best effort” network tunnels over the Public Internet, and wireless systems linking mobile assets 
(robots, people, etc.) in remote locations with space agencies, universities, and commercial partners.  SNRF is 

Figure 23 Communications Delay Emulator
The network delay emulator allowed the analog
missions to configure the communications time
delay as well as the data bandwidth and link
quality.



 
American Institute of Aeronautics and Astronautics 

 
 

17

capable of imposing a variety of deep-space mission conditions to data flows (bandwidth limits, comm delays, jitter, 
bit errors, etc) through the federation.   This network has a data storage facilities built in, so investigators can test 
mission data downlink and archiving techniques during analog missions.    All of this is coordinated through a single 
tie point, to save partner cost (1 circuit links each partner to all other partners), and to simplify network security 
plans for all partners.  The network is growing and adding more partners every year. 

The underlying requirements driving design of the SNRF is the need for a “flight-like” network that could have 
complete network segments seamlessly move from one node in the federation to another.  This allows for year round 
analog testing in center labs on the actual IP networks analog projects operate on.  The need to securely and 
efficiently route voice, video and data within the federation, with 24/7/365 instant access to firewall rules and 
routing tables. (Flight lockouts can cancel a field outing)  The SNRF network support needed for year round testing 
and deployment for 5 NASA analog projects, including Desert Rats, Pavilion Lake Research Project (PLRP), 
NEEMO, ISRU, and ISTAR.  Use of the SNRF network is now part of the NASA HQ AES (Advanced Exploration 
Systems) Analogs Project (Managed by JSC). 

Some additional thoughts from the communications perspective are that there are capabilities and scenarios that 
we are NOT testing including: AOS/LOS conditions; dynamically increasing/decreasing time delay’s (simulating 
departure and return); and dot testing deltas between uplink and downlinks; symmetric pipes have been used which 
are not flight like). 

B. Data Management Perspective 
Steve Rader from JSC presented the data management perspective.  The function of data management is to 

ensure data (digital) products are produced, stored, managed, and transferred throughout the end-to-end system to 
meet mission goals and requirements.  These functions include file management (identification, meta-data tagging, 
storage, life cycle, version mgmt., etc.), file transfer (downlink & uplink), text chat (and other collaborative tools), 
video stream management (network streams, file capture/management), voice loop/stream, command and telemetry 
(discrete or streams), software load & configuration file management (correct versions, updates on platforms), and 
integration of data producers and consumers with the communications network and platform provider(s) (accounting 
for network behaviors such as delay, bandwidth constraints, and intermittent comm. coverage). 

From all of the analog missions (and the ISS missions and Constellation Project efforts) there have been several 
key lessons learned. 

1) Situational awareness and actions/responses by crew and mission control when separated by a time delayed 
communications link can and will diverge rapidly in dynamic situations (i.e. emergencies, quick changing 
circumstances…).  It is important that each side must maintain an awareness of the other’s context when 
communicating.  Pre-Determined procedures, actions, scripts are key to appropriate responses.  

2) Mission success can be driven by smooth & efficient flow of data through the end-to-end systems.  
Integration and management of data products, software, and communications network it key.  Time delayed 
communications (especially when combined with limited bandwidth and communications availability) 
increases the complexity of data flow.  

3) Increased time delay in communications increases the amount of operations that the crew and onboard 
systems must be able to handle without ground support.  Increased automation must be very robust.  The 
ground must be able to determine what onboard crew/systems have done (to resync).  
 

The presentation provided several proposed mitigation strategies.  
1) Increase use of DTN protocol for all delay studies/missions/tests.  This protocol is currently being 

developed to support deep space missions and it will be useful to test and understand the protocol.  
2) Develop/test file management capabilities including: automated/standardized meta-data tagging; 

directory/file list ghosting (to facilitate manual uplink/downlink); automated data life cycle tools (tag, 
downlink, sub sample, delete).  

3) Ensure adequate communications coverage and bandwidth.   The limits in communications throughput 
ultimately drive more costly complex operations that must either operate with limited 
information/situational awareness, or spend a lot of resources managing priorities to determine what to 
downlink.  
 

Develop crew and ground tools for delayed interpersonal communications.   This includes the need to provide 
time-shift context information, data/voice/video record/playback tools, and auto-voice transcription functions. 
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C. Mission Operations Perspective 
Steve Gibson, standing in for Megan Rosenbaum, presented the first of two mission operations packages.   

Mission operations has participated in all listed Analog Projects (NEEMO, DRATS, AMO, PLRP, ISTAR, DSH).  
Most of these analogs tested some aspect of communications delay.  For each of these tests has provided crew 
support in developing mission timelines, and other support products such as the Daily Plan Report (DPR).  The team 
has used next generation planning 
systems (Score, Mobile Score, Playbook) 
for developing and displaying crew 
mission timelines.  Additionally, the 
team used instant messaging client 
(Pidgin) for communications delay 
countermeasure.  Lessons learned will be 
applied to future ISTAR testing.  Lessons 
learned based on using communications 
protocols are also planned to be used for 
ISTAR.  For ISTAR, operations is 
planning to: 

1) Demonstrate operations 
techniques onboard ISS to build 
toward crew/vehicle autonomy   

2) Following the mission 
autonomy roadmap (see figure 
below)  

3) Autonomous procedure 
execution 

4) Instant Messaging demo (Comm Delay Countermeasures)  
5) Crew Autonomous Planning/Replanning 

 
Operations provided recommendations for future analogs.  These recommendations include: 
1) Incorporate AOS/LOS periods for a more complete comm. experience 
2) Test alternate texting software in 2013 test 
3) Mission Operations (Integration group) would like to test G+ since it has many of the features that AES 

teams recommended for future texting software 
4) Mission Operations (Integration group) will investigate further with the start of 2013 
5) Practice Daily Planning Report for morning only 
6) Evening DPR for AES projects did not provide much value added 
7) DPR presentation to elaborate on lessons learned 
8) Integrate crew mission log objective 
9) ISS Increment 1 had crew logs which were beneficial to ground team cognizance 
10) Future comm. delays and integration of AOS/LOS periods will continue to impact ground situational 

awareness. MOD will be adding this objective to help alleviate comm. delay cognizance issues.  
 

The following texting lessons learned are solely related to the ISTAR Texting Protocol that will be used on ISS 
in the near future. The initial ISTAR tests will not use voice and will not have a comm. delay; those variances will 
be incorporated as the tests progress.  

The texting concept worked well for all of the tests. All teams had similar experiences and comments for the 
ISTAR texting protocol. All teams found texting beneficial to various portions of the operations, noted issues with 
situational awareness, in addition to providing texting tool feature recommendations to improve the overall texting 
experience.  

All of the tests used voice in conjunction with texting for all situations. The tests teams did not intend to use 
texting during emergencies (per protocol) but did so during the tests. Their experiences with various situations re-
enforced the recommended approach in the protocol (for the future ISTAR test), in addition to identifying areas of 
improvement. The protocol has been updated as a result of these tests. 

Figure 24 Mission Autonomy Roadmap Basic components and relationships
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Figure 25 Operations Analog Overview Operational Summary

A summary of lessons learned was presented, including: 
1) Texting reduced talking on the voice loops which reduced clashes in voice conversations, reducing some of 

the negative effects of operating in a time-delay 
2) Text is great for relaying complicated instructions or numbers and non-time critical information 
3) Many agreed that it was easier to adjust to time delay in context of texting because people are used to 

delayed responses in text and email  
4) Text made FCT logs easier 
5) Practicing the voice-only, text-only, and voice + text conversation guidelines became easier as the tests 

progressed  
6) Situational awareness is affected when prime operations are conducted with text, however additional 

texting tool features can help with the diminished situational awareness  
7) The ground FCT chat-room made texting operations between CAPCOM and the crew easier  
8) Emergency situations default mode of operations should be voice-only, unless the ground and crew 

determine that additional crew are able to provide texting liaison support  
9) Texting did not impact the crew’s interaction with their timelines  
10) Ground team needs the ability to privatize and/or create a private conference room (i.e. medical 

emergencies and conferences)  
11) Crew should initiate conversations during complex periods or MCC should provide audio call for a ground 

initiated text conversation 
 

For the texting software, mission operations provided a set of future recommendations.   There is a need for 
additional acknowledgement and notification features including audible and visual tones for incoming messages.  
Make use of Indicator that message was delivered to recipient.  This feature was used by AMO and provided 
reception situational awareness, but not ideal.   This feature was not used by NEEMO but could have improved 
situational awareness.   If possible, numerically itemize entries.  Add the ability to acknowledge texts by marking 
text comments as ‘Read’ or ‘Copy.’  Crew tags/labels should be easy to select from all SSCs.   It is important to 
integrate texting application to timeline (Primarily FCT request).  Organize texts by topic, not chronological order.  
Finally, differentiation for important/critical messages (i.e. use fonts, audible and visual tones). 
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Nick Winski from JSC Mission Operations planning presented the second half of the mission operations 
presentation.   Mission operations has gained more and more operational experience with comm. delays, it has 
become increasingly apparent that daily operations between the crew and ground will need to evolve.  Ops Planners 
have been exploring the use of a Daily Planning Report (DPR) as a substitute for morning and evening planning 
conferences.  A DPR is essentially a summary file that originates on the ground and is exchanged with the crew.  
The crew reads the file and communicates any questions or concerns. 

The mission operations objectives for these analogs have been to determine if the DPR is an adequate substitute 
to a daily conference, identify the types of information needed to relay to the crew prior to executing the day, and 
examining how well did the ground coordinate to generate the DPR? 

In Mission Operations initial findings, they did not have 24-hour MCC support which would allow the ground 
team to develop the following morning’s DPR overnight.  Prior to the evening DPR, the ground would have real-
time debriefs with the crew, which negated the relevance of the evening DPR content.  This led to the decision to 
only perform the morning portion of the DPR protocol.  Following the completion of all fieldwork, crewmembers 
were asked to fill out a short survey about the DPR.  The survey questions aimed to determine the usefulness of the 
DPR, as well as possible improvements that could be made.  Any potential enhancements were carried forward into 
the next analog and additional feedback was collected. 

For the objective to determine if the DPR is an adequate substitute to a daily conference, the crew response to the 
DPR as a planning tool was overwhelmingly positive (“very useful,” “efficient way to provide information,” 
“vital”).  Minimal interaction with the crew at the beginning of the crew day was achieved. 

For the objective to identify the types of information needed to relay to the crew prior to executing the day, the 
crew consensus was that the type of information contained in the file was relevant to proper execution of the current 
day.   

For the objective of answering the question, “how well did the ground coordinate to generate the DPR?” results 
here were mixed.  While the DPRs were never lacking in content, it often felt like a chore trying to track down 
individual pieces of information.  This was probably an artifact of the fact that not all team members have a mission 
ops background.  This could be mitigated with additional training.  

The conclusions reached were 1) The DPR is a sufficient alternative to traditional planning conferences 
(Minimal interaction with crew without compromising mission execution), 2) Some additional work to be done in 
terms of generating the file (Better define the process for submitting inputs and improve training for that process), 
and 3) DPR adds value to the mission by reducing the amount of time-lined conferences and increasing crew 
awareness.  Use of the DPR should continue for future analogs. 

D. Flight Crew Perspective 
Astronaut Stan Love presented the flight crew perspective.  He reviewed the problems of delayed voice 

communication.  Specifically, this covered confusion of sequence (as demonstrated by the Apollo hoax story), 
blocked calls, wasted time (based on ISS calling timing study, might not say “say again”, PAO events), reduced 
bandwidth, determining “Who has heard what?” slow answers erode rapport with ground, slow reaction by ground 
increases crew responsibility, and poor SA leading to needless ground calls. 

Several general countermeasure techniques covered included prebriefing expectations, employing experienced 
Capcoms, employing Capcoms the crew knows, giving the crew more autonomy so they don't have to play "MCC-
May-I", making decisions early (e.g., get permission to extend EVA ahead of time, rather than asking for and 
waiting for permission at the end.), and making fewer calls, with more topics packaged in each.   More specific 
countermeasure techniques, included the following: 

1) Make "Just In Time" calls:  "when you receive this message, it will be time to terminate water flow..."  
2) Say 'Message for crewmember X on topic Y in 10 seconds" so crewmember can stop what they're doing 

and be ready to listen.  
3) Say 'Be ready to copy numbers' if the message has numbers to be copied, so crewmember can get pencil 

and paper ready.  
4) Say 'Copy your message on topic Y' so crew knows which message ground received. Be rigorous about 

saying 'Over' if a response is requested. If no response needed, say so at the beginning of the call, or say 
'Out' at the end of the call.  

5) Never reference relative time ("Two minutes ago") because nobody knows what that means. Always use 
GMT, OBT, or other objective standard.  

6) If you're talking when a call comes in and must pause to listen, say "Pausing" then "Resuming" when you 
start again so crew doesn't think there's a radio failure.  

 



 
American Institute of Aeronautics and Astronautics 

 
 

21

There was also discussion of countermeasure tools like text messaging.  Crews like text messaging.  You don't 
expect an instant response anyway.  Words like "A/G 2" for messages not everybody needs to hear and for routine 
messages like reporting tasks complete. This also reduces audio clutter.  Good text messaging builds rapport 
between crew and ground.  Text messaging gives a record of what was said, avoiding time-consuming "Say again" 
calls. For numbers, it gives a verification of the data.  Text messaging has challenges as well.  Capcoms need to be 
properly trained for operational text messaging.  Crews can't text and drive a spacecraft, or text and drive a robot 
arm, or text and do EVA. Need to assign a crewmember not involved in critical tasking to handle the text messaging 
(As IV does today with voice during an EVA.)  Additionally, the text program need time stamps for transmission 
and reception, and read receipts so you know when your message has gotten through.  The text program also needs 
to indicate when the link is live and notify crew when a new message arrives.  The notification should not be 
annoying.  Also, it must be possible to turn notification off (e.g., for crew sleep).  Other tools or approaches might 
include a reliable voice-to-text would be nice to avoid time-consuming "Say again" calls and/or instant voice 
playback would be nice for the same reason. 

The conclusions were as follows.  Delayed voice communication is hard.  Operational tests and sims have 
identified good countermeasure techniques and tools.  Even with those aids, delayed voice communication is hard.  
Delayed voice will force greater crew autonomy whether we like it or not. 

E. Capcom Perspective 
Marc Reagan from JSC presented the Capcom (Crew Communicator) perspective.   The presentation emphasized 

the criticality of the emulator as a crucial enabler for testing.  Without it, testing really would be barely scratching 
the surface on understanding time delay ops.  The emulator itself has additional desired capabilities including file 
transfer and 2-way Videocon.  Any tool improvements need to include the emulator.  Voice and text improvement 
are tightly woven with emulator development.  Good emulation allows tool evaluation.   The limiting case was to 
understanding communications delay operations is to understand emergency response.   The lessons learned from 2 
emergency cases on NEEMO 16 dwarfed lessons from nominal ops.  While the crew was autonomous for 
emergencies, there seemed to be long-term effects and crew mistakes.  Neither voice nor text is inherently superior 
for dealing with communications delays.  The "right" tool is situation dependent.  Neither voice nor text jumps to the 
forefront inherently, which holds true for both nominal and emergency operations.  The best choice is driven by 
demands of activity (i.e. EVA ops => text, Medical ops=> voice and video, Just-in-Time-Training or JITT =>video). 

In comparing text messaging vs. voice communications during delayed communications, the “preferred method” 
conclusions are premature.  We are not currently able to fairly compare dis-similar comm methods under time delay 
because both the texting and voice tools are not ready for prime time.  With voice, there is no ability to replay the 
last transmission while with text messaging, there poor notification when you have a new one.  Almost as severe is 
the dependency on a laptop (when practically everything else you want is on an ipad), leading to not having laptops 
around when you want them.  So...  as any good operators are inclined to do, you shift your method to the one that 
seems to get the job done better under those circumstances, rather than fairly comparing dis-similar methods under 
time delay.   

When it comes to mitigation tools, context really matters; and is really hard to keep sight of sometimes.  There 
are multiple strings of conversation to keep up with and multiple sources of information.  A time stamp doesn’t 
necessarily equal chronology.   It is important to integrate all communications regardless of origin (including text, 
voice, video, pictures).  This emphasizes the need for an ability to correct chronology and to tag by topic. 

F. Extra-Vehicular Activity (EVA) Perspective 
David Coan from JSC presented the EVA Flight perspective.   EVA Flight Controllers supported the Remote 

Mission Control Center (RMCC) for NEEMO 15 & 16, and supported the Analog Mission Control Center (AMCC) 
for RATS 2012.   These EVA Flight Controllers acted as the Flight Director, CAPCOM, and the EVA Officer.  For 
all of the analog operations, these controllers monitored all simulated Space-to-Ground (S/G) voice loops and 
monitored all text chat conversations.  Additionally, JSC\XA and \JSCDX3 personnel supported RATS as EVA and 
IV crewmembers.  For these operations the EVA crewmembers were only tied into the S/G 1 voice loop while the 
IV was tied into several voice loops text chat rooms.  EVA Instructors and Tools Engineers looked at tools concepts 
during NEEMO and RATS. 

For Shuttle and Station EVAs, there is near constant voice communication with MCC and a fairly easy back-
and-forth communication, with it being easy to ask for things to be repeated.  The crew asks for permission for many 
steps, especially before moving onto another task.  Additionally, the ground gives many GO/NO GO calls before, 
during, and after the EVA.  Finally, the ground controls the detailed procedures.   For these exploration analog 
EVAs, constant voice communication is not possible and back-and-forth conversations are not practical.  Asking for 
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something to be repeated takes too much time.  Situational Awareness for the ground team is reduced.  The crew 
will be more autonomous, with the ground in more of a follow and observe mode.  The crew can generally decide on 
their own how to do things, with MCC giving a delayed concurrence. 

For these analog missions, the operations communications techniques caused some differences.  EVAs managed 
much differently than on station.  The MCC resorted to doing more monitoring and less commanding. The MCC 
utilized text instead of voice comm.  Also, the MCC changed voice communications techniques.  They only used 
voice calls when urgent, or possibly to inform of an incoming text.  They packaged things into one long message 
rather than a back-and-forth conversation and used a short preamble statement before a long voice message to let the 
EVA crew know that a message was incoming.  This allowed the EVA crew to pause their local communications 
and helped reduce missed or stepped-on calls.   

Though proactive with station EVAs, MCC had to make decisions even earlier to get them to the crew in time 
for a Near-Earth Asteroid (NEA) EVA.   Currently, MCC closely monitors the EMU, and provides real-time 
responses to emergencies.  Many times the MCC see issues on the vehicle side before the crew.  Depending on 
alignment of data pass, can see suit issues before crew calls.  Currently, MCC closely monitors trends in system 
data.  For example, MCC watches for trends in battery life, CO2 scrubbing, CO2 levels, temperatures, etc.  The crew 
doesn’t watch for these kinds of trends.  These trends allow for things to be seen and responses developed/done 
before something becomes a problem.  In the past, the MCC has terminated station EVAs due to a suit running out 
of CO2 scrubbing capability, which is a trend that the crewmember wouldn’t see, and only realize when much closer 
to loss of scrubbing capability (CO2 level gets high).  Exploration crews will have to be more autonomous with 
monitoring their own suit and responding to emergencies.  This will require more advanced caution & warning and 
diagnostics with the advanced suit.  Software will need to better monitor the entire EVA system, and provide 
guidance to the crewmembers.  

There were several lessons learned from an EVA perspective. 
1) Short, informative preamble to a long voice message allowed EVA crew to pause and not step on the call.  
2) Packaging things into one long, yet concise, call saved time and helped reduce back-and-forth calls.  
3) Being clear about references, such as “with respect to text message about XX sent at YY” helped reduce 

confusion over which delayed message was being answered.  
4) Using text when possible, especially when not immediately required for the EVA crew, kept the delayed 

voice channels clear.  This was also a little more intuitive, since it’s typical that text messages aren’t replied 
to immediately.  

5) Using text to “read back” what was said made things clearer, made a record that could be referred to, and 
helped avoid asking to repeat something just for clarification.  

6) Future analog missions will need to start looking at EVA System data to understand how to operationally 
handle the delay to MCC, and how that will change responses to emergencies and contingencies.  
 

There were several future improvements suggested.  Both crew and ground will require training to learn how to 
efficiently operate with a communications delay (preambles, packaging, stating “over” and “out,” flight rules need 
to spell out what kind of things are voiced and what kind should be sent via text, and quick voice playback 
capability would aid in reducing asking for things to be repeated).  Text client needs to be improved since it is not 
always clear what messages went together.  Additionally, new messages need to be highlighted to bring attention to 
them and the ability to link text to time stamp on video would be useful.  There will also need to be improvements to 
the EVA System’s data monitoring, trending, and emergency response approaches to account for delay. 

G. Behavioral Health and Performance (BHP) Perspective 
Dr. Lauren Leveton, PhD, the manager of the Behavioral Health and Performance Element of the Human 

Research Program (HRP) presented on “Behavioral Health and Performance (BHP) Perspective on Comm. Delay 
for Exploration Missions.”   

Previous HRP BHP studies have included Dr. Nick Kanas’ 
studies on the “Effects of High vs. Low Autonomy on Space 
Crewmember Performance” (NEEMO 12 & 13, Haughton-Mars 
Project) and “Crew Interactions and Autonomy During Long-
Duration Isolation and Confinement (105 Day Mars Chamber 
Study). In these studies, essentially participants react positively in 
autonomous environment; some negative outcomes for some ground 
controllers.  Measures taken have included: Profile of Mood States, 
Cohesion, and Work Environment Scale.   Results suggest there may 

Figure 26 Simulated Contingency Operations
NEEMO 16 crew working a poisonous fish sting
contingency.
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be adverse impacts with changes in autonomy if participants experience a lack of job clarity and role assignment.  
Overall, results suggest difference in performance and cohesion (and other team results) between low and high 
autonomy conditions.   

On NEEMO 14, Dr. Kathryn Keeton performed an Autonomy Study with MOD to identify the impact on 
performance and crew well being utilizing both objective and subjective data.  Generally, results suggest the crew 
realized a higher level of team cohesion, performance, and team interaction during the high autonomy condition.  
This lends to the support to the premise that increased efficiency and effectiveness of the crew can be realized under 
more autonomous conditions. 

On NEEMO 16, Dr. Larry Palinkas performed a study “Assessing the Impact of Communication Delay on 
Performance.”  The study aim was to examine the impact of lengthier communication delays likely to be 
experienced on a Mars mission, on behavior and performance; and to inform the upcoming ISS BHP 
Communications Delay study.  The approach was based on a complex model 
of moderating and mediating variables on specific individual and team 
outcomes of performance and well being (which included many questionnaires 
of the behavioral kind).  Originally, we were looking for the weak point in the 
curve where changes in performance and well being were impacted (test it on 
NEEMO 15).  HRP ended up with one day, Mission Day 5, of a 12 day mission 
that that had a nominal 50-second delay throughout the mission. 

There were lessons learned for tools, training, and performance.   Tools are 
needed for addressing communication, particularly under longer 
communications delays (5+ minutes).  Particularly for texting, ability to play 
back audio/video messages, and tracking voice loops.  Need for increased 
situational awareness of the limitations of communication technologies.  
Protocols used to communicate may be as, or more, important than 
technologies used.     

Training for communicating under communications delay conditions is 
critical, especially for emergency scenarios.  A key to performance under 
communications delay is shared situational awareness.  Beyond the immediate situation to what tools are available, 
who is available to communicate with and what they are trained on, standard procedures, etc.   Without training for 
working under comm. delay team performance breaks down under longer (5+ min) comm. delays.  The safety of the 
crewmember in the 5-minute lionfish sting scenario was compromised by the delay in communications between the 
crew and the flight surgeon.  Additionally, mission control responses were based on old observations of crew 
behavior and did not take into account behavior that had occurred since the last message or observation.  Finally, 
standard procedures need to be re-written with comm. delay in mind. 

Crew performance results showed that comm. delays 5 minutes or longer show similar effects to no comm.   
Boundary conditions for performance seem to be indicated by how a team functions in an emergency situation.  As 
comm. delay increases, performance decreases as a function of the number of individuals communicating. 

There were several tools to mitigate performance decrements identified.  
1) Increased training for emergency scenarios.  
2) More advanced text communication software.  
3) Visual indicators of comm. delay to avoid cross-talk (Countdown to message received)  
4) Software for tagging audio and video communications (i.e. Tag each message to time and topic as it is sent 

and allow repeated playback of each message).  
5) Protocols written to comm. delay constraints (Procedure reliant on on-board tools and knowledge-bases 

rather than contact with ground).  
 

There are a couple of studies planned.  Dr. Palinkas will be the 
Principal Investigator (PI) for the ISTAR Communications Delay 
study.  This study will include data collection during upcoming ISS 
increment 35/36 where the crew performs tasks under no delay or a 50 
second communications delay.  The study aims to: 

1) Determine the feasibility and acceptability of conducting a 
study of comm. delay on the ISS 

2) Determine if there is an association between delays in 
communication, individual and crew performance and well being 

Figure 27 Contingency Simulation
NEEMO 16 crew simulating a
medical emergency under 5 minute
communications delay.

Figure 28 Mission Controller Monitoring crew
operations with delayed voice, video, and data.
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camera is out of the normal eye line – this is likely to be reduced by using a tablet with inbuilt camera.  The audio-
only conferences were found to impart a significant amount of information from the crewmember to the flight 
surgeon, however they obviously lack the capability to visually assess body language and demeanor.  Many health 
conditions will require the flight surgeon to see the crewmember.  Comparison between audio-only PMCs and 
audio-visual PMCs suggested a considerable improvement in the flight surgeon’s ability to fully assess the 
crewmember’s overall health status.  An improved level of personal connection would be more critical during times 
of increased stress or illness. 

There also seem to be other observations of the effects of the 50-second delay.  Family interactions are very 
important – even short messages have a big impact when there is a time delay.  Also, for scheduled communications 
(such as PMCs) the time delay is less problematic, but for unscheduled communications (such as EVAs) the crew 
noted that direct audio communication from MCC imparted little to no useful information due to the unpredictable 
arrival of messages.  One crewmember commented that not having direct eye contact during video communications 
is getting more common and acceptable, with the increased use of Skype, FaceTime, etc.    

For the Emergency Medical Simulation a 5-minute delay was used.  Due to technical limitations imposed by the 
equipment simulating the time delay, the crew did not use the full suite of communication methods during the 
simulation – specifically the text function.  This was not apparent to the flight surgeon for the majority of the 
simulation.   Additionally, there was not an IV/CAPCOM crewmember dedicated to communicating with MCC, so 
audio communication became unreliable, with coinciding/missed/garbled messages.  As a direct result of this 
unanticipated ‘loss of comms’ several important issues were recognized.  Relevant and timely medical information 
and advice was being provided by the flight surgeon via text.  The crew received none of this information.  Despite 
this, it appeared to the flight surgeon that the crew was responding to his directions, for the majority of the 
simulation.  This was later discovered to be entirely coincidental.  Requests for advice from the crew were 
misperceived as requests for further advice by the flight surgeon, due to ambiguous phrasing.  The crew, carried out 
inappropriate medical interventions, which were not reported via audio, and the flight surgeon was only aware of 
them via video.  The crew was carrying out their trained medical procedures, which created two highly similar, but 
completely disconnected timelines.   

Other factors involved (time delay, poor communications procedures, plus expectation that the crew would be 
too busy to respond) meant that the loss of communications was not recognized for the majority of the simulation – 
far longer than in any real-time situation.  Without communications, as long as the crew was correctly responding to 
the situation there was no way to know about this disconnect.   Video can be extremely deceptive for evaluating 
whether or not the crew are receiving information, if they are not confirming this via audio or text.  However, video 
might also be the only method of obtaining critical information on the crew’s activities (such as the crew performing 
inappropriate medical interventions).  Having an IV/CAPCOM crewmember responsible for communication 
between MCC and EVA crew was deemed essential when operating with a time delay – this should also be true for 
emergency situations.  Knowing what methods of communication to use (and are available) in an emergency is 
vitally important. 

The crew reported in their post-simulation and post-mission debriefs – based on their perceived lack of medical 
support during the emergency simulation – that the crew for a mission involving a communication delay would need 
much more medical autonomy.  On reviewing the communication logs it was noted that, had communications been 
intact, the crew would have received critical advice from the flight surgeon …but sometimes only just.  On balance, 
this suggests that increased crew autonomy is desirable for any communication delay of 5 minutes or more (and 
possibly less than 5 minutes). 

Additionally, there were several other emergency simulation observations.  It is difficult/impossible to 
understand audio communications from the crew when they are wearing emergency breathing masks.  Emergency 
masks should ideally have integrated communications equipment.  If the crew reports they are evacuating their 
habitat but subsequently change their plans, and then there was a loss of communication, MCC would continue to 
believe that the crew were safe when they might remain at risk.  

In summary, communication delays pose broad-ranging challenges to providing medical care for exploration-
class human missions.  Routine tasks require more time, although this can be somewhat counteracted by advanced 
planning.  Two-way video is likely to be important for medical conferencing.  Video can be useful for assessing 
emergency situations, but must be used with caution.  Somewhere around 5 minutes it is likely that critical medical 
information cannot always be relayed effectively to the crew.   Increased crew medical autonomy is therefore 
important for emergencies.  Having an IV/CAPCOM crewmember specifically assigned to communicating with 
MCC is critical for all unscheduled situations (EVAs and emergencies). 
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A. Recommendations based on Lessons Learned 
The lessons learned are expressed in the following list of recommendations: 

1) Incorporate bandwidth and coverage limits with delayed communications to best understand how 
operations are affected.  It is also recommended to include multi-day operations (with planning cycle based 
on downlinked data) to understand how limits on total data volume downlinked affects operations. This 
will help to develop a compelling story on communications bandwidth and coverage requirements to drive 
missions. 

2) Develop a custom tool(s) that provides a “Voxer” (commercial application for iOS devices introduced at 
NEEMO 16) like capability and incorporates noted requirements.  It is recommended to first compile a full 
set of functional requirements. 

3) Work with developers on understanding/incorporating voice transcription and voice commanding 
capabilities. 

4) Pursue additional studies of emergency/contingency operations under delay to include better/more 
consistent training & procedures, increase the number of participants and runs. (Include standard 
measures), and to consider leveraging military experience (subs, out of comm, etc.) or others? 

5) Document GPS/Positioning requirements for exploration missions and design test(s) to determine effects 
(and requirements) of different positioning methods (manual, limited, full). 

6) Consider integration of tools and timeline-based data (i.e. console logs and texting logs and procedures). 
7)  Note JPL is developing timeline based file formats/protocols.  These should be considered/included in the 

requirements for any custom tool development.  
8) For texting application, include “new message” alert and message read (sent back to the sender) indicators.  

This could include the software with a “read”, “yes”, or “no” buttons.  
9) Text message applications should include grouping/threading  
10) Better studies are needed to start more concretely understanding flight/ground autonomy split/allocation 

and the crew/SW partition (for onboard autonomy).  This should also include the allocation to robotics. 
11) There still is a need for voice call & texting ID/subject/sequence tagging to ensure responses are correlated. 
12) Establish rigorous voice protocols (“over”, “out”, references, etc.) 
13) Consider multiple simultaneous text (and possibly) voice conversations/threads (multi end points on both 

ends) (vs. single Capcom to all crew). 
14)  There is a need for additional studies of the effects of extended delay on humans, which should include 

development, and testing of mitigations. 
15) Study any requirements changes that may be introduced due to upcoming heads-up displays and voice to 

text (transcription and commanding). 
16)  There is a need to make progress on how we will realistically make EVA work with the required crew 

autonomy caused by time-delayed communications.  This includes the study how do we reduce the risk 
compared with current EVA technologies/techniques.   There should also be consideration of adding 
simulated EMU data for future integrated testing with simulated issues. 

17)  Add a leading and trailing line on the timeline (by the time delay) that shows the relative times on the 
remote side. 

18)  Develop the tools that work through the delay emulator to support 2 way video and file 
transfer/management. 
 

B. Recommendations Future Steps 
 The meeting participants discussed future steps that might be appropriate after this TIM.  The first recommended 
action was to compile and distribute a paper summarizing what came out of this TIM by the end of the first quarter 
of 2013 and to publish this paper if possible.  Additionally, the group tentatively plans on a follow on TIM for 1 year 
(if needed).  It was proposed that the participants consider telecons to tag up every quarter to evaluate any future 
meetings/activities.  It was suggested that the first of these would be scheduled in early 2013 with a suggested 
agenda to include: a) Status/Outbrief of TIM paper; b) Updates on upcoming studies/missions/test (with time delay 
objectives); c) Possibly requirements for proposed tool development; d) Any partnerships that have grown out of the 
TIM; e) Define objectives for 1 year ISTAR study (which starting in 2015); f) Any proposals for Russian Chamber 
study. 
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Appendix
ACRONYMNS 
A/G Air-to-Ground 
AES Advanced Exploration Systems 
AMCC Analogs Mission Control Center 
AMO Autonomous Mission Operations 
ANSMET Antarctic Search for Meteorites 
AOS Acquisition of Signal 
ARC Ames Research Center 
ARGOS Active Response Gravity Offload System 
ASTEP Astrobiology Science and Technology for Exploring Planets 
AUV Autonomous Uncrewed Vehicle 
BHP Behavioral Health and Performance 
BLEO Beyond Low Earth Orbit 
CAPCOM Crew Communicator 
CARN Canadian Analogue Research Network 
CBT Computer Based Training 
CDR Commander 
CO2 Carbon Dioxide 
COTS Commercial-Off-The-Shelf 
CSA Canadian Space Administration 
CSM Command/Service Module 
DIO Directorate Integration Office 
DQ Data Quality 
DPR Daily Plan Report 
DRATS Desert Research and Technology Studies 
DSH Deep Space Habitat 
DTN Delay/Disruption Tolerant Networking 
DW Deep Worker 
EAMD Exploration Analogs and Mission Development 
ECLSS Environmental Control and Life Support System 
FCR Flight Control Room 
EDL Entry, Descent, and Landing 
EPO Education and Public Outreach 
ESA European Space Administration 
EVA Extra-Vehicular Activity 
FIFO First-In-First-Out 
GLEX Global Space Exploration Conference 
GMT Greenwich Mean Time 
GN&C Guidance, Navigation, and Control 
HEOMD Human Exploration & Operations Mission Directorate 
HQ Headquarters 
HRP Human Research Program 
IEWG ISS Expert Working Group 
IMV Inter-Module Ventilation 
ISS International Space Station 
ISTAR International Space Station Test-bed for Analog Research 
IVA Intra-Vehicular Activity 
JITT Just in Time Teaching 
JSC Johnson Space Center 
JPL Jet Propulsion Laboratory 
KSC Kennedy Space Center 
LM Lunar Module 
LSS Lunar Surface Systems 
NEA Near Earth Asteroid 
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LEO Low Earth Orbit 
LER Lunar Electric Rover 
LOC Loss of Communications 
LOS Loss of Signal 
LRV Lunar Rover Vehicle 
MMAMA Moon and Mars Analog Mission Activities 
MCC Mission Control Center 
MMCC Mobile Mission Control Center 
MMSEV Multi-Mission Space Exploration Vehicle 
MOD Mission Operations Directorate 
NASA National Aeronautics and Space Administration 
NEEMO NASA Extreme Environment Mission Operations 
NGS National Geodetic Survey 
NOAA National Oceanic and Atmospheric Administration 
OODA Observe Orient Decide Act 
OTF Operations Test Facility 
OWLT One-Way Light Time 
PAO Public Affairs Office 
PC Personnal Computer 
PCT Portable Communications Terminal 
PDF Portable Document Format 
PLRP Pavilion Lake Research Project 
PMC Private Medical Conference 
PPC Private Psychological Conference 
PUP Portable Utility Pallet 
RATS Research and Technology Studies 
RSVP Rover Sequencing and Visualization Program 
RTLT Round-Trip Light Time 
S/C Spacecraft 
SCUBA Self-Contained Underwater Breathing Apparatus 
SEV Space Exploration Vehicle 
SIM Simulation 
SMD Science Mission Directorate 
SNRF Space Network Research Federation 
SRTM Shuttle Radar Topography Mission 
SS Science Stenographer 
TCP Transport Control Protocol 
TIM Technical Interchange Meeting 
xGDS Exploration Ground Data System 
 
 

Acknowledgments 
S.R Author thanks all of the TIM presenters and participants for their valuable contributions to this TIM and for 

the hard work in preparing materials for the event.

References 
 
Presentations from the TIM  
These presentations are available within the NASA NDC security domain at the Time Delay in Human Exploration 
TIM web site:  https://oasis.jsc.nasa.gov/projects/advdev/analogs/Delay%20TIM/ 
 
For those external to the NASA networks, these presentations are available upon request to James Johnson at 
james.e.johnson@nasa.gov or 281.244.8305. 
 



 
American Institute of Aeronautics and Astronautics 

 
 

32

The presentations are listed below in order of agenda: 
 

1Rader, S., “TIM on the Impacts of Time Delay on Human Exploration - Introduction & Agenda”, Johnson Space 
Center (JSC) Time Delay TIM (Time Delay TIM Agenda v6.0.pptx)  

 
2Rader, S., “TIM on the Impacts of Time Delay on Human Exploration - Overview of Time Delay Concepts and 

Efforts”, Johnson Space Center (JSC) Time Delay TIM (Overview of Time Delay Concepts and Efforts.pptx)  

 
3Reagan, M., Chappell, S., Abercromby, A., Todd, W., “NEEMO Time Delay and Crew Autonomy Lessons 

Learned, October 2012”, Johnson Space Center (JSC) Time Delay TIM (NEEMO Time Delay TIM.pptx) 

 
4Johnson, J., Research and Technology Studies (RATS) Analog Missions - Time Delayed Communications, 

Johnson Space Center (JSC) Time Delay TIM (RATS Overview for Delay TIM.pdf) 

 
5Abercromby, A., “Exploration Analogs & Mission Development (EAMD) – Communications Delay TIM”, Johnson Space 

Center (JSC) Time Delay TIM (Comm_Delay_TIM_EAMD_10-16-12d.pptx)  

 
6Moreno, F., “What ISTAR is doing – Accomplishments and work in progress – Presentation to Time Delay TIM”, Johnson 

Space Center (JSC) Time Delay TIM, (ISTAR_Comm_Delay_TIM_Oct_17_2012.pdf) 

 
7Lim, D., “Exploration Concepts for Field Science on Earth and Beyond – The Pavilion Lake Research Project”,  

Johnson Space Center (JSC) Time Delay TIM (PLRP TIM Delayed Comms Meeting Slides_Oct2012.pdf)  

 
8Lee, Y., Day, J., Mishkin, A., Riedel, E., “JPL Mission Operations Overview”, Johnson Space Center (JSC) Time Delay 

TIM (JPL_MsnOps_at LPI TIM 20101017.pdf)  

 
9Dinges, D., Basner, M., “Long Duration Russian Chamber Study (Mars 520)” Johnson Space Center (JSC) Time Delay TIM 

(Mars520-final.pptx)  

 
10Frank, J., “The Autonomous Mission Operations Project:  Impacts of Time Delay on Human Spaceflight Mission 

Operations”, Johnson Space Center (JSC) Time Delay TIM (TIME-TIM_JDFv8.pptx) 

 
11Eppler, D., “Apollo Program Lessons Learned for Comm Delay Considerations”, Johnson Space Center (JSC) Time Delay 

TIM (ApolloDelayedCommOps12289.pdf) 

 
12Hoffman, S., “Polar Analogs Incorporating Time Delay and Other Related Examples”, Johnson Space Center (JSC) Time 

Delay TIM (Polar analogs for time delay TIM v3a.pdf) 

 
13Downs, M., “TIM on the Impacts of Time Delay on Human Exploration – Communications”, Johnson Space Center (JSC) 

Time Delay TIM (Time-delay-v3.ppt) 

 
14Rader, S.,”TIM on the Impacts of Time Delay on Human Exploration – Data Management Perspective”, Johnson Space 

Center (JSC) Time Delay TIM (Data Management Perspective.pptx) 

 
15Rader, S., “Reference Charts: Delay Communications Tracking (Concept)”, Johnson Space Center (JSC) Time Delay TIM 

(Ref - Delay Comm Context Tracking Concept.ppt)  

 
16Rader, S., “Reference Charts: ISS and Shuttle Uplink-Downlink Metrics Graphs”, Johnson Space Center (JSC) Time Delay 

TIM (Ref - ISS and Shuttle Uplink-Downlink Metrics Graphs.ppt) 

 
17Rosenbaum, M., Gibson, S., “Comm Delay in Analogs from an Ops Perspective - Texting Protocol Lessons Learned from 

Analogs”, Johnson Space Center (JSC) Time Delay TIM (Ops Perspective Pt. 1.pptx) 

 
18Winski, N., “Daily Planning Report Lessons Learned – NEEMO and RATS 2012”,  Johnson Space Center (JSC) Time 

Delay TIM (Ops Perspective Pt. 2 - revA.pptx)  

 
19Love, S., “Flight Crew Perspective on Delayed Voice Communication”, Johnson Space Center (JSC) Time Delay TIM 

(Crew Perspective.ppt) 

 



 
American Institute of Aeronautics and Astronautics 

 
 

33

20Reagan, M., “Time Delay TIM: Observations from a Capcom Perspective”, Johnson Space Center (JSC) Time Delay TIM 
(Time Delay TIM Capcom.pptx) 

 
21Coan, D., “EVA Perspective on Comm Delay During Analog Missions”, Johnson Space Center (JSC) Time Delay TIM 

(EVA Perspective - v2.pptx) 

 
22Leveton, L. “Behavioral Health and Performance (BHP) Perspective on Comm. Delay for Exploration Missions”,  Johnson 

Space Center (JSC) Time Delay TIM (BHP Perspective on Time Delay COMM TIM 101712.pptx)  

 
23Douglas, B., “The Impacts of Time Delay on Human Exploration – Medical Perspective”, Johnson Space Center (JSC) 

Time Delay TIM (Medical Perspective - revA.pptx) 

 
24Eppler, D., “Science Perspective on Comm Delay Operations”, Johnson Space Center (JSC) Time Delay TIM 

(SciencePerspectivesDelayedCommOps12289a.pdf) 

 
25Watkins, W., “TIM on the Impacts of Time Delay on Human Exploration – Education & Public Outreach Perspective”, 

Johnson Space Center (JSC) Time Delay TIM (EPO Perspective.pptx) 

 
26Rader, S. “TIM on the Impacts of Time Delay on Human Exploration – Discussion of Common Mitigation Strategies & 

Tools”, Johnson Space Center (JSC) Time Delay TIM (Discussion of Common Mitigation Strategies and Tools.pptx) 

 
27Rader, S. “TIM on the Impacts of Time Delay on Human Exploration – Discussion of Domain Coverage”, Johnson Space 

Center (JSC) Time Delay TIM (Discussion of Domain Coverage.pptx)  

 
28Rader, S., “TIM on the Impacts of Time Delay on Human Exploration – Compiled Major Lessons Learned”, Johnson Space 

Center (JSC) Time Delay TIM (Recommendations.pptx) 

 
 
Published References 

Results from these DRATS 2009 investigations were documented in the following publications: 
 

29Litaker H., Howard, R., “A Human Factors Assessment of the Lunar Electric Rover (LER) During a 14-Day Desert Trial”.  

 
30Abercromby, A., Gernhardt, M., Litaker, H., “Desert Research and Technology Studies (DRATS) 2009: A 14-Day 

Evaluation of the Space Exploration Vehicle Prototype in a Lunar Analog Environment”.  

 
31Lofgren, G., Horz, F., “Science Support Room Operations During Desert RATS 2009, Desert RATS 2009 At-A-Glance” 

 
32Gernhardt, M., Abercromby, A., Jadwick, J., “Evaluation of dual multi-mission space exploration vehicle operations during 

simulated planetary surface exploration”, Acta Astronautica 

 
33Litaker, H., Howard, R., “Human Factors Assessment of a Dual Rover Field Study” 

 
34CA/Director Flight Crew Operations, “Desert Research and Technology Studies (DRATS) Field Test Report 2010” 

 
35Abercromby, A., Genrhardt, M., Chappell, M., “Human Exploration of Near-Earth, Desert RATS 2011 At-A-Glance 7,” 

GLEX Conference Desert RATS 2011 

 
36Antarctic Explorers Workshop (NASA/TP–2002–210778)  

 
37Antarctic Traverses Workshop (NASA/CP-2012-217355)  

 

 


