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Advanced Exploration Systems Water Architecture Study 
Interim Results 

Miriam J. Sargusingh1 
NASA Johnson Space Center, Houston, Texas, 77058 

The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) 
is to develop advanced water recovery systems that enable NASA human exploration 
missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to 
develop water recovery technologies critical to near-term missions beyond LEO. The 
secondary objective is to continue to advance mid-readiness-level technologies to support 
future NASA missions. An effort is being undertaken to establish the architecture for the 
AES Water Recovery System (WRS) that meets both near- and long-term objectives. The 
resultant architecture will be used to guide future technical planning, establish a baseline 
development roadmap for technology infusion, and establish baseline assumptions for 
integrated ground and on-orbit Environmental Control and Life Support Systems definition. 
This study is being performed in three phases. Phase I established the scope of the study 
through definition of the mission requirements and constraints, as well as indentifying all 
possible WRS configurations that meet the mission requirements. Phase II focused on the 
near-term space exploration objectives by establishing an International Space Station-
derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will 
focus on the long-term space exploration objectives, trading the viable WRS configurations 
identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are 
discussed in this paper. 

Nomenclature 
AES = Advanced Advanced Exploration Systems 
CDS = Cascade Distiller System 
DCaL = Distiller Calcium Limiter 
DRM =  Design Reference Mission 
ECLSS =  Environmental Control and Life Support Systems 
FOST = Forward Osmosis Secondary Treatment 
ISS =  International Space Station 
LEO =  low Earth orbit 
MABR = Membrane-Aerated Biological Reactor 
NEA = near Earth asteroid 
NGLS = Next Generation Life Support 
OD = Osmotic Distiller 
PPP = Precipitation Prevention Program 
SOA = state of the art 
TRL = Technology Readiness Level  
UPA = Urine Processor Assembly 
UPIX = Urine Processor Ion Exchange 
VCD = Vapor Compressor Distiller 
WCS =  Waste Collection System 
WPA = Water Processor Assembly 
WRP =  Water Recovery Project 
WRS = Water Recovery System 
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presents a specific challenge to life support systems and will likely be necessary if we are to consider, in-space 
construction and burn-in of a deep space exploration spacecraft. The resultant mission requirements are as follows: 

 Provide potable water for four crewmembers  
 Provide water for vehicle use 
 Sustain operations for 388 days continuous without resupply  
 Survive 842 days unmanned loiter prior to initial operation 
 Be capable of cyclic operational cycles: 100 days manned/100 days unmanned 
 Process Wastewater:  

o Urine 
o Humidity condensate 
o Hygiene water 

 
This study focuses on the primary wastewater sources that are defined, to date. Other possible sources of 

wastewater not addressed by this study are: laundry, water recovered from brine processing, and vapor collected 
from heated solid waste compaction. 

IV. Identification of Viable Architectures (Phase I Results) 
Several options are available for each process; however, not all options are compatible with one another. The 

purpose of Phase I of this architecture study is to identify the viable architectures.   
The variables defining those options are as follows: 
 Waste Collection System (WCS) 

o Current technology with spin phase separation – these systems require urine stabilization agents to 
be added prior to the air/liquid phase separation to mitigate solids formation in the separator.   

o New technology that is tolerant of solids formation – this system would be operational without 
urine stabilization agents.  There are currently no efforts to develop this technology. 

 Primary Processor Technology 
o Physical distillation: water is recovered by evaporating urine – the steam is condensed to water and 

the non-evaporated liquid is brine. Due to the evaporation cycle, water recovery is generally limited 
due to salt precipitation. 

 Vapor Compressor Distiller: this is the SOA system used in the Urine Processing 
Assembly (UPA) on the ISS. 

 Cascade Distillation System (developed by AES): this is a mid-Technology Readiness 
Level (TRL) system being developed by the AES Water Project. 

o Membrane distillation: mass transfer across membranes is used as a means of separating water 
from the waste components. Membranes are susceptible to scale and biofouling that can coat the 
transfer surface or change the chemical properties of the membrane.   

 Osmotic Distillation: This is a low-TRL system being developed by the Next Generation 
Life Support (NGLS) project  for processing urine.  

 Forward Osmosis Secondary Treatment: This is a low-TRL system being developed by 
the NGLS for processing hygiene water – it does not reject urea and is therefore not 
appropriate for urine processing 

o Biological wastewater processing: this system uses biological agents to consume the waste 
products to produce water. Additional systems are used to desalinate the water and remove residual 
organic content. The low pH of the SOA urine stabilization methods would kill the biological 
agents in this system; compatibility with the AES GreenTreats is yet to be determined. 

 Membrane-Aerated Biological Reactor (MABR) – this is a low-TRL system being 
developed by NGLS. 

 Urine Stabilization Technology: Urine stabilization prevents the breakdown of urea (urea hydrolysis) into 
ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby 
mitigating hardware and water quality issues due to biofilms and planktonic growth. Finally, it helps prevent 
solids formation in the SOA WCS. 

o ISS Pretreat: This is the SOA urine stabilization method where chromic and sulfuric acids are 
added to urine in the WCS.   

o Shuttle Pretreat: This is the heritage urine stabilization method used on the US Shuttle where 
Oxone and sulfuric acids are added to urine in the WCS.  
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o AES GreenTreat: This is a “green” alternative to the SOA using food-grade preservatives with an 
organic, low-toxicity acid.  

o Precipitation Prevention Program (PPP) Pretreat: This an alternative to the SOA that reduces the 
amount of sulfuric acid in order to mitigate calcium scale formation.  

o None: No chemical or other stabilization technique is applied to the urine prior to being processed.  
 Precipitant Mitigation Technology: Precipitant mitigation is needed for the physical distillation systems 

when sulfates are present in the urine stabilization method. 
o AES: Distiller Calcium Limiter (DCaL). 
o PPP: Urine Processor Ion Exchange (UPIX). 

 Wastewater Composition. 
o Solution 1: Urine + humidity condensate mixture tested in the Distiller Downselect Testing. 
o Solution 2: Urine + humidity condensate + hygiene water mixture tested in the Distiller Downselect 

Testing. 
o Segregated Flow: this is the Solution 2 mixture where only urine is processed in the primary 

processor, humidity condensate is processed by the WPA and is currently done on ISS, and hygiene 
water is processed by a secondary processor assumed to be the Forward Osmosis Secondary 
Treatment (FOST) for purposes of this study. 

 
Error! Reference source not found. The Viable Options Summary Table summarizes the viable technology 

combinations for this architecture study. This table shows that the two physical distiller technologies could be 
considered viable at this time, assuming the ISS or ISS-derived technology will be used. A precipitant mitigation 
system (two technologies were considered to perform this function) would be required for options where the urine 
stabilization method includes a sulfate. Biological and membrane systems may be considered with an alternate urine 
collection system (not currently being developed by any organization). The biological processor would not be 
compatible with a SOA system; membrane system compatibility has not yet been determined.  

 
 
These options are viable with both solutions tested during the ELS Distiller Down Select Study, Solution 1 

consisting of humidity condensate and urine, and Solution 2 consisting of humidity condensate, urine and hygiene 
water. These options are also viable when considering separate urine and hygiene water flow streams where the 
urine is processed with the “Primary Processor A” and the hygiene water processed by a secondary processor; a 
FOST system will be the secondary processor evaluated for this study.  

Four additional options (12 taking into consideration the three waste stream compositions being considered) may 
be viable pending further characterization of urine stabilization with “GreenTreat”. Another four architecture 
options (12 taking into consideration the three waste stream compositions being considered) would be viable given a 
solids tolerant WCS. No technology has been identified that is tolerant to solids formation in the collection system 
and no efforts are currently funded to address this technology gap.    

Table 1. Viable Options Summary Table 

Urine Collection Device  Primary Processor Urine Stabilization Precipitant Mitigation

Phase Separation Technology  
(ISS WCS or Universal UCS) 

Physical Distiller 
(AES-Cascade Distiller 
System [CDS] or ISS-
Vapor Compressor 
Distiller [VCD])  

ISS: CrO3+H2SO4 Precipitant Mitigation 
(AES DCaL or PPP Ion 
Exchange) Shuttle: Oxone  

PPP: CrO3+H3PO4 None 
GreenTreat  None  

Membrane – OD  
GreenTreat  None  

Biological – MABR  

Solids Tolerant Waste 
Collection  
( Technology Gap) 

Membrane – OD  
None None 

Biological – MABR  
Membrane – OD  

Green Treat  None  
Biological – MABR  

Note: The unshaded portion of the table represents 10 clearly viable WRS architectures. 
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VI. Phase II Evaluations 

A. Performance 
Performance will be measure as a function of water recovered from urine (includes flush water and pretreate). 

The baseline option current recovers a max of 72% water from urine; systems that recover less than this would be 
considered viable options. Alternate pretreate (options 4 and 7) is expected to return system to spec performance at 

85% recovery. The Performance Value Function is provided in Fig. 4.  
UPIX and DCaL, being ion exchangers, have the potential to increase the minimum recovery by removing more 

solids and precipitating ions; expect these to enhance system performance by at least 5%. There is some controversy 
over this assertion, however. If the benefit of ion exchange performance is invalidated, then all options except one 
will have Recovery Rate 85% and Value 0.5. The following table shows the value and score for this figure of merit.. 

 
Figure 4. Performance Value Function. 
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Table 3. Phase II Options 

Option Urine 
Stabilization 

Primary 
Processer A 

Primary 
Processor B 

Calcium 
Remediation 

1 * Russian Pretreat VCD None None 

2 Russian Pretreat VCD None UPIX 

3 Russian Pretreat VCD None DCaL 

4 PPP Alternate VCD None None 

5 Russian Pretreat CDS None UPIX 

6 Russian Pretreat CDS None DCaL 

7 PPP Alternate CDS None None 

* Option 1 represents the current ISS configuration; it does not represent any option identified by the Phase I 
study since it does not meet the > 90% recovery objective. Options 2 and 4 represent options currently in work 
to recovery performance on the ISS UPA. 
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B. Mass 
Mass evaluation will be performed as a delta to the baseline mass. Up-mass water required to augment system 

(since it is not 100% closed) is not included in the mass evaluation – this aspect of the system is captured by the 
Performance metric. Urine Stabilization options do not incur an obvious mass delta, therefore only the mass of the 
primary processor and calcium remediation components for each option were evaluated. The following figure shows 
the Mass Value Function.   

 
 

1. Precipitant Mitigation Systems Mass:  
The Precipitant Mitigation Systems are shown in the following figure. 
 
 

 
Figure 5. Mass Value Function. 
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Table 4. Performance Scores 

Option  Recovery Rate  Value  

V
C

D
  1 – Baseline  74% 0 

2 – UPIX  90% 0.69 
3 – DCaL  90% 0.69 
4– Alt. Pretreate  85% 0.50 

C
D

S
 

5– UPIX  90% 0.69 
6 – DCaL  90% 0.69 
7– Alt. Pretreate  85% 0.5 
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C. Power 
The value function for power is shown in the following figure:  

 
Pretreat alternatives do not require any additional powered equipment. The Primary Processors have similar 

specific power:  
 VCD specific power = 188 W-hr/kg 
 CDS specific power = 108 W-hr/kg 
The UPIX, being an unpowered system, has an advantage over DCaL, which uses electricity to drive ion 

exchange through the membranes; this system also includes pumps that require power.   

D. Flight Readiness 
Flight readiness was evaluated as a function of technology readiness and level of development required. The 

value function is as follows:  
– 0 - Low TRL w. extensive design, development, test & evaluation or tech challenge 
– 0.2 - Low TRL w. minimal tech challenge 
– 0.4 - TRL soon w. extensive design, development, test & evaluation or tech challenge 
– 0.6 - TRL soon w. minimal tech challenge 
– 0.8 - TRL now w. minimal upgrades 
– 1.0 - TRL now or no change 

VI. Phase II Results 
The results for a long-duration mission as defined in the DRM is as follows:  
 

Measure  Wt 1 – ISS 
Baseline  

2 – VCD 
+ UPIX  

3 – VCD 
+ DCaL  

4 – VCD + 
Alt. Pretreat  

5 – CDS 
+ UPIX  

6 – CDS 
+ DCaL  

7 – 
CDS + Alt. 
Pretreat 

Performance  0.27 0.00 0.69 0.69 0.50 0.69 0.69 0.50 
Mass Savings  0.20 0.50 0.22 0.46 0.50 0.47 0.64 0.67 
Power Savings  0.13 0.50 0.50 0.35 0.50 1.00 0.96 1.00 
Flight Readiness  0.40 1.00 0.87 0.73 0.87 0.67 0.53 0.67 
Raw Score  2.00 2.28 2.24 2.37 2.83 2.83 2.83 
Weighted Score  0.57 0.64 0.62 0.65 0.68 0.65 0.67 
Without IX Benefit  0.55 0.60 0.57 0.65 0.64 0.60 0.67 

 
Figure 8. Power value function. 
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